
Parametric Reconfigurable Designs with Machine
Learning Optimizer

Maciej Kurek, Wayne Luk

Department of Computing, Imperial College London

Abstract—We investigate the use of meta-heuristics and ma-
chine learning to automate reconfigurable application parameter
optimization. The traditional approach involves two steps: (a)
analyzing the application in order to create models and tools
for exploration of the parameter space, and (b) exploring the
parameter space using such tools. The proposed approach, called
the Machine Learning Optimizer (MLO), involves a Particle
Swarm Optimization (PSO) algorithm with an underlying surro-
gate fitness function model based on Gaussian Process (GP) and
Support Vector Machines (SVMs). We present a case study of a
quadrature based financial application with varied precision. We
evaluate our approach by comparing the amount of benchmark
evaluations and bit-stream generations when using MLO and
when using the traditional approach.

I. INTRODUCTION

The optimization of heterogeneous computing applications
often requires substantial effort from the designer who has to
analyze the application, create models and benchmarks and
subsequently use them to optimize the application. One could
try to employ exhaustive search of the application parameter
space to carry out optimization yet it is unrealistic since
benchmark evaluations involve bit-stream generation and code
execution which takes hours of computing time. Recently it
has been shown useful to use surrogate models combined with
fitness functions for computationally expensive optimization
problems in various fields [1], [2], [3], [4], [5]. As these
models are orders of magnitude cheaper, they can substantially
decrease optimization cost thus allowing for an automated
approach. This is the motivation behind MLO which we
apply to non-linear and multi-modal problem of heterogeneous
application parameter optimization. We use GPs to model
performance of the design like execution time or throughput,
while searching for the global optimum using PSO. We
classify the parameter space using SVMs to identify designs
that would fail constraints; over-map on resources, produce
inaccurate results or other. Our contributions:
• The proposed approach has two new aspects: (a) sur-

rogate models of application benchmarks (b) automated
application optimization scheme based on the surrogate
models and MLO (Section II).
• We use our approach to optimize throughput of a
quadrature based financial application with varied preci-
sion [6]. We show how MLO can significantly decrease
benchmark evaluations (up to 85%) and can be used in
combination with analytical models (Section III).

A. Gaussian Process Regression

GP is a newly developed machine learning technology based
on strict theoretical fundamentals and Bayesian theory [7], [8].
GP does not require a predefined structure, can approximate
arbitrary function landscapes including discontinuities and
multi-modality, can have meaningful hyper-parameters, and
includes a theoretical framework for obtaining the optimum
hyper-parameters [4]. A further advantage of GP is that it
provides a predictive distribution, not a point estimate.

A Gaussian process is a collection of random variables,
any finite set of which have a joint Gaussian distribution. A
Gaussian process is completely specified by its mean function
m(x) and the covariance (kernel) function k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)) (1)

The covariance function express the covariance between
pairs of random variables, in case of regression they express
our belief on relation between input, output pairs. There is
a training set D of n observations, D = (xi, yi)|i = 1, ...n,
where x denotes an input vector, y denotes a scalar output or
target. The column vector inputs for all n cases are aggregated
in the D×n design matrix X , and the targets are collected in
the vector y. The goal of Bayesian forecasting is to compute
the distribution p(x∗, y∗,D) of output y∗ given a test input
x∗ and a set of training points D. Using Bayes rule, the
posterior distribution for the Gaussian process outputs y∗ can
be obtained. By conditioning on the observed targets in the
training set, the predictive distribution is Gaussian.

B. Support Vector Machines Classification

The SVM is a maximum margin classifier, which constructs
a hyperplane used for classification (or regression) [9]. SVMs
use kernel functions k(x, x′) to transom the original feature
space to a different space where a linear model is used for
classification. SVMs are a class of decision machines and so
do not provide posterior probabilities. There is a training set
D of n observations, D = (xi, ti)|i = 1, ...n, where x denotes
an input vector, t denotes a target value. The column vector
inputs for all n cases are aggregated in the D×n design matrix
X , and the targets are collected in the vector t. The goal is
to compute a decision boundary that will allow to categorize
inputs x∗ based on X and t.

978-1-4673-2845-6/12/$31.00 c© 2012 IEEE

C. Particle Swarm Algorithm (PSO)

PSO is a population-based meta-heuristic based on the
simulation of the social behavior of birds within a flock. The
algorithm starts by randomly initializing N particles where
each individual is a point in the X search space with inertia
governing its movement. The population is updated in an
iterative manner where each particle is displaced using its
velocity. The criteria for termination of the PSO algorithm
can vary, and usually is determined by time budget. There
are a large number of variations of the PSO algorithm,
dealing with different types of search space, different search
space boundary restrictions - as well as adaptive flavors that
automatically adjust algorithms parameters. The xdi represents
the dth coordinate of particle i from the set X∗ of N particles,
where particle is a point within X . Eq. 2-3 govern movement
of a particle. vdi is the velocity of particle, where r1 and r2
are two independent uniformly distributed random numbers,
c1 and c2 are constants, w is acceleration factor and pgd and
pdi are global best and particle best positions.

vdi = wvdi + c1r1(pdi − xdi) + c2r2(pgd − xdi) (2)

xdi = xdi + vdi (3)

II. DESIGN

Traditionally optimization is carried out by building bench-
marks and relevant tools, often constructing analytical models
and finally evaluating a set of parameter configurations:

1) Build benchmark returning design quality metrics.
2) Specify search space boundaries and optimization goal

(maximization/minimization).
3) Create analytical models of the design.
4) Create tools used to explore the parameter space.
5) Use the tools to find optimal configurations, guided by

the models in step 3.
6) If result not satisfactory redesign.
In our approach the user supplies a benchmark along with

the constraints and goals, and using meta-heuristics MLO
automatically carries out the optimization (Algorithm 1). We
present our approach to parameter optimization:

1) Build benchmark returning design quality metrics.
2) Specify search space boundaries and optimization goal

(maximization/minimization).
3) Provide MLO (Algorithm 1) with time budget and use

it to optimize the application.
4) If result not satisfactory redesign or increase bud-

get/search space.
Our steps 1, 2 and 4 correspond to traditional steps 1, 2

and 6. Therefore the MLO approach will be faster than the
traditional approach when the time for step 3 of the MLO
approach is shorter than the total time for steps 3, 4 and 5 of
the traditional approach.

We use meta-heuristics to explore parameter space. The
challenge with applying meta-heuristics to reconfigurable ap-
plication parameter optimization is related to high cost of fit-

ness function evaluations (application benchmark evaluations).
Our proposed optimization approach has two new aspects
that counter this problem. We build a surrogate model of
application fitness function (Section II-B) and we use it to
define the new surrogate model aided meta-heuristic MLO
(Section II-C). This allows us to substantially decrease amount
of bit-stream generation and benchmark evaluations.

A. Parameter space and Fitness Function
The parameter space X of a heterogeneous application is

spanned by discrete and continuous parameters determining
both the architecture and physical settings of field programmed
gate array (FPGA) designs. When provided a parameter set-
ting x benchmark returns fitness f(x) = (y(x), t(x)) which
constitutes of two values, a scalar metric of fitness y(x) and
the exit code of the application t(x). y(x) represents a metric
provided by execution of the applications benchmark, like
execution time or power consumption. There are can be many
possible exit codes t(x), 0 usually indicating valid x′s. The
designer can choose to extend benchmark to return extra exit
codes depending on failure cause. A separate exit code can
exist for configurations that produce in-accurate results, while
a different ones for one which fail to build a bit-stream.

B. MLO Surrogate Model
We integrate Bayesian regressors and a classifier to cre-

ate a novel and more powerful surrogate model for the
defined f . The problem we face is regression of y over
regions of X that produce valid results. We make use of
Bayesian regressors to access the probability of prediction
of y(x). We use classifiers to predict exit codes of non-
examined parameter configurations across X . Regressions
are made using training set Dregressor, while classification
is done using training set Dclassifier. When doing a pre-
diction y∗, p(x∗, y∗,Dregressor)← Regressor(Dregressor, x∗).
We denote p(x∗, y∗,Dregressor) as ρ for simplicity. t∗ ←
Classifier(Dclassifier, x∗), t∗ is the predicted class of x∗.

C. MLO Algorithm
We sketch MLO in Algorithm 1. The algorithms main new

aspect with respect to previously mentioned surrogate based
algorithms; integration of a classifier to account for invalid
regions of X . We initialize the meta-heuristic of our choice
with N particles X∗ uniformly randomly scattered across X .
Each particle has associated fitness x∗.fit and a position x∗.
Whenever point x∗ is evaluated (x∗, t(x∗)) is included within
the classifier training set Dclassifier. If f(x∗) produces y(x∗)
and t∗ = 0, (x∗, y(x∗)) is added to Dregressor.

For all x∗ in predicted t(x∗) = 0 we proceed as follows;
Whenever ρ returned by regressors is larger then maxρ we
use the y∗, otherwise we believe prediction to be inaccu-
rate and evaluate f(x∗). x∗ in all regions that do not pro-
duce valid results are assigned an arbitrary large/small value
(minval/maxval) marking them as unwanted (depending on
whether we face a minimization/maximization problem) and
assumed to be accurately modeled. Meta-heuristic will avoid
invalid regions as they are assigned unfavorable values.

Algorithm 1 MLO
1: procedure MLO
2: for x∗ ∈ X∗ do . Initialize with a uniformly randomized set X∗.
3: f(x∗)
4: end for
5: repeat
6: for x∗ ∈ X∗ do
7: y∗, ρ← Regressor(Dregressor, x∗)
8: t∗ ← Classifier(Dclassifier, x∗)
9: if ρ < maxρ and t∗ = 0 then

10: x∗.fit← f(x∗)
11: else
12: if t∗ = 0 then
13: xi.fit← y∗
14: else
15: xi.fit← maxval or minval
16: end if
17: end if
18: end for
19: X∗ ←Meta(X∗) . Iteration of the meta-heuristic
20: until Iteration/Fitness budget exceeded
21: end procedure

III. EVALUATION

We use our approach to optimize throughput of quadrature
method-based financial application with varied precision [6]
implemented on the Maxeler platform. We show how ana-
lytical models can aid MLO. We use a velocity clamping
version of PSO algorithm as our meta-heuristic. A wide variety
of regressors could be used to construct a surrogate model
of y, yet there are some open limitations which can be
hard to overcome [7], [8], [10]. The GP should be powerful
enough to model the heterogeneous application, as numerous
multi-modal and multi-dimensional non-linear functions were
used as benchmarks for meta-heuristics along with GP based
surrogate models [1], [2], [3], [4], [5]. We choose SVMs as
our classifier. Different kernel functions can be used to express
different beliefs on the shaped of boundaries and classes.
We use anisotropic exponential kernel function with additive
Gaussian noise kernel for the GP and a Radial Basis Function
(RBF) kernel for the SVM.

In [6] an optimization model (traditional step 3) is proposed
along with an associated algorithm (traditional step 4) that
improves design throughput (integrations per second φint)
by varying the number representation in quadrature based
applications. The application is parameterized with density
factor df of integral estimation and the number mantissa
width mw. df is software parameter while mw and cores
affects the bit-stream. If we evaluate a design with mw (or
mw, cores) that has not been evaluated before, we generate a
new bit-stream. Varying df only involves software execution,
as long as the bit-stream has already been evaluated. As
a reference design we use mw = 53, df = 32 and fix
FPGA frequency to 100 MHz, allowing us to meet timings
(In [6] df = 20 is used to produce reference values). We
follow with either a two dimensional optimization over mw

and df , or a three dimensional including cores. The two-
dimensional scheme represent a combined approach where
analytical model cores = b1/Uslicec is used to estimate the

maximum number of cores based on bit-stream slice utilization
Uslice. We generate a single core bit-stream and depending on
Uslice (and mw indirectly) generate a second multi-core bit-
stream. In the three-dimensional case whole X is explored
and modeled. According to our definition benchmark design
is step 1 in both approaches.
X is defined as {11−53}×{4−32}×{1−16}, the parameter

names are mw, df and cores. The application terminates when
the optimizer evaluates the design with highest throughput
(maximization) at specified precision (εrms), allowing us to
determine the convergence rate of MLO. We evaluate a single
benchmark portfolio rather then a range [6]. Determining the
acceptable parameter range is step 2 in both approaches.

We run MLO (MLO step 3) and present results in Tab. I.
Around 20-50% of benchmark evaluations involve new bit-
stream generation. The suggested optimization scheme [6]
(traditional step 5) involves generating bit-streams for full
mw range, using MLO combined with analytical approach we
decrease the number of bit-stream generations as we avoid a
range of mw. As an example time for step 3 of the MLO
approach and time for step 5 in traditional approach can be
both measured in terms f or benchmark evaluations. In case
of εrms = 0.1, we can see in in Tab. I that even if 50% of
f evaluations involve bit-stream generations we end up with
total of 50% × 71 = 35 vs. 42, as we limit mw to 11-53
bits resulting in 42 different mw values [6]. As of benchmark
evaluations, number is still favorable for MLO. Compared to
binary search [6] on a 28 df range on average 10 (dlog2 (28)e)
benchmarks with different df have to be evaluated per mw

resulting in 10×42 = 420 f vs. 71 f (85 % less). Performance
is also favorable for three-dimensional optimization, where
MLO requires 138 f evaluations.

Fig. 1. represents throughput y(x) spanned across all possi-
ble parameters settings X . Fig. 2-4 visualizing state of MLO
include; regions of X classified by SVM with colors distin-
guishing different exit codes; dark for valid and light gray for
inaccurate designs; we do not encounter overmapping. Black x
marks represent x which have been evaluated and included in
D, the white dots represent particles during the given iteration.
The right image shows surrogate model spanned across X , its
gray-scale is not synchronized with Fig. 1. The optimization
will start with random particle set up as presented in Fig. 2
where we see an initial evaluation of the model dependent
on df and mw. As the εrms limit is high, we can see SVM
classifying whole of X as valid. After a number of PSO
iterations and extra 25 f evaluations later, shown in Fig. 3,
particles are moving towards optimum in the left bottom corner
as indicated by black x trail behind the particles (white dots).
Regions of space with low df or mw are correctly predicted
to offer low accuracy (light gray area) and the model shows
similar shape to Fig. 1 being good indicator of accuracy. When
we increase the εrms limit learned valid region decreases as
smaller fraction of settings offer accurate results as seen in
Fig. 4. We see particles exploiting corner of the valid region,
as should always be the case [6]. The corner of valid region
is difficult to determine without benchmark evaluations, as

Fig. 1: Throughput y(x) spanned across X

Fig. 2: MLO state after 18 f evaluations. (εrms = 0.1)

maximum number of possible cores and therefore throughput
is limited by FPGA resources and as a result chip dependent.
Images we present are similar to ones presented in [6].

As shown before, the proposed MLO approach involves
fewer bit stream generations when compared with the tra-
ditional approach, up to a reduction of 85% in the case of
a financial benchmark based on the quadrature algorithm.
Moreover, since our MLO approach adopts a generic algorithm
(Algorithm 1), it often takes significantly less time to use it for
a given application, than the traditional approach which would
involve creating multiple application-specific algorithms for
parameter optimization, one for each application.

IV. FUTURE WORK AND CONCLUSIONS

We have shown how MLO can be used to determine
optimal parameter configuration of application and how its
settings affect MLO performance. We have also shown how
analytical models can improve MLO performance. MLO can

Fig. 3: MLO state 25 f evaluations later. (εrms = 0.1)

Fig. 4: MLO state after 38 f evaluations. (εrms = 0.01)

TABLE I: f evaluations - Quadrature application optimization.

cores εrms 0.1 0.01 0.001
without 138 67 47

with 71 43 28

offer superior performance, save time on analysis and ap-
plication specific tool development. Being far from mature,
MLO requires multiple benchmarks for further evaluation.
Although showing much promise, there are many opportu-
nities for further work such as multi-objective optimization:
finding acceptable performance and power consumption while
maximising energy efficiency.
Acknowledgement. The research leading to these results has
received funding from the European Union Seventh Frame-
work Programme under grant agreement no. 257906. The
support of UK EPSRC, Xilinx, Maxeler Technologies and
Python community is gratefully acknowledged.

REFERENCES

[1] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary
optimization with approximate fitness functions,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 5, pp. 481 – 494, Oct. 2002.

[2] Y.S. Ong, P.B. Nair, and A.J. Keane, “Evolutionary optimization of
computationally expensive problems via surrogate modeling,” AIAA,
vol. 41, no. 4, pp. 689–696, 2003.

[3] G. Su, “Gaussian process assisted differential evolution algorithm for
computationally expensive optimization problems.” IEEE PACIIA,
2008, pp. 272–276.

[4] S. Guoshao and J. Quan, “A cooperative optimization algorithm based
on gaussian process and particle swarm optimization for optimizing
expensive problems,” in CSO, vol. 2, April 2009, pp. 929 –933.

[5] H.A.L. Thi, D.T. Pham, and N.V. Thoai, “Combination between global
and local methods for solving an optimization problem over the efficient
set,” EJOR, vol. 142, no. 2, pp. 258 – 270, 2002.

[6] A.H.T. Tse, G.C.T. Chow, Q. Jin, D.B. Thomas, and W. Luk, “Optimis-
ing performance of quadrature methods with reduced precisions,” in In
International Symposium on Applied Reconfigurable Computing (ARC),
2012, pp. 251–263.

[7] M. Seeger, “Gaussian processes for machine learning,” International
Journal of Neural Systems, vol. 14, pp. 69–106, 2004.

[8] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing. Cambridge, Massachusetts, USA: Mit Press, 2006.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[10] D. Buche, N. Schraudolph, and P. Koumoutsakos, “Accelerating evolu-
tionary algorithms with gaussian process fitness function models,” IEEE
TSMC, vol. 35, no. 2, pp. 183–194, May 2005.

