
Heterogeneous Systems for Energy Efficient

Scientific Computing

Qiang Liu1 and Wayne Luk2

1 School of Electronic Information Engineering, Tianjin University,
300072 Tianjin, China

2 Department of Computing, Imperial College London,
SW7 2AZ London, UK

Abstract. This paper introduces a novel approach for exploring hetero-
geneous computing engines which include GPUs and FPGAs as acceler-
ators. Our goal is to systematically automate finding solutions for such
engines that maximize energy efficiency while meeting requirements in
throughput and in resource constraints. The proposed approach, based
on a linear programming model, enables optimization of system through-
put and energy efficiency, and analysis of energy efficiency sensitivity and
power consumption issues. It can be used in evaluating current and future
computing hardware and interfaces to identify appropriate combinations.
A heterogeneous system containing a CPU, a GPU and an FPGA with a
PCI Express interface is studied based on the High Performance Linpack
application. Results indicate that such a heterogeneous computing sys-
tem is able to provide energy-efficient solutions to scientific computing
with various performance demands. The improvement of system energy
efficiency is more sensitive to some of the system components, for exam-
ple in the studied system concurrently improving the energy efficiency
of the interface and the GPU by 10 times could lead to over 10 times
improvement of the system energy efficiency.

1 Introduction

Scientific computing applications, such as dense linear algebra and N-body sim-
ulation, require powerful computing engines to perform huge amounts of arith-
metic operations [1]. This work explores heterogeneous computing hardware for
scientific computing, aiming at relieving the increased energy demand of tradi-
tional high performance computers [2] and providing computing performance in
between desktops and supercomputers. With reasonable trade-off between per-
formance and energy and affordable price, the heterogeneous computing systems
can be owned and used by organizations requiring local scientific computing.

The target heterogeneous computing systems integrate CPUs, GPUs and FP-
GAs, built based on a widely used host-accelerator structure. We study the
heterogeneous systems’ throughput, energy efficiency and energy efficiency sen-
sitivity. These will help designers to make decisions on building heterogeneous
computing systems, such as selecting devices and interconnect interfaces. The

O.C.S. Choy et al. (Eds.): ARC 2012, LNCS 7199, pp. 64–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Heterogeneous Systems for Energy Efficient Scientific Computing 65

aim is to design a heterogeneous platform which is able to provide a high energy-
efficient solution to scientific computing with various performance demands.

Several homogeneous and heterogeneous systems have been developed for sci-
entific applications. Ding et al. [3] study energy efficiency and scaling efficiency
issues when many low power processors (PowerPC440) are connected. The im-
pact of interconnect interfaces and memory accesses together with voltage and
frequency scaling (DVFS) is taken into account. Wang et al. [4] develop an
algorithm for determining workload allocation and DVFS on a system with a
CPU and a GPU for scientific computation. Turkington et al. [5] accelerate
Linpack 1000 on a platform with a CPU and an FPGA, by implementing a
time-consuming subroute of Linpack 1000 on the FPGA. Fatica [6] uses a clus-
ter, where each node has a CPU and a GPU, to speed up High Performance
Linpack. A linear programming model is used in [7] to distribute workload be-
tween a CPU and a GPU, leading to accelerated FFT implementation. Tse et
al. [8] propose a framework for accelerating financial applications on a cluster
with CPUs, GPUs and FPGAs. A parallel programming approach combining
OpenMP, OpenCL and C++ is proposed in [9] to facilitate the management of
CPU–GPU clusters.

This paper explores adding recent GPUs and FPGAs into traditional high
performance computing systems for improving system energy efficiency. A linear
programming (LP) model [10] is used for computational workload allocation in
such systems. This paper builds on this model and provides, for the first time,
two novel results: (a) a design exploration flow for energy efficient scientific
computing, and (b) detailed analysis about energy efficiency of various hetero-
geneous systems including FPGAs and GPUs, the sensitivity of system energy
efficiency to individual system components, and energy efficiency versus power
consumption.

The main contributions of this work are:

– A novel approach based on a linear programming model for exploring hetero-
geneous computing engines which include GPUs and FPGAs as accelerators,
helping designers to find the right combinations of various computing devices
and interconnections;

– Analysis of energy efficiency sensitivity and the derivative of energy efficiency
with respect to power consumption, finding the system bottleneck and being
aware of system power consumption when trying to scale systems; and

– Evaluation of the proposed approach on a heterogeneous system with a CPU,
a GPU and an FPGA, showing that the heterogeneous computing system
provides an energy-efficient solution to High Performance Linpack (HPL)
and the system is more sensitive to some of the system components, e.g. by
estimation concurrently improving the energy efficiency of the interface and
the GPU by 10 times could lead to over 10 times improvement of the system
energy efficiency.

The rest of this paper is organized as follows. A linear programming model for
workload allocation is present in Section 2. The design exploration methodology



66 Q. Liu and W. Luk

is proposed in Section 3. The evaluation setup of the proposed approach is de-
scribed in Section 4 and results are shown in Section 5. Section 6 concludes the
paper with future work.

2 Workload Allocation Formulation

In this section, we will briefly present an LP model, which was used in [10] to
study different workload allocation problems with regards to throughput, energy
efficiency and temperature. We adopt this model to facilitate our exploration of
heterogeneous systems.

Given a heterogeneous system containing H hardware computing devices,
the throughput and run-time power consumption of device i are Rdi and Pdi,
respectively, and the throughput and run-time power consumption of the com-
munication channel between devices i and j are Rcij and Pcij , respectively. xi

is a percentage of computation workload W assigned to device i.
The execution time tdi of device i for performing xi of W is

tdi =
xi ×W

Rdi
, 1 ≤ i ≤ H. (1)

It is assumed that the host is device 1 and all data reside at the host memories.
td1 is the execution time of the host for computation workload x1.

When xi workload is allocated to device i, the host will send data to device
i and receive resultant data back from it upon finishing. The amount of data
involved in these transfers is D(xi), usually a linear function because the larger
workload is associated with the more data transfers. As a result, the time spent
on data transfers between the host and device i is

tc1i =
D(xi)

Rc1i
, 2 ≤ i ≤ H. (2)

Eq.(3) shows the execution time of the heterogeneous computing system, which
include computation time and data transfer time and should not be larger than
the requirement execution time T .

t = max(td1, max
i=2,H

{tdi + tc1i}) ≤ T (3)

The system energy consumption e is

e =
∑

i=1,H

(tdi × Pdi) +
∑

i=2,H

(tc1i × Pc1i) (4)

The first sum is the run-time energy consumption of all devices, including static
and dynamic power. The second one is the energy consumed on data transfers
between the host and accelerators.

The variables in this workload allocation formulation are xi ∈ [0, 1] (1 ≤ i ≤
H), and are added to one,

∑H
i=1 xi = 1.



Heterogeneous Systems for Energy Efficient Scientific Computing 67

The main purpose of [10] is to find the right workload allocation xi, such that
the system execution time t or the system energy consumption e is minimized,
while meeting user constraints. This paper has a different focus: to exploit the
insights derived from the linear programming model in exploring and optimizing
system architectures, given various devices and interfaces with different through-
put and power consumption parameters. In particular, based on formulae for t
and e, we propose a design exploration approach for heterogeneous systems in
the next section.

3 Exploration Approach

This section introduces a design exploration flow for heterogeneous systems. Let
us first describe system metrics for our approach.

3.1 System Metrics

A workload is a set of arithmetical calculations, particularly floating point op-
erations (FLOP).

A widely used metric for computer performance is throughput, which is

throughput =
number of floating point operations (FLOP)

execution time
,

measured in FLOPS (Floating Point Operations Per Second).
Energy efficiency is defined below:

energy efficiency =
throughput

power
=

FLOP

execution time× power
=

FLOP

energy
,

which is measured in FLOPS/Watt or FLOP/Joule. This metric evaluates the
computation rate per unit power of a computing engine. Obviously, the higher the
energy efficiency is, the more promising a computing engine is. However, energy
efficiency may hide one fact that a high energy efficiency computing engine has
high power consumption, leading to high device temperature and thus degraded
reliability.

Therefore, we study another metric in which power is paid more attention
when improving system energy efficiency. The metric is the derivative of energy
efficiency with respect to power (DEEP), defined as below:

DEEP =
Δenergy efficiency

Δpower
.

The unit of measurement is FLOPS/Watt
2
. It is desirable to increase energy

efficiency, but without increasing power consumption sharply.
In addition, we investigate how significant the effect of improving energy ef-

ficiency of each individual device and interface is on the heterogeneous system
energy efficiency, i.e. sensitivity analysis. This is desirable due to the fact that



68 Q. Liu and W. Luk

Fig. 1. Design exploration flow Fig. 2. The main program performing
SGEMM on the three devices

improving energy efficiency of a heterogeneous system is possibly blocked by
some of the system components, such as the interface bandwidth. By identify-
ing the bottleneck, the system energy efficiency can be further improved, or the
other parts of the system could be downgraded to reduce costs.

3.2 Design Exploration Flow

The design exploration flow of the heterogeneous systems is shown in Fig. 1 and
summarized as follows.

Step 1. Profile the original program of a scientific computing application in
C/C++, by means of tools such as gprof on the host, to identify the time-
consuming segments (workload W ) of the program. Usually these segments con-
tain loop nested arithmetic operations.

Step 2. Profile each of the time-consuming segments on different accelerator
devices to obtain parameters, such asRdi, Pdi, Rcij and Pcij . There are two meth-
ods to perform this profiling: a) using mathematical formulations of throughput
and power consumption of each device and interconnection; and b) executing the
code segments on each device to measure these parameters, respectively. From
the designers’ point of view, the former is more promising, because rewriting
and executing the codes on devices which may not be used in the final system is
avoided. However, it is not always easy to precisely formulate the performance
metrics of different devices. Speed and power consumption of FPGA-based sys-
tems with various optimizations have been formulated in [11] and an analytical
GPU performance model can be seen in [12]. In this paper, we focus on system
exploration, and thus use the second method.

Step 3. Allocate workloads over different devices. This step can be performed
at compile time if the workloads are a priori known and can be performed at
run-time otherwise. We use the LP model described in the previous section.

Step 4. Rewrite those code segments, which will be executed on accelerator
devices, considering various necessary optimizations based on hardware device
properties. For example, kernel functions are written as regards register and



Heterogeneous Systems for Energy Efficient Scientific Computing 69

shared memory sizes for GPUs. A code transformation approach from C to a
C-like hardware description for FPGA has been proposed previously in [13].

Step 5. Modify the original program, including adding codes for data transfers
between the host and accelerators and inserting OpenMP pragmas at where the
time-consuming code segments originally execute to invoke the parallel execu-
tions of them on multiple devices, following the workload allocation determined
at Step 3. An example is shown in Fig. 2.

In our future work, the above flow will be gradually automated. In the scope of
this paper, as regards the purpose of exploring system designs, we follow this
flow to carry out experiments manually with a typical benchmark of dense linear
algebra applications in the next section.

4 Experiment Setup

Benchmark. In this work, High Performance Linpack (HPL) [14] is used as
a benchmark to evaluate the proposed design exploration approach. Linpack
solves a dense system of linear equations and is widely used to evaluate high
performance computers. In this paper, we look at the function SGEMM in HPL,
which performs the following computation:

C = αAB + βC,

where A ∈ R
M×K , B ∈ R

K×N , C ∈ R
M×N and α, β ∈ R. All data are in

the single-precision floating point format. The number of float point operations
(FLOP) in SGEMM is MN+2MKN+MK (O(N3)). This function is the most
time-consuming part in HPL [6].

In our experiments, we partition matrices A and C horizontally, Cj = αAjB+
βCj , and assign different sizes of workload Mi(N + 2KN +K) (Mi = xiM) to
different computing devices i, and on each device we also parallelize the com-
putation of rows of CMi×N based on the number of parallel processing units
available.

Here the number of data transferred O(N2) between host device 1 and accel-
erator device i is

D(xi) = xiMK + x′
iKN + xiMN + xiMN, (5)

where x′
i is a Boolean variable which is zero if xi = 0; otherwise 1.

Heterogeneous System. The heterogenous system used in our experiments
contains a CPU, a GPU and an FPGA, whose parameters are shown in Table 1.
The GPU card is connected to the CPU host system using PCIe, while the
FPGA card (ADM-XRC-5T2 [15]) uses the PCIx interface and has a converter
from PCIx to PCIe to connect to the host. The parameters of the two kinds of
PCI interface, measured on the platform, are also shown in Table 1.

The CPU runs 64-bit Linux OS. With 2 threads the CPU performs SGEMM
using the same code as the function HPL dgemm() in Intel MKL 10.3.3, but in



70 Q. Liu and W. Luk

the single-precision data format. For GPU, we call the function cublasSgemm()

from the CUBLAS library in the CUDA SDK, which can automatically tune the
number of threads and the number of thread blocks based on input matrix sizes.

We implement the SGEMM function using Verilog for FPGA. The FPGA
card has four SDRAM banks, each at the bandwidth of 256Mb/s, and three of
them are used to store the input matrices and the fourth stores the results. On
the target FPGA device, 32 parallel processing units are realized to perform the
SGEMM computation in parallel. Resource utilization is shown in Table 1, where
the number of DSP blocks embedded on-chip and slices are the constraints that
limit the number of processing units running at 100 MHz to 32. In other words,
using a larger FPGA could realize more parallel processing units.

The execution mode of SGEMM on the heterogeneous platform is shown in
Fig. 2, where three devices with different workloads (M1,M2,M3) are triggered
at the same time to perform SGEMM by using openMP directives. The data
transfers between CPU and GPU and between CPU and FPGA are included in
the corresponding functions.

The throughput and power results for each individual device, shown in Table 1,
are measured separately, when the SGEMM function is executed on the hardware
platform. The results are measured several times when all devices and interfaces
run in the steady state, i.e. running at the highest speed for a period of time, and
reported as average values. The throughput of the CPU, the GPU and the FPGA
is the computation rate, without considering data I/O of the devices. The power
consumption of the FPGA card is obtained by monitoring the current flowing
over a current sense resistor on the card [15]. The power consumption of the
GPU card and the CPU system is measured by placing a AC/DC current clamp
at the corresponding power supplies, respectively. The power consumption for
the CPU is in fact the power consumed on the whole PC system, when removing
the FPGA and GPU cards. The power consumption of the PCI interfaces are
obtained by subtracting the system idle power from the power measured when
data are being transferred between CPU and FPGA or between CPU and GPU,
without executing computation on any of the devices.

The energy efficiency values in Table 1 are derived from the throughput and
power results. All results present in the next section are calculated based on
these results, using the formulations in Section 2.

5 Experimental Results

In our experiments, we vary M to change the size of input matrices of the
SGEMM function, while K = 400 and N = 1000. The results from various K
and N can be obtained similarly by simply partitioning the matrices.

From Table 1, it is clear that the GPU has the highest throughput in the
target system, compared to the CPU and the FPGA, because the GPU has 448
processing cores for floating point operations and the SGEMM function is well
matched to the GPU system structure. We could use more powerful CPUs and
larger FPGAs to reduce the performance gap. For example, by estimation, a



Heterogeneous Systems for Energy Efficient Scientific Computing 71

Table 1. Hardware platform characteristics. *These are measured based on SGEMM.

Device Intel CPU nVidia GPU Xilinx FPGA PCIx PCIe
(Xeon w3505) (Tesla c2070) (Virtex5-vlx330t)

#Cores 2 448 32 (100% DSP, 78% n/a n/a
slices, 79% RAMs)

Clock Freq 2.53 GHz 1.15 GHz 100 MHz n/a n/a

Lithography 45 nm 40 nm 65 nm n/a n/a

Throughput* 12.83 GFLOPs 558.94 GFLOPs 13.90 GFLOPs 0.21 GBs 5.79 GBs

Power* 151.0 W 164.4 W 3.87 W 4.4 W 33 W

Energy efficiency* 0.085 3.47 3.66 47.7 175.5
GFLOPs/W GFLOPs/W GFLOPs/W MBs/W MBs/W

Virtex6-vsx475t FPGA could accommodate 133 parallel processing units, and
thus the throughput of the FPGA implementation could be increased by about 4
times, respectively. However, our aim here is to exploit the strengths of different
devices within a system. Specifically, in the following it is shown that in the target
heterogeneous system the CPU is suitable to the scenarios where significant
communication is involved, and the FPGA is more promising for the scenarios
with concerns about power and temperature.

As known, in the host-accelerator systems, when communication is taken into
account, accelerators’ nominal performance usually suffers a discount. Two main
factors need consideration. The first one, from the algorithm perspective, is com-
putation per data transfer. In SGEMM, this factor is O(N), while the factor of
another function SGER from Linpack, involving O(N2) floating point opera-
tions and O(N2) data transfers, is O(1). We use the LP model in Section 2 to
determine the workload allocation of these two functions on the three devices
to maximize throughput. Results are shown in Figs. 3 and 4, where xc, xg and
xf are the percentages of workloads assigned to CPU, GPU and FPGA, respec-
tively. We can observe that most of the SGER’s workload is assigned to the
CPU, while the SGEMM’s workload is distributed and the faster device receives
more.

The second one, from the hardware perspective, is communication channel
bandwidth. For SGEMM shown in Fig. 4, with the fast interface PCIe, a large
portion of the workload is assigned to the fast devices, regardless of the matrix
size; with the slow interface PCIx, the allocation depends on the matrix size M .

It is clearly shown that the workload allocation scheme varies, according to
different scenarios. The heterogeneous system is able to provide such variety. In
the rest of this section, results are calculated based on the PCIe interface which
connects the host and accelerators.

In addition, as shown in Table 1, although in the target heterogenous system
the GPU has the highest throughput, the FPGA has the highest energy efficiency,
which is 44.9 times over CPU and 1.2 times over GPU. This illustrates the
strength of the FPGA in the heterogeneous system, and the impact will be more
significant if a latest large FPGA is used. For example, by estimation, a Virtex6-
vsx475t FPGA could provide energy efficiency in about 14 GFLOPS/W.



72 Q. Liu and W. Luk

160 320 640 1280 2560 5120
0

0.5

1

MW
or

kl
oa

d 
al

lo
ca

tio
n GPU and FPGA connected to CPU with PCIe

160 320 640 1280 2560 5120
0

0.5

1

MW
or

kl
oa

d 
al

lo
ca

tio
n GPU and FPGA connected to CPU with PCIx

x
c

x
g

x
f

x
c

x
g

x
f

Fig. 3. SGER workload allocation

160 320 640 1280 2560 5120
0

0.5

1

MW
or

kl
oa

d 
al

lo
ca

tio
n GPU and FPGA connected to CPU with PCIe

x
c

x
g

x
f

160 320 640 1280 2560 5120
0

0.5

1

MW
or

kl
oa

d 
al

lo
ca

tio
n GPU and FPGA connected to CPU with PCIx

x
c

x
g

x
f

Fig. 4. SGEMM workload allocation

Table 2. Energy efficiency of heterogeneous systems for SGEMM with M = 20480

CPU CPU+FPGA CPU+GPU CPU+GPU+FPGA

Energy efficiency 0.06 0.12 1.08 1.11
GFLOPS/W (1x) (2x) (18x) (18.6x)

17 19.5 22.5 27.5 34.5 46.5 70.5 149 250
0

0.5

1

(b) Throughput (GFLOPs)

W
or

kl
oa

d 
al

lo
ca

tio
n

 

 
x

c

x
g

x
f

17 19.5 22.5 27.5 34.5 46.5 70.5 149 250
5.7

5.8

(a) Throughput (GFLOPs)

E
ne

rg
y 

(J
)

Fig. 5. SGEMM (M=20480) (a) energy consumption of the CPU+GPU+FPGA
system and (b) corresponding workload allocation (xc = 0), given throughput
requirements

Given the different combinations of the three devices, the energy efficiency of
various heterogeneous systems is shown in Table 2. The throughput and power
consumption of the whole systems are measured. Note that the energy efficiency
is the whole system’s energy efficiency, including all kinds of overheads, such as
data transfers and software protocol. Compared to the single CPU system, the
heterogeneous systems improve system energy efficiency. As a point of reference,
the number one in the world Green500 energy-efficient supercomputer list is
1.68 GFLOPS/W as reported in 2010 [16]. Note that the peak performance 1.11
GFLOPS/W shown in this paper is just for the function SGEMM.

Moreover, the heterogeneous system, containing CPU, GPU and FPGA,
could potentially provide a high energy-efficient solution to scientific comput-
ing with various performance demands. Fig. 5 illustrates energy consumption of
the heterogenous system and the corresponding workload allocation targeting at



Heterogeneous Systems for Energy Efficient Scientific Computing 73

1 2 3 4 5 6 7 8 9 10

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Interface EE improvement (times)

S
ys

te
m

 E
E

 im
pr

ov
em

en
t (

tim
es

)

Fig. 6. System energy efficiency (EE)
sensitivity to interface

1 2 3 4 5 6 7 8 9 10

1.12

1.15

1.2

CPU EE improvement (times)

S
ys

te
m

 E
E

 im
pr

ov
em

en
t (

tim
es

)

Fig. 7. System energy efficiency (EE)
sensitivity to CPU

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

Interface EE improvement (times)

S
ys

te
m

 E
E

 im
pr

ov
em

en
t (

tim
es

) 1x GPU EE
2x GPU EE
4x GPU EE
8x GPU EE
10x GPU EE

Fig. 8. System energy efficiency (EE)
sensitivity to GPU

1 2 3 4 5 6 7 8 9 10

1.2

1.4

1.6

1.8

2

2.2

2.4

Interface EE improvement (times)

S
ys

te
m

 E
E

 im
pr

ov
em

en
t (

tim
es

)

1x FPGA EE
2x FPGA EE
4x FPGA EE
8x FPGA EE
10x FPGA EE

Fig. 9. System energy efficiency (EE)
sensitivity to FPGA

minimizing run-time energy, given different throughput requirements for per-
forming SGEMM. In Fig. 5 (a) we can see that the system (CPU+GPU+FPGA)
has a varied energy consumption as the throughput requirement varies. The vari-
ation could be explained by the fact shown in Fig. 5 (b). The majority of the
workload is assigned to the FPGA in the early stage, and then as the through-
put requirement increases the workload starts to be allocated to GPU and the
system energy consumption increases, and when more and more workloads are
allocated to GPU the system energy consumption is dominated by the GPU.

Furthermore, we investigate how effective improving energy efficiency of each
device and the interface individually is on the whole system energy efficiency.
By simulation, we increase the energy efficiency of CPU, GPU, FPGA and the
interface between them by 2, 4, 8, 10 times, respectively. Results are estimated
and shown in Figs 6–9. For example, in Fig. 6 improving the energy efficiency
of the interface alone by 10 times leads to 1.9 times improvement of the system
energy efficiency. In Fig. 7, CPU’s energy efficiency is increased alone and only
after 8 times improvement applied the system energy efficiency starts to show
very limited improvement. This is because in the target platform the CPU’s en-
ergy efficiency is 40 times lower than the other two devices, as shown in Table 1.
In Fig. 8, the energy efficiency of the interface and GPU is increased at the same
time. It can be seen that the impact of increasing GPU’s energy efficiency is
more significant with the high energy efficiency interface. Similar results can be
observed in Fig. 9 as well for FPGA. Overall, it is clearly shown that the energy



74 Q. Liu and W. Luk

Table 3. Energy efficiency and power consumption of heterogeneous systems for
SGEMM with M = 20480

CPU+GPU+FPGA+FPGA CPU+GPU+FPGA+GPU

Energy efficiency 1.14 GFLOPS/W 1.45 GFLOPS/W

Power 477.28 W 632.96 W

efficiency of the utilized heterogeneous computing system is more sensitive to
the concurrent improvement of the interface and the GPU, 10 times improve-
ment in the interface and the GPU leading to over 10 times improvement of the
system energy efficiency. Of course, feasibility and difficulty of achieving these
improvements should be taken into account. Although the results are estimated,
this sensitivity analysis indicates the direction, in which system requirements
could be met.

Finally, based on the previous results we experiment with adding one more
GPU and one more FPGA to the current heterogeneous platform. The esti-
mated results are reported in Table 3. It can be seen that the energy efficiency
by adding a GPU is 1.27 times higher than by adding an FPGA in the target
system. However, the power consumption of the system after adding a GPU is
very high and the system requires a powerful power supply over 800 W. The en-
ergy efficiency derivative with respect to power (DEEP) for adding one GPU is
0.0016 GFLOPs/W2 and is 0.0037 GFLOPs/W2 for adding one FPGA. There-
fore, devices with higher DEEP factors are more promising when system energy
efficiency is expected to improve within certain power constraints, such as power
supply and cooling system limitation.

Overall, designers of heterogeneous systems should carefully choose comput-
ing engines and interfaces to achieve required performance with respect to ap-
plications, cost and power consumption budgets. The approach proposed in this
paper provides designers with such an exploration tool.

6 Conclusion

This paper explores heterogeneous computing hardware, including CPUs, GPUs
and FPGAs, for scientific computing to maximize system energy efficiency while
considering system performance and power consumption. The sensitivity of the
system energy efficiency to individual system components is also studied. The
approach presented could help system designers to evaluate and choose the right
combinations of high energy-efficient devices and interfaces, when designing en-
ergy efficient scientific computing systems.

Our design exploration approach is evaluated using Linpack on a hardware
platform containing a CPU, a GPU and an FPGA, and results show that the
heterogeneous computing system could provide a high energy-efficient solution
to scientific computing with various performance demands.

In the future, we will extend our design exploration approach to cover applica-
tions which have a mixture of diverse computation and communication behavior.



Heterogeneous Systems for Energy Efficient Scientific Computing 75

Such applications have potential to benefit significantly from appropriate opti-
mization of heterogeneous computing systems.

Acknowledgment. This work was supported in part by UK EPSRC, by the
European Union Seventh Framework Programme under Grant agreement num-
ber 248976 and 257906, by the HiPEAC NoE, by Alpha Data, by Celoxica, by
nVidia, and by Xilinx.

References

1. Eijkhout, V., et al.: Introduction to high-performance scientific computing (May
2011), http://www.tacc.utexas.edu/eijkhout/istc/istc.html

2. Feng, W.-C.: The importance of being low power in high performance computing.
Cyberinfrastructure Technology Watch Quarterly 1 (2005)

3. Ding, Y., et al.: Towards energy efficient scaling of scientific codes. In: IPDPS,
pp. 1–8 (April 2008)

4. Wang, G., Ren, X.: Power-efficient work distribution method for CPU-GPU het-
erogeneous system. In: ISPA, pp. 122–129 (September 2010)

5. Turkington, K., et al.: FPGA based acceleration of the linpack benchmark: A high
level code transformation approach. In: FPL, pp. 1–6 (August 2006)

6. Fatica, M.: Accelerating linpack with CUDA on heterogenous clusters. In:
GPGPU-2, pp. 46–51 (March 2009)

7. Ogata, Y., et al.: An efficient, model-based CPU-GPU heterogeneous FFT library,
pp. 1–10 (April 2008)

8. Tse, A., et al.: Dynamic scheduling Monte-Carlo framework for multi-accelerator
heterogeneous clusters. In: FPT, pp. 233–240 (December 2010)

9. Barak, A., et al.: A package for openCL based heterogeneous computing on clusters
with many GPU devices. In: Int. Conf. on Cluster Computing Workshops and
Posters, pp. 1–7 (September 2010)

10. Liu, Q., Luk, W.: Objective-driven workload allocation in heterogeneous computing
systems. In: FPT (December 2011)

11. Liu, Q., et al.: Combining optimizations in automated low power design. In: DATE,
pp. 1791–1796 (2010)

12. Hong, S., Kim, H.: An analytical model for a GPU architecture with memory-level
and thread-level parallelism awareness. In: ISCA, pp. 152–163 (2009)

13. Liu, Q., et al.: Optimising designs by combining model-based and pattern-based
transformations. In: FPL, pp. 308–313 (2009)

14. Petitet, A., et al.: HPL - a portable implementation of the high-performance linpack
benchmark for distributed-memory computers, version 2.0,
http://www.netlib.org/benchmark/hpl/

15. Adm-xrc-5t2 data sheet, http://www.alpha-data.com/pdfs/adm-xrc-5t2.pdf
16. The green 500, http://www.green500.org/

http://www.tacc.utexas.edu/eijkhout/istc/istc.html
http://www.netlib.org/benchmark/hpl/
http://www.alpha-data.com/pdfs/adm-xrc-5t2.pdf
http://www.green500.org/

	Heterogeneous Systems for Energy Efficient Scientific Computing
	Introduction
	Workload Allocation Formulation
	Exploration Approach
	System Metrics
	Design Exploration Flow

	Experiment Setup
	Experimental Results
	Conclusion
	References




