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Abstract—Gaussian Mixture Models (GMMs) are powerful
tools for probability density modeling and soft clustering. They
are widely used in data mining, signal processing and computer
vision. In many applications, we need to estimate the param-
eters of a GMM from data before working with it. This task
can be handled by the Expectation-Maximization algorithm for
Gaussian Mixture Models (EM-GMM), which is computationally
demanding. In this paper we present our FPGA-based solution
for the EM-GMM algorithm. We propose a pipeline-friendly EM-
GMM algorithm, a variant of the original EM-GMM algorithm
that can be converted to a fully-pipelined hardware architecture.
To further improve the performance, we design a Gaussian
probability density function evaluation unit that works with fixed-
point arithmetic. In the experiments, our FPGA-based solution
generates fairly accurate results while achieving a maximum of
517 times speedup over a CPU-based solution, and 28 times
speedup over a GPU-based solution.

I. INTRODUCTION

Gaussian Mixture Models (GMMs) are powerful tools for
probability density modeling and soft clustering. They orig-
inally came from statistical machine learning and they play
key roles in a large number of applications in data mining,
signal processing and computer vision. For example, Reynold
et al. [1] present a speaker verification system where GMMs
are used to model the characters of a speaker’s voice. Stauffer
et al. [2] design a computer vision system to subtract the back-
ground from video streams where GMMs are used to judge
whether a pixel belongs to the background in a probabilistic
manner. Greenspan et al. [3] propose an image segmentation
system to identify tissues in magnetic resonance (MR) images
of the brain where GMMs are employed to capture the spatial
layout information of brain tissues.

A GMM is a probability density model governed by a set
of parameters. We need to estimate the parameters from data
before working with the model in many applications. One
popular parameter estimation solution is a particular adaptation
of the Expectation-Maximization (EM) algorithm: EM for
Gaussian Mixture models (EM-GMM) [4]. The EM-GMM
algorithm estimates the parameters of a GMM in an iterative
manner. In each iteration, the algorithm computes and collects

statistical evidence from the data set and then updates the
parameters based on the evidence.

The time spent on each run of the EM-GMM algorithm
directly depends on the data size. In recent years, the EM-
GMM algorithm becomes increasingly computationally de-
manding since the development of high-definition sensors and
novel Internet technology leads to a fast growth of data size.
Moreover, it is sometimes desirable for the algorithm to be
executed within a short period of time. This is especially true
when the algorithm has to be invoked for multiple times (e.g.
cross-validation [5] and boosting [6]) or when fast response is
in great need (e.g. real-time object tracking [7]).

In this paper, we present our FPGA-based solution for the
EM-GMM algorithm. We aim to provide a fast parameter
estimation system that handles most of the computations in the
EM-GMM algorithm in a fully-pipelined manner. Our major
contributions are as follows:

• We restructure the work flow of the original EM-GMM
algorithm with algorithmic transformations to enable
pipelining of different computation stages, resulting in
a pipeline-friendly EM-GMM algorithm.

• We propose a customized design of the Gaussian proba-
bility density evaluation unit that minimizes the hardware
cost while achieving satisfactory accuracy.

• We overcome the precision problem in Gaussian PDF
evaluation with bit shifting and successfully deploy fixed-
point arithmetic throughout our system.

The rest of this paper is organized as follows. Section
II provides an introduction to GMMs and the EM-GMM
algorithm, and discusses existing high performance computing
solutions for the EM-GMM algorithm. Section III describes
our restructured pipeline-friendly EM-GMM algorithm. Sec-
tion IV presents our customized evaluation unit for Gaussian
probability density functions. Section V shows some exper-
imental results on accuracy and performance of our design
compared with two CPU-based systems and one GPU-based
system. Finally, Section VI provides a brief conclusion of this
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study and discusses possible future work.

II. BACKGROUND

A. Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a linear combination
of multiple Gaussian distributions. A GMM with K Gaussian
components can be represented in the form

p(xn) =
K∑
k=1

wkG(xn|µk,Θk) (1)

where
• xn = (xn1, xn2, . . . , xnD) is a vector representing a data

instance with D attributes. It can be considered as a point
in a D-dimensional Euclidean space.

• G(xn|µk,Θk) is a Gaussian probability density controlled
by mean vector µk = (µk1, µk2, . . . , µkD) and covari-
ance matrix Θk. The probability density function can be
mathematically defined by

G(xn|µk,Θk) =
exp

{
− 1

2 (xn − µk)TΘ−1k (xn − µk)
}

(2π)d/2|Θ|1/2k
(2)

The probability density G(xn|µk,Θk) is referred to as the
k-th Gaussian component of the GMM.

• wk is the mixture weight (or mixture coefficient) of
the k-th Gaussian component. The mixture coefficients
w1 . . . wK must be non-negative numbers satisfying

K∑
k=1

wk = 1 (3)

To sum up, a Gaussian mixture model is governed by three
parameter sets: mixture weights {w1 . . . wK}, mean vectors
{µ1 . . . µK} and covariance matrices {Θ1 . . .ΘK}.

In this study, we assume that the covariance matrices for
all Gaussian components are diagonal. Therefore a covariance
matrix Θk must satisfy

Θk = diag(σ2
k) (4)

where σ2
k = (σ2

k1, σ
2
k2, . . . σ

2
kD) is a vector of variance values.

This assumption is widely taken by a variety of studies
about GMMs such as [2], [8], [9], [10] and [11]. It simplifies
the evaluation of the Gaussian probability density function
(PDF) while keeping or even improving the accuracy and
robustness.

B. Expectation-Maximization for GMMs

One elegant method of parameter estimation is the
Expectation-Maximization (EM) algorithm. The EM algorithm
is a general way to solve parameter estimation problems in
machine learning. A particular adaptation of the EM algorithm,
EM for Gaussian mixture models (EM-GMM), can be used to
estimate the parameters of a GMM.

The EM-GMM algorithm estimates the parameters of a
GMM in an iterative manner. We first choose an initial

parameter set arbitrarily and then update the parameter set by
alternating between the following two steps until a predefined
convergence condition is met:
• Expectation step (E step): Compute a responsibility value
rnk for each data instance xn with respect to each Gaus-
sian component k using the current estimation of param-
eter values {w1 . . . wK}, {µ1 . . . µK} and {Θ1 . . .ΘK}.
More specifically, the responsibility value rnk is defined
and computed by

rnk =
wkG(xn|µk,Θk)∑K
j=1 wjG(xn|µj ,Θj)

(5)

• Maximization step (M step): Estimate new parameter sets
{w+

1 . . . w
+
K}, {µ

+
1 . . . µ

+
K} and {Θ+

1 . . .Θ
+
K} with the

responsibility values obtained in the E step. Then replace
the old parameter sets by the new ones. More specifically,
the new parameter sets are computed by

w+
k =

Nk
N

(6)

µ+
k =

∑N
n=1 rnkxn
Nk

(7)

Θ+
k =

∑N
n=1 rnk(xn − µ+

k )(xn − µ+
k )T

Nk
(8)

where

Nk =

N∑
n=1

rnk (9)

The original EM algorithm for Gaussian mixture models
is shown in Algorithm 1. Sufficient details are provided in
the pseudocode to expose the patterns in memory access and
computations. In Algorithm 1, Line 2 to Line 8 correspond
to the expectation step; Line 9 to Line 19 correspond to the
maximization step.

Fig 1 shows an example of the EM-GMM algorithm on a
set of 2-dimensional data instances. The two ellipses stand for
two Gaussian components respectively. In each expectation
step, a data instance is plotted to be darker if it has larger
responsibility values with respect to the Gaussian component
represented with solid ellipse. In the example run, we follow
the assumption that all covariance matrices are diagonal.

C. Existing Acceleration Systems for the EM-GMM

There are some existing acceleration solutions for the EM-
GMM algorithm based on different platforms such as clusters
and Graphics Processing Units (GPUs).

López-de-Teruel et al. [12] propose a programming frame-
work for the parallel EM algorithm with standard Message
Passing Interface (MPI) and they apply the framework to
GMMs. Their implementation of EM-GMM is shown to have
acceptable scalability as the number of processors increases.

Zhou et al. [13] present a distributed system for clustering
data streams based on EM-GMM. They put their effort on
reducing communication cost to eliminate performance bottle-
necks. They also propose a series of optimizations to reduce



Algorithm 1 ORIGINAL EM-GMM

1: while stop condition not met do
2: for n← 1 to N do
3: s← 0
4: for k ← 1 to K do
5: gk ← wkG(xn|µk,Θk)
6: s← s+ gk
7: for k ← 1 to K do
8: rnk ← gk

s
9: Nk ← 0, w ← 0, µ← 0, σ ← 0

10: for all n ∈ 1..N, k ∈ 1..K do
11: Nk ← Nk + rnk
12: for all k ∈ 1..K do
13: wk ← Nk

N
14: for all n ∈ 1..N, k ∈ 1..K, d ∈ 1..D do
15: µkd ← µkd + rnkxnd

Nk

16: for all n ∈ 1..N, k ∈ 1..K, d ∈ 1..D do
17: σ2

kd ← σ2
kd + rnk(xnd−µkd)

2

Nk

18: for all k ∈ 1..K do
19: Θk ← diag(σ2

k)
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(a) Iteration 1, E step
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(b) Iteration 1, M step

−0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

x
1

x
2

(c) Iteration 2, E step
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(d) Iteration 2, M step
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(e) Iteration 7, M step
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(f) Iteration 20, M step

Fig. 1: Example Run of EM-GMM

CPU time and memory consumption for the computing nodes
in the system.

Gu et al. [14] consider the problem of building GMMs
using data collected from distributed sensor networks. They
propose a distributed EM-GMM algorithm for sensor networks
in which the parameters of a GMM can be estimated locally
at each network node in parallel without requiring the data to
be collected and processed at the central location.

Kumar et al. [8] present an implementation of EM-GMM
using GPUs following the ‘single instruction multiple threads’
model. The speed of this implementation scales up with the
number of GPU cores. In the experiments, the implementation
achieves a maximum of 164 times speedup compared to a
naı̈ve single-threaded C implementation on the CPU platform.

III. A PIPELINE-FRIENDLY EM-GMM ALGORITHM

The original EM-GMM algorithm does not fit into a fully-
pipelined hardware design. This is because the data depen-
dency in the original EM-GMM algorithm makes it impossible
to stream the data only once in each EM iteration.

We propose a pipelined-friendly EM-GMM algorithm in
which the data set is only streamed once in each EM iteration.
We named the algorithm pipeline-friendly EM-GMM because
it can easily be adapted and implemented as a fully-pipelined
hardware architecture.

A. Updating Mixture Weights and Mean Vectors

One important step to compute the new mean vectors is to
compute the value N1 . . . NK . We set up a set of variables
η1 . . . ηK to collect statistical information about N1 . . . NK
such that N1 . . . NK can be calculated effortlessly at the end
of the EM iteration.

Before any data instance is processed, η1 . . . ηK are initial-
ized to zero. When the n-th data instance xn is loaded, the
responsibility values rnk for all Gaussian components k can be
computed according to Equation 5 with the current estimation
of parameters. Then we update each element in η1 . . . ηK by

ηk ← ηk + rnk (10)

When all the N data instance are processed, we have

ηk =
N∑
n=1

rnk = Nk (11)

By Equation 9 and 10, we can compute the new mixture
weights as follows

w+
k =

Nk
N

=
ηk
N

(12)

On the other hand, we use a set of vectors ρ1 . . . ρK to
collect statistical information about the weighted sum of the
data instances. Initially, we set all members in ρ1 . . . ρK to
zero vectors. When a data instance x arrives, we update the
elements in ρ1 . . . ρK by

ρk ← ρk + rnkxn (13)



When all the N data instance are processed, we have

ρk =
N∑
n=1

rnkxn (14)

Finally, at the end of the EM iteration, the new mean vector
for the k-th Gaussian component can be computed by

µ+
k =

ρk
ηk

(15)

B. Updating Variance Vectors

We assume that the covariance matrices of all Gaussian
components are diagonal. Therefore, we may decompose the
value of each variance value in each Gaussian component by
Equation 4 and 8

σ2+
kd =

∑N
n=1 rnk(xnd − µ+

kd)
2

Nk
(16)

=

∑N
n=1 rnk

(
x2nd − 2xndµ

+
kd + (µ+

kd)
2
)

Nk
(17)

=

∑N
n=1 rnkx

2
nd

Nk

−
∑N
n=1 2rnkxndµ

+
kd

Nk

+

∑N
n=1 rnk(µ+

kd)
2

Nk
(18)

We first focus on the second term in Equation 18. The constant
2 and the variable µ+

kd can be moved out of the summation
operation because they are not related to n∑N

n=1 2rnkxndµ
+
kd

Nk
= 2µ+

kd

∑N
n=1 rnkxnd
Nk

(19)

On the other hand, by Equation 7∑N
n=1 rnkxnd
Nk

= µ+
kd (20)

Substitute Equation 20 into Equation 19∑N
n=1 2rnkxndµ

+
kd

Nk
= 2µ+

kdµ
+
kd = 2(µ+

kd)
2 (21)

We then focus on the third term in Equation 18. The variable
µ+
kd can be moved out of the summation operation as it is

independent of n∑N
n=1 rnk(µ+

kd)
2

Nk
= (µ+

kd)
2

∑N
n=1 rnk
Nk

(22)

Substitute Equation 9 into Equation 22∑N
n=1 rnk(µ+

kd)
2

Nk
= (µ+

kd)
2Nk
Nk

= (µ+
kd)

2 (23)

Substitute Equation 21 and 23 into Equation 18, we have

σ2+
kd =

∑N
n=1 rnkx

2
nd

Nk
− 2(µ+

kd)
2 + (µ+

kd)
2 (24)

=

∑N
n=1 rnkx

2
nd

Nk
− (µ+

kd)
2 (25)

We consider the transformation in Equation 25 valuable
because it enables us to compute the new covariance matrices
without streaming the data into the algorithm again. Similar
to the computation of the new mean vector, we use a set of
vectors, τ1 . . . τK , to collect statistical information about the
first term in Equation 25 and compute the value of term at the
end of the iteration.

Initially, we set all members in τ1 . . . τK to zero vectors.
When a data instance xn arrives, we update the elements in
τ1 . . . τK by

τk ← τk + rnkx
2
n (26)

When all the N data instance are processed, we have

τk =
N∑
n=1

rnkx
2
n (27)

By Equation 15, 25 and 27, the new variance vector can be
computed by

σ2+
kd =

τkd
ηk
− ρ2kd

η2k
=
τkdηk − ρ2kd

η2k
(28)

C. Algorithm Summary

To summarize the algorithm transformations illustrated
above, we present the pipelined-friendly EM-GMM algorithm
as a piece of pseudocode in Algorithm 2.

Algorithm 2 PIPELINE-FRIENDLY EM-GMM

1: while stop condition not met do
2: for n← 1 to N do
3: ρ← 0, τ ← 0
4: s← 0
5: for k ← 1 to K do
6: gk ← wkG(xn|µk,Θk)
7: s← s+ gk
8: for k ← 1 to K do
9: r ← gk

s
10: ηk ← ηk + r
11: for d← 1 to D do
12: ρkd ← ρkd + rxnd
13: τkd ← τkd + rx2nd
14: for k ← 1 to K do
15: wk ← ηk

N
16: for d← 1 to D do
17: µkd ← ρkd

ηk

18: σ2
kd ←

τkdηk−ρ2kd

η2k
19: Θk ← diag(σ2

k)

Note that the algorithmic transformation is lossless. No
numerical or algorithmic approximation were taken in the
transformation. Therefore, theoretically the pipeline-friendly
algorithm should generate exactly the same results as the
original one if we use the same data set and the same initial
parameter sets, although practically the two results may be
slightly different due to numerical precision issues. Such a



similarity suggests that the pipelined-friendly algorithm will
have similar accuracy and convergence speed as the original
one.

The fundamental difference between the original EM-GMM
and the pipeline-friendly EM-GMM is that the former requires
data to be streamed into the algorithm for three times while
the latter only once. Other differences include the following.
• The expectation step and the maximization step become

overlapped in the pipeline-friendly algorithm. In the orig-
inal algorithm, the maximization step does not start until
all the data instances are processed in the expectation
step. In the pipeline-friendly algorithm however, the data
set is handled in a per-instance manner. Statistical infor-
mation of the new parameter set is updated once the data
instance arrives.

• The original algorithm stores all the responsibility values
in the expectation step. The pipeline-friendly algorithm
computes the responsibility values for a newly arrived
data instance and update the statistical information of the
new parameter set. In this case, it is not necessary for
the algorithm to store all responsibility values. When the
statistical information about a data instance is collected,
the corresponding responsibility values can be discarded
safely.

The differences suggest that most of the computations in the
pipeline-friendly EM-GMM can be moved to FPGAs. In this
study, we move the collection procedure of statistical evidence
(Line 2 to Line 13 in Algorithm 2) to the FPGA platform
because they apply similar operations on a large number of
different data instances. We leave the rest of computations
to the CPU because they are infrequently invoked in com-
parison to the collection of statistical evidence. Moving these
computations to the FPGA platform will waste valuable logic
resources.

Note that although the pipelined-friendly EM-GMM algo-
rithm is designed for the ease of hardware implementation,
it can be implemented in a software form. The software
implementation may have higher performance than the original
EM-GMM as it reduces the amount of memory accesses.
Related experimental results can be found in Section V.

IV. CUSTOMIZED FUNCTION EVALUATION UNIT FOR
GAUSSIAN PDF

We can observe from Algorithm 2 that the most complicated
computation of the pipeline-friendly EM-GMM is the evalua-
tion of the Gaussian PDF. We design a Gaussian probability
density function evaluation unit that works with fixed-point
arithmetic. We aim to achieve both low hardware cost and
satisfactory accuracy in our design.

A. Approximation Strategy

Lee et al. [15] design and optimize function evaluation
units for three elementary functions in fixed-point arithmetic.
They also provide a series of valuable suggestions on function
evaluation problem in general. In our design, we are not
proposing a general approach for evaluating PDF. Instead,

we employ a design that is fully customized according to the
accuracy requirement and input value range of the Gaussian
PDF.

The basic method for computing Gaussian PDFs is shown
in Equation 2. Direct evaluation of such a function in FPGAs
is extremely expensive as the function includes complicated
computations such as matrix determinants, square roots, matrix
inverses, matrix multiplications and exponential functions.

Note that the diagonal covariance matrix suggests that the
attributes are conditionally independent. Therefore the original
PDF can be decomposed into a series of one-dimensional
Gaussian distribution functions.

G(xn|µk,Θk) =
D∏
d=1

G(xnd|µkd, σ2
kd) (29)

=
D∏
d=1

(
1

σkd
φ(
xnd − µkd

σkd
)) (30)

=
D∏
d=1

1

σkd

D∏
d=1

φ(
xnd − µkd

σkd
) (31)

where φ(u) is the standard one-dimensional Gaussian PDF
defined by

φ(u) =
exp{− 1

2u
2}

√
2π

(32)

In Equation 31, the products of the reciprocals of standard
divisions do not change in an EM iteration. Therefore they can
be computed in the host PC. However, the product of standard
one-dimensional Gaussian PDF values have to be computed
within FPGAs.

We can reduce the implementation cost of the Gaussian PDF
evaluation unit by considering the properties of standard one-
dimensional Gaussian PDFs. First, the standard Gaussian PDF
φ(u) is even. We can merely approximate the positive part of
φ(u). For all u < 0, we compute φ(−u) instead. Second, the
function value is meaningful when the corresponding input
value does not exceed 3. Therefore we only need to compute
a relatively accurate value when 0 ≤ u ≤ 3.

We propose a method to compute the approximate value
of the standard Gaussian PDF based on polynomial functions.
We expect that the approximate function φ̂(x) to be equipped
with the following properties:

• φ̂(x) should be as accurate as possible when 0 ≤ x ≤ 3.
For all x > 3, we may manually set φ(u) to be a small
positive constant. This is to keep the statistical fidelity of
the algorithm.

• The computations involved in φ̂(u) should be as simple
as possible. This is to reduce the consumption of logic
resources on FPGAs.

To trade-off between the two properties, we choose to use
the following piecewise linear function to approximate the



Fig. 2: Approximate one-dimensional Standard Gaussian PDF

standard one-dimensional Gaussian PDF

φ̂(u) =


−0.0781u+ 0.4041, if 0 ≤ u < 0.4053

−0.2183u+ 0.4609, if 0.4053 ≤ u < 1.8340

−0.0568u+ 0.1647, if 1.8340 ≤ u ≤ 2.8

φ̂(2.8), if u > 2.8

(33)

The positive part of this approximate function is plotted with
the real Gaussian PDF in Fig 2.

It can be observed from Fig 2 that the piecewise linear
approximation fits the real Gaussian PDF well. We noted that
inaccurate Gaussian PDF values may not lead to negative
results in GMM-based systems if the error is properly con-
trolled [16]. Therefore we consider our function approximation
accurate enough as the absolute error is below 0.005 for most
of the input values. Moreover, the function involves only three
multiplication operations, which is inexpensive in terms of
resource consumption on the FPGA platform.

B. Precision Control with Shifting

Consider the product of standard one-dimensional Gaussian
PDF values in Equation 31

H(xn|µk, σk) =
D∏
d=1

φ(
xnd − µkd

σkd
) (34)

This product may become a very small positive value when
D is large. More specifically, for a data instance xn in a
D-dimensional space, the maximum possible value of this
product is

pmax(D) = max
xn

H(xn|µk, σk) (35)

=
D∏
d=1

1√
2π

(36)

= (2π)−D/2 (37)

The value of this function decreases exponentially towards
zero. We aim to control the value of pmax(D) to be a
constant for the ease of allocating a proper number of bits
to represent a result. Note that if we shift each result of one-
dimension Gaussian PDF evaluation to the left by h bits. The
corresponding maximum value is

p′max(D) = 2hD · (2π)−D/2 = 2(h−1/2)D · π−D/2 (38)

Take logarithm on both sides with base 2, we have

log2 2(h−1/2)D + log2 π
−D/2 = log2 p

′
max(D) (39)

To control the maximum value of this function, we may
set p′max(D) to any constant number. We propose to take
p′max(D) = 1 because this setting enables us to build a
constant shifting scheme regardless of the value of D. More
specifically, by taking p′max(D) = 1, Equation 39 can be
simplified as

(h− 1

2
)D − D

2
log2 π = 0 (40)

Note that D can be canceled as D > 0. We can then solve
the equation with respect to h

h0 =
1

2
(log2 π + 1) (41)

As a result, if we can shift each one-dimensional Gaussian
PDF evaluation result by 1

2 (log2 π + 1) bits, we can control
the value of H(xn|µk, σk) to be less than 1. However, we
are not able to shift the result by 1

2 (log2 π + 1) bits because
1
2 (log2 π + 1) ≈ 1.325748 which is not an integer.

Note that h0 ≈ 4
3 , which means that shifting 4 bits in 3

evaluations could be an approximate solution. We consider to
shift 2 bits every 3 evaluations and 1 bit otherwise. Let ht be
the number of bits shifted in the t-th Gaussian PDF evaluation,
then

ht =

{
2, if mod(t, 3) = 1

1, otherwise
(42)

Taking this shifting scheme, the maximum value of the
product is controlled to be less than 1.5 when D ≤ 20.
Note that it is safe to replace the product of standard one-
dimensional Gaussian PDF values in Equation 31 by the
shifted result without shifting back. This is because the re-
sponsibility values computed in Line 9 in Algorithm 2 will
stay unchanged even if we take shifted probability values.

V. EXPERIMENTS

We follow the strategy described in [8] to generate data
for our experiments. More specifically, we use MATLAB to
randomly sample data sets from real GMMs with random
noise. We generate six data sets with D = 3, 6 and K = 2, 4, 6
respectively. 106 data instances are sampled for each data set.

We tested the accuracy and performance of three implemen-
tations: (1) a CPU implementation of the original EM-GMM
algorithm; (2) a CPU implementation of the pipeline-friendly
algorithm; (3) an FPGA implementation of the pipeline-
friendly EM-GMM algorithm. The three implementations will



be named ‘CPU1’, ‘CPU2’ and ‘FPGA’ for short in our
experimental records.

In the experiments about performance, we compare the
systems with a GPU implementation described in [8]. As we
do not have the experimental results of this system on our
data, the performance is estimated according to the results and
trends described in [8]. As we are not using the same data sets
with the ones in [8], for each of our data set, we take the best
performance record in [8] with similar data size. Note that the
performance estimation may not be very meaningful and we
provide the results here only for reference. This configuration
will be named ‘GPU’ for short in our experimental records.

The two CPU implementations are deployed in a PC with
an Intel Core i3 CPU (running at 2.93GHz) and 4GB DDR3
memory. Both implementations are coded in the C program-
ming language on a single CPU core and compiled with
the highest compiler optimization in the Intel C compiler.
The FPGA implementation is deployed in a Maxeler MAX3
acceleration card with a Xilinx Virtex-6 FPGA running at
150MHz and 48GB DDR3 on-board memory.

A. Accuracy Results

We describe the accuracy of a system by the average
log-likelihood value [4] of the estimated parameters with
respect to the data set. Larger log-likelihood values suggest
better accuracy. Using the same data set and the same initial
parameters, we take the GMM parameters estimated by the
three implementations after each iteration and compute the
average log-likelihood respectively. experimental results about
accuracy are plotted in Fig 3. As the difference on the accuracy
between the two CPU implementations are too small to be
visible, they are plotted as a single curve in each plot.

B. Performance Results

We describe the performance by the number of data in-
stances processed in every second. A data instance is consid-
ered to be processed in an iteration when all the computations
related to the data instance are done in that iteration. exper-
imental results on performance are recorded in Table I. The
last two columns in the table record the speedup values of
our FPGA-based solution over the CPU-based solution (the
original EM-GMM) and the GPU based solution respectively.

TABLE I: Performance Results (Instances per Second)

Data CPU1 CPU2 GPU FPGA SUC1 SUG

1 1.732e6 2.040e6 3.081e7 1.493e8 86x 5x
2 8.565e5 1.014e6 1.541e7 1.492e8 174x 9x
3 5.689e5 6.671e5 1.027e7 1.492e8 262x 15x
4 8.714e5 1.023e6 1.541e7 1.487e8 171x 9x
5 4.310e5 5.079e5 7.704e6 1.487e8 346x 15x
6 2.883e5 3.402e5 5.136e6 1.487e8 517x 28x

C. Discussion

We can observe from Fig 3 that our FPGA-based solution
and the CPU-based solutions lead to similar accuracy after
the same iteration for the same data set. The similarity on

(a) Data 1 (D=3, K=2) (b) Data 2 (D=3, K=4)

(c) Data 3 (D=3, K=6) (d) Data 4 (D=6, K=2)

(e) Data 5 (D=6, K=4) (f) Data 6 (D=6, K=6)

Fig. 3: Accuracy Results (Average Log-Likelihood)

the accuracy suggests that the approximate Gaussian PDF
evaluation unit is reliable. Moreover, our FPGA-based solution
sometimes generates more accurate results than the CPU-based
ones. We consider it very interesting as we do not expect a
system involving approximations to be more accurate than the
original one. We do not know the underlying reason behind
this observation but it is probably because we use a small
constant for small PDF values instead of zero, which may
prevent the algorithm from premature convergence. Similar
observations can be found in Monto Carlo localization in
robotics [17].

Table I shows that our FPGA-based solution is significantly
more efficient than other systems at least in our tested cases. In
the best case we tested, the FPGA solution achieves 517 times
speedup over a CPU-based solution (the original EM-GMM)
and 28 times speedup over the GPU-based solution.



The throughput of the FPGA-based solution keeps at a
constant level at around 1.5 × 108 instances per second. As
the FPGA runs at 150MHz, the performance suggests that
the system handles a data instance per cycle without being
confronted with memory bottlenecks.

We believe the reason behind the high speedup of our
FPGA-based solution is that the fixed-point arithmetic saves
hardware resources on the FPGA platform. This enables us to
deploy up to 36 Gaussian PDF evaluation units in the pipeline,
which exploits available FPGA resources well. However, it
is not feasible to perform similar optimization on CPUs and
GPUs. If we have richer logical resources on the FPGA plat-
form, we can deploy an even larger number of Gaussian PDF
evaluation units to enable more complicated data with larger
D and K to be processed by the system. The corresponding
acceleration would be more significant.

Moreover, we can see from Table I that the pipeline-friendly
EM-GMM algorithm leads to better performance than the
original one on the CPU platform, as we predicted in Section
III-C.

VI. CONCLUSION AND FUTURE WORK

This paper presents our FPGA-based solution for the
Expectation-Maximization for Gaussian Mixture Models (EM-
GMM), which is a widely used but computationally demand-
ing algorithm. We restructure the work flow of the origi-
nal EM-GMM algorithm with algorithmic transformations to
enable pipelining of different computation stages, resulting
in a pipeline-friendly EM-GMM algorithm. We also design
a Gaussian probability density function evaluation unit with
fixed-point arithmetic in which the precision of internal results
are under proper control. This unit is inexpensive in terms
of resource consumption of the FPGA platform and provides
reliable results.

In the experiments, the FPGA-based solution is shown to be
able to provide accurate results with higher performance than
all the tested solutions which are based on CPUs and GPUs.
It achieves 517 times speedup over a CPU-based solution
running the original EM-GMM, and 28 times speedup over
a GPU-based solution.

Possible future work based on this study includes the
following. First, we may generalize our design to handle non-
diagonal covariance matrices. This may enhance the descrip-
tive power of the GMMs generated by our system. Second,
we may integrate our solution into specific applications such
as object tracking, speech recognition and data visualiza-
tion. Further optimization can be applied according to the
requirements of the applications. Third, in addition to the
EM-GMM algorithm, there are a variety of other important
but computationally demanding machine learning algorithms
based on EM iterations. Designing FPGA-based solutions for
these algorithms could be very rewarding.
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