2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines

Specifying Compiler Strategies for FPGA-based Systems

Jodo M. P. Cardoso', Jodo Teixeira', José C. Alves?, Ricardo Nobre'*, Pedro C. Diniz’,
José G. F. Coutinho*, and Wayne Luk*

! Universidade do Porto 2INESC-TEC, Univ. do Porto
Faculdade de Engenharia
Dep. de Engenharia Informatica
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

jmpc@acm.org

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal
ee06128@fe.up.pt

jea@fe.up.pt

Abstract—The development of applications for high-
performance Field Programmable Gate Array (FPGA) based
embedded systems is a long and error-prone process.
Typically, developers need to be deeply involved in all the
stages of the translation and optimization of an application
described in a high-level programming language to a lower-
level design description to ensure the solution meets the
required functionality and performance. This paper describes
the use of a novel aspect-oriented hardware/software design
approach for FPGA-based embedded platforms. The design-

flow wuses LARA, a domain-specific aspect-oriented
programming language designed to capture high-level
specifications of compilation and mapping strategies,

including sequences of data/computation transformations and
optimizations. With LARA, developers are able to guide a
design-flow to partition and map an application between
hardware and software components. We illustrate the use of
LARA on two complex real-life applications using high-level
compilation and synthesis strategies for achieving complete
hardware/software implementations with speedups of 2.5x
and 6.8x over software-only implementations. By allowing
developers to maintain a single application source code, this
approach promotes developer productivity as well as code and
performance portability.

Keywords-aspect-oriented programming; compilation; strate-
gies; hardware synthesis; FPGA; hardware acceleration

I. INTRODUCTION

The mapping of applications expressed in high-level im-
perative programming languages to FPGA-based heteroge-
neous reconfigurable computing architectures is a highly
complex and error-prone process. This difficulty is further
exacerbated by the variety of tools and computing para-
digms required to target these architectures as well as to
satisfy non-functional requirements (NFRs). For instance, a
design solution that is suited for inputs with specific data
rates may simply not be feasible for other input settings.
NFRs, such as the ones related to reliability and safety,
performance, and energy consumption, are commonly out of
the scope in existing tools, or cannot be expressed using
current high-level programming languages.

These factors lead to very long and error prone design
methods, in practice forcing developers to settle for sub-
optimal design solutions, given the sheer size of the corre-
sponding design-space-exploration (DSE). Even when spe-
cific pragma-based interfaces exist, the developer is con-
fronted with the unpleasant prospect of having to annotate

978-0-7695-4699-5/12 $26.00 © 2012 IEEE
DOI 10.1109/FCCM.2012.41

Faculdade de Engenharia, DEEC

192

*INESC-ID, 4 Department of Computing
Rua Alves Redol 9 Imperial College London
1000-029 Lisboa, Portugal 180 Queen’s Gate
ricardo.nobre@fe.up.pt London SW7 2BZ, UK

pedro@esda.inesc-id.pt gabriel.figueiredo@imperial.ac.uk

w.luk@imperial.ac.uk

the source code. As the system evolves, these annotations
and code specializations invariably lead to code obfuscation
and to code more difficult to maintain. As computing sys-
tems in general, and reconfigurable architectures in particu-
lar, continue to increase not only in size but also in hetero-
geneity, so will the effective mapping of computations to
these new architectures become prohibitively complex and
brittle. In particular, the amount of effort required to achieve
optimized implementations and to maintain these codes will
be exceedingly high.

In this paper we describe a novel approach for develop-
ing FPGA-based designs, where the code capturing the main
functionality of the application (in C) is decoupled from
NFRs. Strategies to meet NFRs are specified in LARA [1],
a domain-specific aspect-oriented programming (AOP) [2]
language. By decoupling the application code from non-
functional specifications, we preserve a clean source de-
scription of the computations which can be maintained
separately while taking advantage of a wealth of program
and mapping transformations. LARA provides the means of
codifying strategies that capture, control and unify a wide
range of schemes, including: (a) hardware-software parti-
tioning, (b) instrumentation and monitoring, (c) code spe-
cialization, and (d) code optimizations. In addition, LARA
provides a unified mechanism to convey to the underlying
tools (using a common tool-independent interface) system
attributes and NFRs that would otherwise be inaccessible by
the design-flow. Our work is further facilitated by three
distinct LARA features: (1) LARA descriptions can be
parameterized to capture design-patterns and templates and
used in the context of DSE, (2) code elements can be anno-
tated in LARA with arbitrary information from third-party
tools, such as profilers, that drive DSE, and (3) LARA can
control the design-flow and can be extended to control other
parts of the system at runtime.

In summary, our contributions include:

1. a design-flow based on LARA to map applications into

heterogeneous multi-core FPGA platforms.

a set of compiler strategies defined as sequences of

program transformations and data mapping directives

written in LARA that can be reused to generate efficient

designs for reconfigurable systems.

. an evaluation of our approach with complete implemen-
tations of two real-life applications.

2.

While in this work we use Catapult-C [3] to synthesize
hardware components, our LARA-based design-flow is

@) CO‘ pute
1(!) I
& SOCIety

completely agnostic to the back-end and front-end tools
used. To target other C-to-HDL tools, we would simply
need to revise the weavers to set the appropriate interfaces,
such as a specific set of C pragmas or scripts.

Overall, the results and experiences presented in this pa-
per lead us to believe that an AOP [2] approach such as
LARA offers a valuable mechanism to promote both per-
formance and code portability, while enhancing design
reuse in the face of current and future dynamic architecture
landscapes.

The remainder of this paper is organized as follows.
Section II describes the design-flow, LARA, and the target
architecture used. Section III describes the case studies used
for evaluation of our approach. Section IV presents exam-
ples of compiler strategies and shows how they are specified
in LARA. Section V presents the results achieved and Sec-
tion VI focuses on the most relevant related work. Finally,
Section VII concludes the paper.

IL.

We now describe the overall design-flow, highlighting
its main components and explaining how LARA exploits
the design-flow to derive embedded system solutions.

A.

Figure 1 shows a LARA-based design-flow. It requires
two types of descriptions: (1) C sources for the main appli-
cation functionalities, and (2) LARA description files which
capture NFRs in the form of aspects and strategies. Aspects
allow developers to convey specific application attributes
such as data-precision representations, input data rates, or
even reliability requirements, in a way that is completely
decoupled from the application source. Developers can also
control specific transformations in combination with attrib-
utes of selected program constructs to define (in a paramet-
ric fashion) powerful compilation and mapping strategies.
Based on the feedback from compilation and synthesis pro-
cesses, developers (or a DSE module) can adjust strategies
by changing the values of specific attributes or the sequence
of transformations to be applied, to effectively navigate the
design space in search of solutions that directly or indirectly
satisfy the desired application requirements.

The current design-flow implementation is based on a
static compilation flow and is structured as follows:

1. First, LARA source files are compiled to a single As-
pect-IR file using the LARA front-end tool. Aspect-IR
is an intermediate representation of LARA in XML. It is
more verbose than LARA, but it is structured in a way
to facilitate the parsing and the weaving of aspects and
strategies described originally in LARA.

. Next, all the weavers in the design-flow are executed in
sequence. Each weaver is capable of performing a spe-
cific set of actions and receives as inputs: the applica-
tion (in textual or intermediate format) and the Aspect-
IR. The output of each weaver, which is the input for
the next weaver in the sequence, is the woven applica-

DESIGN-FLOW AND TARGET ARCHITECTURE

Design-Flow: From Requirements to Aspects

193

tion and a revised Aspect-IR, e.g., without aspect ele-
ments no longer applicable or valid.

. The final stage involves compiling and linking object
codes and bitstreams into a single binary.

profiler module

third-party profiling data LABA
profilers annotation tool
,,,,,,,,,,,,,,,,,,,, application
B feedback
: o aspect
- application repositories
T (C sources) (LARA)
design
LARA feedback
frontend
source-level
weaver
HW/sW aspect-R
C partitions (XML)
IR-level
weaver
build, map runtime LARA
and reports annotation tool
execute

feedback module
Figure 1. LARA based design-flow.

Our current design-flow includes weavers that process
the application at different stages of the compilation chain.
Figure 1 presents two weaver components:

Source-level weaver: this weaver performs actions at C
source-level. It receives C as input, generates C as output,
and it is responsible for two actions: source-level instrumen-
tation and hardware/software partitioning [4]. Aspects pro-
cessed at this stage can exploit the fact that there is no code
lowering, and transformations preserve as much as possible
the original structure. When hardware/software partitioning
is sought, the weaver generates C partitions that can be
compiled separately for each component. The source-level
weaver also inserts communication primitives that realize
remote procedure calls between software and hardware
components. Strategies at this level map code functions to
FPGAs using cost estimation models based on code features
and on profiling information.

IR-level weaver: this weaver operates on the intermedi-
ate representation of the application and provides more
opportunities for aggressive optimizations. LARA aspects
control optimizations, such as loop transformations. In par-
ticular, target-independent optimizations are applied first,
followed by software or hardware specific optimizations
according to the target for each C partition (generated by the
source-level weaver).

Our design-flow also allows the definition and execution
of DSE strategies by supporting an interface where the
results of external tools can be captured to drive these strat-
egies, and therefore lead to more efficient designs. In par-
ticular, we developed tools and interfaces providing:

Profiling information: this information is collected us-
ing a third-party profiler tool, such as gprof. The profiling
results are captured in LARA using a LARA annotation
tool, and then imported by other LARA sources, thus influ-
encing the outcome of a particular strategy.

Feedback information: this information can be collect-
ed from design-flow stages, such as place-and-route reports
from FPGA vendor tools, and can be subsequently used to
drive multiple iterations of the toolchain as part of a DSE
process. In particular, a simple tool is used to convert re-
ports generated by backend tools (e.g., Xilinx XST) into
LARA, to be then imported and used by existing strategies.

As referred before, in this paper we use Catapult-C [3]
as the design-flow high-level synthesis tool. The control of
Catapult-C is performed by a weaving phase that automati-
cally translates LARA actions for hardware synthesis into
specific pragmas added to the C code input to Catapult-C.

We now highlight some important features of LARA.

B. LARA Language

LARA is an AOP language [1] allowing the specifica-
tion of NFRs, such as ones related to performance and fault-
tolerance, and optimization strategies, in a way decoupled
from the original application source code. To promote this
separation of specifications (concerns), we rely on weavers
that automatically generate an augmented application based
on the original code and LARA sources.

LARA descriptions are structured as aspect definitions.
Each aspect implements a cross-cutting concern (or part of a
concern), and consists of three main sections, namely: se-
lect, apply and condition. The select section allows develop-
ers to define pointcut expressions that capture join points,
e.g., parts of the program (function definitions, statements)
which one wishes to act upon. The apply section defines
actions to be applied to each join point resultant from a
select query. The woven application is therefore the result of
a set of actions applied on selected join points. LARA bor-
rows several constructs from the JavaScript language, in-
cluding arrays, loops, and function calls. This allows com-
plex strategies to be written, including DSE strategies. A
condition specifies whether an action should be applied to a
join point. LARA aspects can specify transformation and
mapping recipes capturing a wide range of implementation
schemes to satisfy NFRs.

Figure 2 shows an example of the weaving process trig-
gered by the aspect definition below. In this example, we
specify a pointcut expression (select section) that selects all
for-loops in the C source. A pointcut expression defines a
chain of elements according to the hierarchy of the C syntax
structure. The result of the pointcut expression is a table,
where each row corresponds to a chain of join points. The
weaving process traverses each row in the table, checks the
condition associated to the apply section, and performs the
corresponding actions. The values of join point attributes,
such as loop type or number of iterations, can be accessed
inside conditions and actions as the weaving process
traverses the chain of join points. By default, actions are
applied to the last join point in the chain (in our example,

194

Sloop), but any chain element can be specified as a target by
using its reference (e.g., in the apply below, $function corre-
sponds to all functions in the code with at least one for-
loop). Note that the LARA front-end allows the specifica-
tion of join point, action and attribute models. Hence,
LARA can target different languages and systems by revis-
ing these models.
aspectdef loopunroll
select function.loop{type=="for”} end
apply optimize(“loopunroll”, “fully”); end // fully unroll loop
condition $loop.is_innermost && Sloop.num_iter<=32; end
end
original

for (i=0; i<10; i++) {
for(j=0; 3j<15;3++) {

Select

| function.loop{type=="for"} |

}
join point table }

function loop

after weaving

main() 29:1 - for(...) {} for (i=0; i<10; i++) {
main() 30:3—for (...){} /*loop .3 fully
foo) | 40:6—for (...){} ; bnzelled) =4

attributes for $loop
type is_innermost num_iter

for true 15

$loop.is_innermost &3
$loop.num_jter <= 32

true —
| apply optimize loopunroll; end

Apply

Condition

Figure 2. Weaving process in LARA.

In addition to a pre-defined set of attributes associated to
each join point, new attributes can be defined by developers.
For instance, profiling information generated by tools like
gprof can be annotated back as attributes in LARA (see top
of Figure 1) as illustrated in the aspect below. In this exam-
ple, we added attributes time and calls to functions f7 and
12, which can be exported to other aspect definitions.

aspectdef gprof_results
select function{name=="f1"} end
apply $function.time = 30; Sfunction.calls = 15; end
select function{name=="f2"} end
apply S$function.time = 54; Sfunction.calls = 32; end
end

Next, we briefly describe the target architecture used for

the experiments and implementations presented herein.

C.

For the hardware/software solutions presented in this
paper we target FPGA implementations with a GPP coupled
to hardware accelerators, as illustrated in Figure 3. The
implementations use a PowerPC hardcore (PPC440) as
GPP, which executes the application software components,
and hardware modules, coupled to the PLB (processor local
bus), responsible for the hardware components. The PPC
core is connected to a single-precision FPU (floating-point
unit) via the APU (auxiliary processor unit) interface. This
base configurable architecture has been implemented on a
Virtex-5 FX FPGA with a PPC clocked at 400 MHz and the
CCUs at 100 MHz.

The hardware modules consist of a number of CCUs
(custom computing units) and local memories. The CCUs

Target Architecture

do not have direct access to the non-local memories (e.g.,
external memories) and data communications to and from
the hardware modules are performed by the PPC. In particu-
lar, data communication is done by transferring via the PPC
the data from external memories to hardware local memo-
ries and vice versa. This architecture allows the PPC and the
CCUs to execute concurrently. The execution of the CCUs
is controlled by the PPC via start and done signals.

FPU Hardware Modules

APU interface

Local Memories

PowerPC

(PPC440) ‘ CCU-1 H CCU-2 ‘ ‘ CCU-N ‘

ey 1
v

External Memories

Figure 3. Block diagram of the target architecture.

III.

To evaluate the impact of a diverse set of optimization
strategies on the global application speedup, we selected
two applications [5] - 3D Path Planning (3DPP) and Stereo
Navigation (SN) - provided in the context of the REFLECT
project [6]. Both applications are specified in plain C code
and their execution time is concentrated in a reduced num-
ber of functions selected for hardware acceleration. Table 1
shows the main characteristics of the two applications using
common software quality metrics. 3DPP and SN have 841
and 9,027 lines of code spread, respectively, over 48 and
164 functions. SN has a higher cyclomatic complexity than
3DPP revealing that SN is more control intensive.

CASE STUDIES

Table I. Software metrics for the two applications.

corner detector and is responsible for more than 60% of the
global execution time. This stage consists of convolution
operations using three functions: ConvC, ConvRI, and
ConvR2. All three functions work on a 96x96 2D single-
precision floating-point array, with a multiply-accumulate
operation at their innermost loops.

#tdefine ITER_STEPS_NUM ...
void gridit(int* obstacles, float* pot) { ...
for (it = 0; it < ITER_STEPS_NUM; it++) { // loop it
for (i=1;i<(X_DIM-1); i++) {// loop x
for (j=1;j<(Y_DIM-1); j++) {//loopy
for (k=1; k< (Z_DIM - 1); k++) { // loop z
val = obstaclesl[i][j][k];
if (val == 1) pot[i][jl[k] = POTENTIAL_ZERO;
else if (val == -1) pot[i][j][k] = POTENTIAL_ONE;
else { acc = pot[i-1][j][k]+pot[i+1][j][k]+pot[i] [j-1][k]+
pot[i][j+1][kl+pot[i][jl[k-1]+pot[i][j1[k+1];
pot[i][j](k] = FIX(acc * SCALE); I}

Figure 4. Simplified code for gridit (highlighted statements
result from code transformations).

IV. COMPILER STRATEGIES

We now describe the key transformations and mapping
choices associated with each of the two applications, name-
ly 3D Path Planning (3DPP) and Stereo Navigation (SN).

The 3DPP strategies described here target gridit and the
code surrounding its invocations. Table II briefly describes
the considered transformations and optimizations. We use
them to define specific strategies such as the ones specifi-
cally applied to gridit (see Table III) and to 3DPP (see Ta-
ble IV). An optimization example is loop fission and move
which can be applied to the it loop, a loop with 12 iterations
located at the main 3DPP function. Nested within this loop
are 5 invocations of gridit. Moving this loop to gridit (see
Figure 4) results in 5 invocations of gridit per algorithm step
rather than the 60 invocations originally required. This

3DPP computes in real-time a possible path to be fol-
lowed by an aerial vehicle flying across an environment
with known obstacles. Profiling analysis identified the func-
tion gridit as responsible for about 90% of the global execu-
tion time. Figure 4 presents the main computations of gridit.
This function is invoked in different points in the program,
with 3 different sizes (referred herein as: full, div2, and
div4) of the 3D matrices pot and obstacles. The innermost
loop updates each element of the matrix pot, either assign-
ing to a constant value or to the average of the 6 neighbors
of the element being updated (see Figure 4).

SN combines two images from two cameras to identify
the relative movement of image features, thus providing
vehicle navigation data, such as its absolute translation and
rotation. The software profiling of SN led to the identifica-
tion of the HarrisTile stage, which corresponds to a Harris

195

3D Path-Planning | Sterco Navigation reduction wi_ll have a hi.gh impact in the global HW/SW
Metric (3DPP) (SN) implementation (see Section V).
Blank/Code/Comment Lines 186/841/107 1,427/9,027/2,490 . _ .
Lines/ Files/ Functions 1.241/10/48 13.730/68/164 Table Il. Transformations and optimizations for 3DPP.
Declarative/Executable Statements 273/505 1,798/5,647 Name Description
AvgCyclomatic/ MaxCyclomatic 3.1/12 6.65/72 Loop fission and move Move iter loop to gridit function body
MaxNesting/ CountPath 7/314 6/4,022,376,475 Replicate array kx Replicate kx array pot and map each array in a
SumCyclomatic/ SumEssential 149/48 1,091/193 distinct on-chip memory

Map gridit to HW core

Synthesize the gridit function with Catapult-C

Specialization

Each call statement to gridit transformed to a call to a
specialized function according to the size of the map
(three possible sizes used: full, half, quarter)

Pointer-based accesses
and strength reduction

Data transfer to HW using pointers and pointer-
arithmetic (additions) instead of using array accesses
which require more complex structures for address
calculations (e.g., multiplications by 4 of an index
and addition to the base address).

Unroll kx Unroll k times the innermost loop of gridit
Eliminate array Eliminating repetitive loads by using a scalar to store
accesses (EAS) the first load

Move data access

Move data communication from the local HW core
memories to the code location where data are needed

Loop coalescing-k

Considers coalescing of the first k inner loops in
gridit function.

Transfer data according
to gridit call

Transfer the arrays (obstacles and/or pot) according
to the size needed for a given gridit call.

On-demand obstacles
data transfer

Transfer array obstacles only when needed and
promoting the reuse between hardware core
executions of its storage in local memories.

Moving array accesses
(MAA)

Move accesses (read/write) to array pot to outside the
if-else construct.

The strategies in Table III and Table IV are codified us-
ing the LARA language. Figure 5 shows some examples of
aspects for specifying individual optimizations such as array
replication, loop unrolling, loop coalescing, arrays to
memory mapping, and an aspect defining a strategy (in this
case the strategy 4b presented in Table III). Note that in this
example we replicate array pot to allow the generated hard-
ware core exploit concurrent load/store operations.

The use of input parameters in the first four aspects in
Figure 5 makes those aspects reusable and thus possible to
apply to other functions besides gridit.

Table lll. Compiler strategies applied to gridit. x, y, z represent
the loops involved.

tion of floating-point operations using sofifloats, the alloca-
tion of certain arrays to local memories, and the transfor-

mation of floating-point data to integer data whenever pos-
sible.

aspectdef id2

input k, namel="gridit”, name2="pot” end
select function{namel}.var{name2} end

agp1y optimize(“replicate”, “array”, k); end
en
aspectdef map2mem

input namel=“gridit”, name2="pot” end

var id = 0;

select function{namel}.var{name2} end

a5p1y map(to: “BRAM”, 1id:id++, array:$var.name); end
en
aspectdef id6

input k, level, namel=“gridit” end

select function{namel}.Toop end

Strategy Sequences of application apply optimize(“loopunrol1”, k);end
b Repl. pot 3% condition $loop.numIterIsConstant &&
$Toop.is_innermost && $Toop.level = level end
lc Repl. pot 6x end
2a Unroll 2x loop z — EAS aspectdef 1d10 -
2b Repl. pot 3x — Unroll 2x loop z — EAS 12put 1eve1%, 1eye1%, naTil?; 51?1t")endd
2] sl: select function{namel}. =loop) en
30 Repl mn6x4>UnTH21lom)ZA>EAS s2:_select function{namel}.($12=Toop) end
a €0a’e5¢e J00pS ¥,z apply to S1::52 optimize(“loopcoal”);end
3b Repl. pot 3x — coalesce loops y,z condition $11.7evel==Tevell & $12.Tevel==level2 end
3c Repl. pot 6x — coalesce loops y,z end
4a Unroll 2x loop z — EAS — coalesce loops y,z aspectdef Stratggy_4b . « "y .
yrs call id6(2, 3); optimize(“scalarreplace™);
Repl. pot 3x — Unroll 2x loop z - EAS — coalesce loops y,z call id10(2, 3); call id2(3); call map2mem();
4c Repl. pot 6x — Unroll 2x loop z — EAS — coalesce loops y,z end
;i 1 Unmllll ax lloop z—>EAS Figure 5. Examples of aspects for individual optimizations and
X X - -
Repl. pot 3x — Unroll 4x loop z > EAS an aspect specifying a strategy (bottom).
5c Repl. pot 6x — Unroll 4x loop z —» EAS
6a coalesce loops x,y,z Table V. Transformations and optimizations for SN.
gb gep; pot zx - coaiesce }oops X,¥,Z Name Description
X
7c epl. pot 6% — coa lesce IOOPS X.y.2 o<1 S Softfloats Transformation of floating-point operations and
a coalesce loops x,y,z—> Unroll 2x loopz - E data types to softfloat implementations
7b Repl. pot 3x — coalesce loops xy,z—> Unroll 2x loop z — EAS Parallel execution of | The HW cores of two convolutions executed in
Tc Repl. pot 6x — coalesce loops x,y,z— Unroll 2x loop z — EAS CCUs parallel.
8a Unroll 2% loop z — coal. loops y,z = EAS — MAA Local promotion Arrays of constants (input) passed as parameters
8b Repl. pot 3x— Unroll 2% loop z — coal. loops y,z - EAS - MAA promoted to local arrays
8c Repl. pot 6x— Unroll 2x loop z —> coal. loops y,z —> EAS — MAA Float to integer Transformation of single precision floating-point
data types to 32-bit integers
Table IV. Strategies for 3DPP using Table Il optimizations.
o Strategy V. EXPERIMENTAL RESULTS
Optimization T2l 3T al 51 ¢l 71 s
: This section presents experimental results for the 3D
Loop fission and move VIV . L .
Replicate array 3% T 7 Path Planning (3DPP) and Stereo Navigation (SN) applica-
Map gridit to HW core ANAAAT TV tions described in Section III. For each of these applications
Eomtﬁfébased accesses and strength reduction || j ; ; ; j j we report the results using the compilation and synthesis
nro. X
Eliminating amay accesses Ve B4 B4 v v B v B strategies d'escrlbed in the previous section. Note that alt-
Move data access 7 hough previous work [8] preliminarily illustrated the impact
Specialization — 3 HW cores 44 of some strategies when applied to isolated functions, in this
- . 7. ‘/ / / /
Tranfer pot data according to gridit call_ section we focus on the impact on the entire application
Tranfer obstacles data according to gridit call iV T ti instead
On-demand obstacles data transfer 141117 execution mstead.

With respect to SN, as the Catapult-C version used in
the experiments does not directly support floating-point data
types, we modified the source code to use software imple-
mentations of the floating-point multiplication and addition
operators based on the sofifloat library [7], but manually
simplified by eliminating the treatment of special numbers,
such as NaN. Even though this approach does not map the
operators into highly optimized arithmetic cores, it allows
Catapult-C to synthesize floating-point arithmetic to hard-
ware with interesting results.

Table V presents the optimizations applied to SN. They
consider the parallel execution of CCUs, the implementa-

196

The software/hardware solutions presented here were
implemented in an ML507 board, which includes a Xilinx
Virtex-5 (XC5VFX70TFFG1136) FPGA. The system archi-
tecture was designed using Xilinx EDK12.3, the hardware
cores were generated using Catapult-C [3] and their RTL-
Verilog descriptions were synthesized using the Mentor
Graphics Precision Synthesis tool (version 2010a 2.254).
For the backend stages we used the tools included in Xilinx
ISE 12.3.

The target architecture (see Figure 3) considers the PPC
hardcore found in the Virtex-5 FPGA, the external memory
for data and program instructions, and hardware cores con-
nected to the local bus. For all the implementations, the PPC

runs at 400 MHz and the software code was compiled with
ppc-gee with flag —02. We use as a starting reference the
embedded software implementations of the applications.

The designs described herein differ as the result of the
sequence of source code transformations that were the target
of, or in the way the corresponding codes were generated
and/or mapped to the available hardware resources.

A. 3D Path Planning (3DPP)

The 3DPP application (described in Section III) uses
two 3D arrays for the obstacles map and for the potential
field respectively. All the results presented in our evaluation
use a map with the size 32x64x16. The various implementa-
tions have variations on the strategies to map gridit (the
hotspot function in 3DPP) to hardware and to communicate
data between the PPC and the hardware cores. For all 3DPP
designs we use fixed-point data types.

Figure 6 presents the impact of all strategies (optimiza-
tions) listed in Table III regarding the resource usage and
speedup achieved by each hardware implementation com-
pared to the gridit function without optimizations (named as
la). A speedup of 2.33x was achieved with strategy 5c (see
Table III), but the corresponding design requires 2.43x more
resources than the baseline implementation. Strategy 2c led
to a design that achieves a speedup of 2.15x and requires
only 1.68x more resources, thus providing a better trade-off
between performance and resource utilization. Replicating
the pot array 3x instead of the 6x, as used for designs 5¢ and
2c, attains typically a similar performance using more slices
and less BRAMs. Strategy 2b led to a speedup of 1.91x
requiring only 1.79x more resources. While avoiding array
replications, strategy 8a leads to a speedup of 1.40x requir-
ing 1.62x more resources.

25 | ==ISpeedup (over baseline: 1a) 45

~m-occupied Slices increase over baseline (1a)
211

233
2.15 2.16
i, pam. 2,08 40

20 1.91

179 178
o 165
= 153
15
135 T30

68

1.0

179 0d
87
05 | 158

£2

wafl 202 [1] | Nale

0.0 - T
1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5a Sb 5c 6a 6b 6c 7a 7b

7c 8 8b 8c

Strategy

Figure 6. Impact of different strategies on the speedup and
hardware resources for the gridit function.

With respect to the implementation of the entire 3DPP
application, Table VI presents the resources for the hard-
ware module (see Figure 3) considering the 8 HW/SW im-
plementations (Table IV). The implementations using 3
specialized cores (7 and 8) clearly require more FPGA re-
sources. Note that we do not consider for the entire HW/SW
implementations the hardware cores of gridit with the pot

197

array replicated 6x as it is a version that in practice hardly
justifies the large number of BRAMs.

The maximum speedups obtained by the hardware cores
used over the software implementation were 12.15x and
27.30x with and without communication costs, respectively.

Table VI. FPGA resources used for the hardware cores in each
3DPP implementation.

Implementation
FPGA resources
1 234 | 56 7,8
Slice Registers used as Flip Flops 901 939 956 | 2,470
Slice LUTs 1,182 1,284 | 1,308 | 2,148
occupied Slices 531 663 642 1,004
BlockRAM/# DSP48Es 34/6 | 34/6 | 98/6 | 98/12
Lastly, we show in Figure 7 the overall speedups

achieved considering each of the 8 implementations in Ta-
ble IV. The significant increase in the speedup between
implementations 1 and 2 results from the application of loop
fission and move (see Table IV). This led to a reduction of
execution calls to the HW core, and thus to lower communi-
cation costs. Also, the moved loop is now implemented by
the HW core. Although implementations 7 and 8 use the
HW cores running at 85 MHz instead of 100 MHz (this
decrease in clock frequency occurs when adding these cores
to the entire system, and requires higher P&R effort), this
does not prevent these implementations to achieve the high-
est speedups. In fact, implementation 8 attains an overall
speedup of 6.8x over the software version. This is signifi-
cant as the code optimizations and transformations do not
rely on a deep restructure of the algorithm.

16.80
6.72
16.68

6.08
15.94

Implementation

]5.61

]5.01

8
7
6
5
4
3
2
1

[
|
[
[
[
[
[
0194

1.8 23 2.8 33 3.8 43 4.8 53 5.8 6.3 6.8 73

Figure 7. Overall speedups for different implementations of
3DPP using Table IV strategies.

B. Stereo Navigation (SN)

SN (described in Section IIT) uses single precision float-
ing-point data types. All the hardware cores were generated
using the sofifloat versions of the floating-point operations.
The final SN implementation uses three hardware cores, one
for the convolution ConvC and the other two for convolu-
tions ConvRl and ConvR2 of the HarrisTile stage of the
application. This implementation takes advantage of the
parallel execution of the three hardware cores staging the
computations in 5 stages, three of them executing two con-
volutions concurrently (of the 8 convolutions in the Har-
risTile stage). This solution uses 5 local memories with size
16384x32-bit for storing the arrays, 4 local memories with
size 16x32-bit, and 2 local memories with size 8x32-bit for
storing the constants of the ConvC convolutions.

Figure 8 presents the speedups achieved. The hardware
cores used for convolutions allowed HarrisTile implementa-

tions with speedups of 6.62x and 3.90x over pure software
implementations, when compiling both versions with —O0
and —02, respectively. In addition, the entire HW/SW im-
plementation of SN achieves global speedups of 2.12x and
2.53x over the software implementations with —O2 and —
00, respectively. The use of the strategy considering the
concurrent execution of two convolutions is responsible for
about 10% overall improvement of the speedup.

Table VII presents the FPGA resources used for each of
the three hardware cores according to the optimizations
presented in Table V. The complexity of the cores responsi-
ble for ConvRI and ConvR2 is similar while the core for
ConvC occupies much less FPGA resources due to the
transformation of floating-point to integer representations.
All three hardware cores were clocked at 100 MHz.

7 6.62
6
g5
34 3.90
Q.
@ 3 2.53

2.12
2
, | Lo 1.00 1.00 ﬂ 1.00
NINECEIE TN

W ‘SW/HW sw SW/HW‘ SW |SW/HW| Sw ‘SW/HW

Stereo HarrisTile

Navigation

Stereo HarrisTile

Navigation
Optimization (-00) Optimization (-02)
Figure 8. Speedups achieved for the entire application (Stereo
Navigation) and for the HarrisTile stage.

Table VII. FPGA resources used for the hardware cores.

hardware core
FPGA resources
ConvC ConvR1 ConvR2
Slice Registers used as Flip Flops 1,032 5,987 5,899
slice LUTs 1,180 11,676 11,709
occupied Slices/# DSP48Es 726/3 4,492/7 4,304/7
BlockRAM 36k / # BlockRAM 18k 6/160
VI. RELATED WORK

This section briefly describes the related work concern-
ing compiler optimizations as well as relevant aspect-
oriented programming (AOP) approaches.

A.

In contexts other than AOP, researchers have developed
compilation systems for performance tuning. While earlier
efforts focused on empirical-based approaches (e.g.,
ATLAS [9]), where programmers would simple let their
applications run and use the output of metrics to decide
which sequence of transformations were the best, later ef-
forts addressed more systematic approaches, and used a
combination of performance models (e.g., [10]) and special
purpose (or domain-specific) languages for defining com-
piler transformations sequences (e.g., [11]). Other ap-
proaches allow developers to customize the composition
and parameterization of transformations through scripting,
in order to automatically derive implementations that can
meet the specified goals [12]. In the context of multi-core

Compiler Optimizations

198

platforms, there were efforts focused on DSE approaches,
such as the one presented in [13], for generating multi-
objective optimizing strategies based on available perfor-
mance metrics and constraints.

In the context of synthesizing high-level programming
languages such as C to FPGAs, many efforts also consid-
ered a wide range of program transformations. Given the
complexity of the target reconfigurable architectures, these
efforts leveraged a series of algorithmic techniques to miti-
gate the huge design spaces to explore. Rather than dealing
with long synthesis times, researchers have developed esti-
mation-based approaches where the effects of specific trans-
formations on the resulting designs were modeled as de-
scribed, e.g., in [14]. The hArtes toolchain [4] maps C ap-
plications to multi-core platforms by automatically parti-
tioning the application and mapping the most suited tasks to
accelerators such as FPGAs. The partitioning and mapping
process are based on heuristics and profiling, and are guided
by user-defined source annotations.

We believe that LARA can complement the above ap-
proaches by providing a unifying framework, capable of
capturing and enacting evolving strategies with full control
over the design-flow. For instance, LARA is currently being
used to control via aspects design choices such as hard-
ware/software partitioning. In general, the use of aspects
differs from these approaches in various subtle ways. From
a transformational perspective, LARA presents a simple
paradigm of select/transform rather than an imperative ap-
proach to apply a strict sequence of transformations. This
allows LARA to be more flexible and composable than
other more monolithic approaches [15]. Second, it allows
developers to convey to transformation engines key metrics
of performance in a simple and unified form. In various
other systems these metrics are typically hidden from the
developer and only indirectly observed in other metrics of
the resulting design, making the overall navigation of the
design space extremely difficult if not impossible.

B. Aspect-Oriented Programming

The LARA design has been influenced by other AOP
languages [2] such as Aspect] [16] and AspectC++ [17]. In
our approach, pointcut expressions define composable select
expressions (similar to composable queries) as in [18]. We
can associate two or more pointcut expressions to the same
advice (apply statement) along with an operator to specify
the type of association thus enriching the semantics of the
pointcut mechanisms.

We have defined a hardware/software join point model
that reflects the need to interface with a potentially wide
variety of tools and target embedded computing systems.
Lastly, our approach also formalizes the concept of strate-
gies as a way to capture and reuse a sequence of program
transformations and application mapping choices. The main
drivers of our AOP approach have been the NFRs of the
target design solutions. Based on these requirements, LARA
supports not only actions associated with the join point’s
code to be executed (as in Aspect]), but also compiler opti-

mization directives and data and type information about
variables.

In addition, the separation of concerns in LARA facili-
tates the manual exploration of certain compiler properties,
as the changes to be evaluated are performed to concentrat-
ed code in aspects and not to pragmas spread along the
application (as it seems to be a trend [19]). Annotations
have severe limitations as they refer to static join points,
pollute the code, impose code variations (possibly imple-
mented using conditional compilation mechanisms), and do
not allow compiler sequences, while our AOP approach
allows semantic and dynamic join points, and join points
exposed along compiler sequences.

One of the strengths of our approach is to use AOP to
support design portability and retargetability. By codifying
concerns, such as performance as aspects our approach can
lead to the generation of different hardware or hard-
ware/software implementations. This can be conceptually
thought as the implementation of portability addressed by
Alves et al. [20] in the context of software product lines. In
addition, by exposing the characteristics of the target archi-
tecture to aspects, we promote tool-flow adaptability for
different architectures. Note that besides code variations we
also support AOP-based strategies that allow different im-
plementations by controlling key toolchain stages.

VIL

This paper described the use of a novel aspect-oriented
hardware/software design-flow for FPGA-based embedded
platforms. The design-flow uses LARA, a domain-specific
aspect-oriented programming language that supports the
high-level specification of compilation and application
mapping strategies, including sequences of da-
ta/computation transformations and optimizations. We illus-
trated the use of LARA on two complex real-life applica-
tions using high-level compilation and synthesis strategies
achieving complete hardware/software implementations
with speedups of 2.5x and 6.8x over software-only imple-
mentations. Our experiences indicate that our AOP ap-
proach enhances design reuse while preserving the original
application source-code, thus promoting developer produc-
tivity as well as architecture and performance portability.

Ongoing work is addressing the integration of optimiza-
tions and code transformations in the weaving phases of the
toolchain. Specifically, we are extending the support and the
specification of LARA strategies in the context of design
space exploration.

CONCLUSIONS

ACKNOWLEDGMENT

This work was partially supported by the European
Community’s Framework Programme 7 (FP7) under con-
tract No. 248976. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to the mem-
bers of the REFLECT project for their support.

199

(1]

(2]

(3]
(4]

(5]
(6]

(7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. M. P. Cardoso, et al., “LARA: An Aspect-Oriented Programming
Language for Embedded Systems,” in Int’l Conf. on Aspect-Oriented
Software Development (AOSD’12), Potsdam, Germany, March 25-
30, 2012.

G. Kiczales, Aspect-Oriented Programming, in ACM Computing
Surveys (CSUR), 1996. 28(4es).

Mentor Graphics Corp. Catapult C Synthesis C to Hardware
Concepts. October 2009.

W. Luk, et al, “A High-Level Compilation Toolchain for
Heterogeneous Systems,” in Proc. [EEE Int’l SOC Conf.
(SOCC09), Belfast, Northern Ireland, Sept. 9-11, 2009, pp. 9-18.
ICT-2009-4 REFLECT, April 2009. Deliverable 1.1 “Repository of
applications from Honeywell”.

J. M. P. Cardoso, et al., REFLECT: Rendering FPGAs to Multi-Core
Embedded Computing, book chapter in Reconfigurable Computing:
From FPGAs to Hardware/Software Codesign, J. M. P. Cardoso and
M. Huebner (eds.), Springer, Aug., 2011, pp. 261-289.

J. Hauser, June 2011. Available
http://www .jhauser.us/arithmetic/SoftFloat.html.

J. M. P. Cardoso, ef al., “A New Approach to Control and Guide the
Mapping of Computations to FPGAs,” in Proc. Int’l Conf.
Engineering of Reconfigurable Systems and Algorithms (ERSA'11),
July, 2011, CSREA Press, pp. 231-240.

R. Whaley, and J. Dongarra, “Automatically Tuned Linear Algebra
Software,” In Proc. of ACM Supercomputing Conference (SC'98),
1998, IEEE Computer Society, Washington, DC, USA, pp. 1-27.

A. Tiwari, C. Chen, J, Chame, M. Hall, and J. Hollingsworth, “A
Scalable Auto-Tuning Framework for Compiler Optimizations,” In
Proc. Int’l Symp. on Parallel and Distributed Processing
(IPDPS'09), 2009, IEEE Comp. Society, Washington, DC, pp. 1-12.
J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A Language
and Compiler for DSP Algorithms,” In Proc. ACM Conf. on
Programming Language Design and Implementation (PLDI01),
2001, ACM, New York, NY, USA, pp. 298-308.

Q. Liu, T. Todman, J. Coutinho, and W. Luk, G. Contantinides
“Optimising designs by combining model-based and pattern-based
transformations,” In Proc. Int’l Conf. on Field Programmable Logic
and Applications (FPL’09), Prague, Czech Republic, Aug. 31-Sept.
2,2009, pp 308-313.

G. Palermo, C. Silvano, and V. Zaccaria, “Multi-Objective Design
Space Exploration of Embedded Systems,” in Journal of Embedded
Computing, 2005, Vol. 1, No. 3, pp. 305-316.

J. Gerlach, W. Rosenstiel, and B. Gregory, “A Methodology and
Tool for Transformation-based High Level Design Space
Exploration,” In Proc. Int’l Conf. on Computer Design (ICCD'00),
Austin, TX, USA, 2000, pp. 454-5438.

M. Voss, and R. Eigenmann, “High-Level Adaptive Program
Optimization with ADAPT,” In Proc. ACM Symp. on Principles and
Practices of Parallel Programming (PPoPP’01), 2001, ACM, New
York, NY, USA, pp. 93-102.

J. Gradecki, and N. Lesiecki, Mastering AspectJ: Aspect-Oriented
Programming in Java. 2003, J. Wiley & Sons, Inc.

O. Spinczyk, A. Gal, and W. Schroder-Preikschat, “AspectC++: An
Aspect-Oriented Extension to the C++ Programming Language,” in
Proc. 40th Int’l Conf. on Tools Pacific: Objects for internet, mobile
and embedded applications (CRPIT’02), Australian Computer
Society, Inc., Darlinghurst, Australia, 2002, pp. 53-60.

M. Eichberg, M. Mezini, and K. Ostermann, “Pointcuts as
Functional Queries,” in Programming Languages and Systems: W .-
N. Chin (Eds.), Springer, Berlin, Heidelberg, 2004, pp. 366-381.

R. Ferrer, et al.,, “Optimizing the Exploitation of Multicore
Processors and GPUs with OpenMP and OpenCL,” in Proc. 23rd
Int’l Conf. on Languages and Compilers for Parallel Computing
(LCPC'10), Springer-Verlag, Berlin, Heidelberg, 2010, pp. 215-229.
V. Alves, et al., “Extracting and Evolving Code in Product Lines
with Aspect-Oriented Programming,” in Trans. on Aspect-Oriented
Software Development IV, A. Rashid, M. Aksit (Eds.), LNCS, Vol.
4640. Springer-Verlag, Berlin, Heidelberg, 2007, pp. 117-142.

at

