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Abstract The MapReduce pattern can be found in
many important applications, and can be exploited to
significantly improve system parallelism. Unlike pre-
vious work, in which designers explicitly specify how
to exploit the pattern, we develop a compilation ap-
proach for mapping applications with the MapReduce
pattern automatically onto Field-Programmable Gate
Array (FPGA) based parallel computing platforms. We
formulate the problem of mapping the MapReduce pat-
tern to hardware as a geometric programming model;
this model exploits loop-level parallelism and pipelin-
ing to give an optimal implementation on given hard-
ware resources. The approach is capable of handling
single and multiple nested MapReduce patterns. Fur-
thermore, we explore important variations of MapRe-
duce, such as using a linear structure rather than a tree
structure for merging intermediate results generated
in parallel. Results for six benchmarks show that our
approach can find performance-optimal designs in the
design space, improving system performance by up to
170 times compared to the initial designs on the target
platform.
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1 Introduction

Recently, there has been a great deal of interest in how
to program parallel applications, especially since paral-
lel hardware is now common in desktop and portable
computers. However, implementing complex applica-
tions efficiently on parallel computing structures is still
highly challenging. Researchers [1] have explored ways
to improve programmer productivity and maximize
system efficiency. In this paper, we target advanced
compilation techniques, which can compile sequential
descriptions for parallel execution. This allows pro-
grammers in the traditional sequential programming
environment, to focus on the algorithm level without
worrying about the underlying hardware; parallelism
can be automatically extracted afterwards by compilers.
We propose an approach that automatically identifies a
common computation pattern, the MapReduce pattern,
in C-like descriptions and maps it onto an efficient
parallel computing platform.

MapReduce is a technique widely used to improve
parallelism of large-scale computations [1–3]. It parti-
tions the computation into two phases: first, the Map
phase, in which the same computation is performed
independently on multiple data elements; second, the
Reduce phase, in which the final result is calculated
by reducing the results of the Map phase with an
associative operator. A simple example of MapRe-
duce is vector dot product, where the Map phase
multiplies corresponding vector elements and the Re-
duce phase sums the products. MapReduce applies to
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computations where: (1) there is no dependence be-
tween computations working on different parts of the
input data set; and (2) the reduction operation is as-
sociative. These characteristics can be obtained from
data flow analysis tools such as SUIF [4]. Examples
of the MapReduce pattern include: matrix multiplica-
tion, Monte Carlo simulation and pattern match and
detection.

In practice, MapReduce can be limited by memory
bandwidth and the number of processing units (hard-
ware computation resources). Given a hardware plat-
form, it is often not obvious how to map a MapReduce
pattern onto the platform to maximise system perfor-
mance. Most previous methods require designers to
identify the MapReduce pattern and specify the Map
and Reduce functions explicitly. To our best knowledge,
the work [5] is the first one that targets automating
the exploitation of the MapReduce pattern. However,
it is limited to a single-level MapReduce pattern and
does not consider resource constraints on the reduction
operation in the Reduce phase that affects the final
designs of some applications.

We have proposed a methodology [6] for auto-
matically optimising hardware designs written in C-
like descriptions by combining both model-based and
pattern-based transforms. Given system parameters,
model-based approaches map a design into underlying
mathematical models to enable rapid design space ex-
ploration. Pattern-based approaches perform optimisa-
tions by matching and transforming syntax or data flow
patterns.

In this paper, we show how the methodology [6] can
be applied to automate mapping the MapReduce pat-
tern. We extend a previous model [5] to map applica-
tions with multiple MapReduce patterns onto a parallel
computing structure. Customized loop-level paralleli-
zation and pipelining are used to balance system per-
formance and hardware resource utilization.

The contributions of this paper are thus:

• an approach for automatically identifying the Map-
Reduce computation pattern and mapping it to a
parallel computing architecture;

• an extended geometric programming (GP) model
considering resource constraints in the Reduce phase
when mapping MapReduce computations onto a
parallel computing platform, with constraints on
memory bandwidth and hardware resources;

• a geometric programming model for concurrently
mapping multiple nested MapReduce patterns on
to a parallel platform; and

• an evaluation of the proposed automation ap-
proach using six application kernels, showing per-

formance improvement up to 170 times compared
to the initial designs on the target platform.

The rest of the paper is organised as follows.
Section 2 details related work. Section 3 illustrates the
problem under consideration using a simple example;
Section 4 describes the proposed approach to deal with
the problem. The geometric programming model for-
mulating the design space of mapping the MapReduce
pattern is presented in Section 5. Section 6 presents
experimental results from applying the proposed ap-
proach to six real applications, and is followed by the
conclusion and future work in Section 7.

2 Related Work

In this paper, we apply the methodology proposed
in [6], which does not support the MapReduce pat-
tern optimisation, to automate the mapping of mul-
tiple MapReduce patterns onto parallel computing
platforms by combining pattern-based and geometric
programming (GP) based transformations. Loop-level
parallelization and pipelining are exploited to extract
parallelism in MapReduce patterns.

The MapReduce programming model, named af-
ter the Map and Reduce functions in Lisp and other
functional languages, has been developed and used
in Google [2]. The Haskell functional language and
Google’s Sawzall are used to describe the Map and
Reduce functions. Yeung et al. [3] apply the MapRe-
duce programming model to design high performance
systems on FPGAs and GPUs. All these methods re-
quire designers to identify the MapReduce pattern and
specify the Map and Reduce functions explicitly. Liu
et al. [5] proposes an approach for optimising designs
with the MapReduce pattern at compile time. How-
ever, it is limited to a single-level MapReduce pattern
and does not consider resource constraints on the re-
duction operation in the Reduce phase that affects the
final designs of some applications. This paper extends
[5] to map nested loops with multiple MapReduce
patterns, as well as considering the additional resource
constraints.

Loop-level parallelization has been widely used for
improving performance [7]. Loop transformations, such
as loop merging, permutation and strip-mining, are
used to reveal parallelism. A GP model [8] is used
to determine the tile size of multiple loops to im-
prove data locality in a hierarchical memory system.
Eckhardt et al. [9] recursively apply locally sequential,
globally parallel and locally parallel, globally sequential
schemes to map an algorithm onto a processor array



J Sign Process Syst (2012) 67:65–78 67

with a 2-level memory hierarchy. Loop pipelining is
applied to pipeline the innermost loop [10] and outer
loops [11]. An integer linear programming model is
proposed [12] for pipelining outer loops in FPGA
hardware coprocessors. Our proposed GP framework
determines loop parallelization and pipelining for a
MapReduce pattern at the same time.

Pattern-based transforms for hardware compilation
have been explored by researchers like di Martino
et al. [13] on data-parallel loops, as part of a synthesis
method from C to hardware. Unlike our method, they
do not allow user-supplied transforms. Compiler toolk-
its such as SUIF [4] allow multiple patterns to be used
together, but give no support for including model-based
transforms. Pattern matching and transforming can be
achieved in tree rewriting systems such as TXL [14],
but such systems do not incorporate hardware-specific
knowledge into the transforms.

3 Problem Statement

This paper considers how to map an obvious but
inefficient description, with a possibly implicit MapRe-
duce pattern, onto highly parallel hardware. We use
loop strip-mining and pipelining to extract parallelism
from the sequential description. When a loop is strip-
mined for parallelism, the loop that originally executes
sequentially is divided into two loops, a new for loop
running sequentially and a for all loop that executes
in parallel, with the latter inside the former. The main
constraints on mapping MapReduce are the computa-
tional resources of the target platform, which affect the
size of each strip in strip-mining, and the bandwidth
between processing units and memories that affects
how operations are scheduled after loop partitioning.
We use a locally parallel, globally pipelined structure
to balance use of memory bandwidth and hardware
resources.

To illustrate this problem, Fig. 1a shows a simple
example, the dot product of two 8-bit vectors. Assume
that arrays A and B are stored in off-chip SRAM
with single port and can be accessed every cycle af-
ter pipelining. Our proposed framework first applies
pattern-based transforms to this code. As shown in
Fig. 1b, the original complex expression is decomposed
into simple operations: two memory accesses, one mul-
tiplication and the result accumulation (result merg-
ing). This can reduce the number of logic levels of the
generated circuits, improving system latency [6]. We
refer the statements merging results as merging state-
ments in this paper. Next, we generate a data flow graph
(DFG) for the code, as shown in Fig. 1c, and use this to

Figure 1 Motivating example: dot product.

determine pipelining parameters. From the DFG, we
can see that this example has the characteristics of the
MapReduce pattern: multiplication executes indepen-
dently on element pairs of array A and B, and the result
merging operation is addition which is associative.

We thus map the dot product onto a parallel comput-
ing structure. Given a hardware platform with sufficient
multipliers and each assignment in the code takes one
clock cycle, Table 1 shows some design options for
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dot product under different memory bandwidth con-
straints. Each design is represented by the number of
parallel partitions (k) of the strip-mined loop, each with
its own processing unit, and the initiation interval (ii)
of pipelining the outer for loop. Ideally, if the memory
bandwidth is 2N bytes per execution cycle as shown
in the second row of Table 1, then N multiplications
can execute in parallel and the final result can be
merged using a tree structure, as shown in Fig. 1e
where pipeline registers are not shown. In this case, the
loop i is fully strip-mined and the dot product needs
log2 N + 2 execution cycles: log2 N execution cycles for
result merging, one execution cycle for loading 2N data
and one for multiplication.

In practice, 2N bytes per execution cycle memory
bandwidth is unrealistic for large N. If memory band-
width is one byte per execution cycle, then the fully
parallel implementation in Fig. 1e needs 2N + log2 N +
1 execution cycles to finish the dot product, where
2N execution cycles are used to load 2N data. In this
scenario, pipelining the loop i with ii = 2 due to the two
sequential memory accesses needs 2N + 2 execution
cycles to compute the dot product, as the design (1, 2)
in Table 1. If N > 2, the pipelined implementation is
more promising than the fully parallel version, not just
in speed but also in resource usage. Furthermore, if
the memory bandwidth is 2 bytes per execution cycle,
elements from each of A and B can be read at the same
time, and the fully parallel version needs N + log2 N +
1 execution cycles.

Alternatively, if the loop i is strip-mined by 2, then
every two iterations of the loop i execute in parallel
on two processing units and the results are merged,
shown in Fig. 1d. This structure can be further pipelined
with ii = 2. This design, combining local parallelization
and global pipelining, can perform the dot product in
2�N/2� + 3 execution cycles. The third design option is
to pipeline loop i with ii = 1 without loop strip-mining
and it is still promising as N + 2 execution cycles are

spent on the product. Similarly, if the memory band-
width is 3 bytes per execution cycle, Table 1 shows
three possible design options. Here, the second option
combining loop strip-mining and pipelining achieves a
balance between speed and resource utilization.

We can see that there are multiple options for map-
ping the dot product onto a given hardware platform
under different memory bandwidth constraints. Even
more design options result if multipliers are also con-
strained. Finding the best design in terms of various
criteria is not easy, and requires exploration of the
design space to find the optimal design.

This paper proposes an approach with model-based
and pattern-based transforms to deal with the problem
of mapping the MapReduce pattern.

4 The Proposed Approach

Figure 2 shows how our proposed approach combines
model-based and pattern-based transforms to map the
MapReduce pattern onto a target hardware platform
while achieving design goals.

The approach takes as input the sequential descrip-
tion of a design. We initially apply pattern-based trans-
formations, such as function inlining and converting
pointers to arrays, to the design to ease the dependence
analysis. We apply further pattern-based transforma-
tions, including loop merging and loop coalescing, to
the design to ensure it is in a certain form. This form
enables us to simplify the mathematical model by re-
moving variables, enabling it to be solved faster.

After dependence analysis, we check that the design
contains the two characteristics of the MapReduce pat-
tern given in Section 1. If they are found, we apply
the model-based transformation for the MapReduce
pattern, shown in the shaded block in Fig. 2.

We formulate the problem of mapping the MapRe-
duce pattern onto a target parallel computing platform

Table 1 Possible design
options of the dot product
example.

Mem_bandwidth Designs Exe_cycles Multipliers
(Bytes/exe_cycle) (k, ii)

2N (N, 1) log2 N + 2 N

(N, 1) 2N + log2 N + 1 N
(1, 2) 2N + 2 1

2 (N, 1) N + log2 N + 1 N
(2, 2) 2�N/2� + 3 2
(1, 1) N + 2 1

3 (N, 1) �2N/3� + log2 N + 1 N
(3, 2) 2�N/3� + 4 3
(1, 1) N + 2 1
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Figure 2 Combining model-based (such as MapReduce) and
pattern-based approaches (such as loop coalescing) into a single
approach.

as a geometric programming model. Solving this prob-
lem automatically generates an optimized design ex-
ploiting loop-level parallelization and pipelining for
given hardware platform parameters such as memory
size and computation resources. This paper focusses on
presenting this geometric programming model.

As output our approach produces a design with ex-
plicit timing and parallelism. The design can then be
implemented on the hardware platform using vendor
tools to synthesize, place and route it. Currently, the
model is used to optimize design parameters; we do not
currently automate output hardware generation, but
this is relatively straightforward.

Our approach can adapt to several variations on the
MapReduce pattern:

• applications with implicit MapReduce pattern, such
as the motion estimation algorithm [15] used in
X264;

• applications with MapReduce pattern at any loop
level, such as the Monte Carlo simulation of Asian
Options [16];

• applications with 2-D MapReduce patterns, such as
edge detection [17]; and

• application with multi-level MapReduce patterns,
such as k-means clustering [18].

5 GP Model for Mapping MapReduce

As the MapReduce pattern is often present in sequen-
tial loops, we target a loop nest containing the MapRe-
duce patterns with the number of iterations fixed at
compile time.

We formulate the design exploration problem as a
piecewise integer geometric program. Geometric pro-
gramming (GP) [19] is the following optimization problem:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m
hi(x) = 1, i = 1, . . . , p

where the objective function and inequality constraint
functions are all in posynomial form, while the equal-
ity constraint functions are monomial. Unlike general
nonlinear programming problems, GP is convex and
thus has efficient solution algorithms with guaranteed
convergence to a global solution [19].

In the next three subsections, we present the pro-
posed piecewise integer geometric programming model
for mapping a single loop with the MapReduce pattern,
an extension of the model to a variant of the MapRe-
duce pattern, and a further extension to map nested
loops with multiple MapReduce patterns. Table 2 lists
notation used in the models: capitals denote compile
time constants, while lower case denotes integer vari-
ables. The models assume that assignments take one
clock cycle, like Handel-C [20]. This limits clock speed
to the slowest expression used; we ameliorate this by
breaking expressions into three-address code.

5.1 Piecewise GP Model for MapReduce with Tree
Reduce

In this section, a GP model for mapping a loop contain-
ing the MapReduce pattern with a tree reduce structure
is presented. This model extends [5] to consider the
constraints of the resources for the merging operations
in the Reduce phase. The design variables include
the number of parallel partitions of the loop and the
pipeline initiation interval; the loop is mapped to a
locally parallel, globally pipelined design.

The objective is to minimize the number of execution
cycles of a loop after loop strip-mining and pipelining as
below:

minimize v × ii +
I∑

i=1

di +
�log2 k�∑

j

c j + notFull (1)

This expression is derived from the standard modulo
scheduling length of pipelining [10, 11], assuming that
the number of execution cycles for loading data from
memory dominates the initiation interval (ii). Section 6
shows that this assumption is true for the tested bench-
marks. The number of loop iterations v executing in
each parallel partition is defined in Inequality 2.

N × k−1 ≤ v (2)
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Table 2 Notation used in the models.

Notations Description

k (kl) Parallel partitions of a loop (loop l)
ii Initiation interval of pipeline
v (vl) Iterations in one partition of a loop (loop l)
x f No. resources f being used
di Latency in execution cycles of computation

level i of DFG
c j (csj) Execution cycles of level j of merging tree

(of statement s)
m j (msj) Merging operations of level j of merging tree

(of statement s)
rs Execution cycles of merging tree of statement s

L No. nested loops
Is The loop level where statement s is located,

1 ≤ Is ≤ L
N (Nl) No. iterations of a loop (loop l)
A No. array references
RecII Data dependence constraint on ii in

the computation
W f Computation resources f required in

a loop iteration
Rif Computation resources f required in

level i of DFG
I No. computation levels of DFG
B (Ba) Required memory bandwidth (of array a)

in one loop iteration
Qa Set of loop variables in the indexing function

of array a
Mb Memory bandwidth
C f Computational resources f available
Mr Resources r available for merging operations
F F types of computation resources involved
notAlign 0: data are aligned; 1: data are not aligned

(of array a)
(notAligna)
notFull 0: loop (l) is fully strip-mined; 1: loop (l) is

partially strip-mined
(notFulll)

The second term in the objective function 1 is the
execution cycles taken by computation. There may
be I (I ≥ 1) computation levels in the DFG and the
computation cycles of each loop iteration consist of the
execution cycles of every level. The execution cycle
di of computation level i is determined by Rif the
requirement of each computation resource f in level
i and the number of allocated resources x f , as defined
in inequalities 3.

Rif × x−1
f × d−1

i ≤ 1, 1 ≤ i ≤ I, f ∈ F (3)

The example in Fig. 1 needs one multiplier in the single
computation level. For this simplest case, x f taking
one results in d1 = 1. Assuming the computation level

requires two multipliers, x f could take on the value 1
or 2 depending on the resource constraint, leading to
d1 = 2 or d1 = 1 cycles, respectively.

The last two terms of the objective 1 are the execu-
tion cycles taken by final result merging. When a tree
structure is used as in Fig. 1d and e, the number of levels
of the merging tree is �log2 k�, and thus the number
of execution cycles taken by the merging tree is the
sum of the execution cycles c j spent on every level j.
We arrange the number of merging operations in each
level such that there are m1 merging operations in the
top level, and subsequently the following level has m j

merging operations, as defined in Eqs. 4 and 5.

m1 ≥ k/2 (4)

m j ≥ m j−1/2, 2 ≤ j ≤ �log2 k� (5)

The number of execution cycles c j of level j is deter-
mined by the number of merging operations in level
j and Mr the number of resources available for the
merging operations in Eq. 6, which is the resource
constraint on the merging operations.

c j ≥ m j/Mr, 1 ≤ j ≤ �log2 k� (6)

The Boolean parameter notFull is added to Eq. 1, for
the case where the loop is partially strip-mined and
sequential accumulation of the results is needed; Fig. 1d
shows an example.

There are four constraints on the pipelining initiation
interval ii, as shown in Eqs. 7–10. Inequality 7 is the
memory bandwidth constraint. Given a fixed memory
bandwidth Mb and the memory bandwidth required in
one loop iteration B, more parallel loop iterations k
require more input data and thus more data loading
time, leading to a larger initiation interval (ii). Here,
the Boolean parameter notAlign is used to capture the
situation where data are not aligned between storage
and computation; this case may need one extra mem-
ory access to obtain requested data. Inequality 8 gives
the computation resource constraints, where W f is the
number of each computation resource f required in
one loop iteration. Inequality 9 is the data dependence
constraint on ii, as used in [10, 11]. The available re-
source for merging operations also has impact on ii, as
shown in inequality 10. For k intermediate computation
results generated in parallel, up to k merging operations
are needed to obtain the final result.

B × k × M−1
b × ii−1 + notAlign × ii−1 ≤ 1 (7)

W f × x−1
f × ii−1 ≤ 1, f ∈ F (8)
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RecII × ii−1 ≤ 1 (9)

k × M−1
r × ii−1 ≤ 1 (10)

Inequality 11 captures how computation resources
constrain parallelization. We achieve an efficient so-
lution by balancing the resources allocated to loop
parallelization (k) and pipelining (ii), given that the
number of resource f available is C f .

k × x f ≤ C f , f ∈ F (11)

Inequalities 12 and 13 are the ranges of integer vari-
ables k and x f , respectively. Inequality 13 may appear
to be redundant, but the GP solver requires explicit
ranges for all variables.

1 ≤ k ≤ N (12)

1 ≤ x f ≤ C f , f ∈ F (13)

Overall, the only item making the relaxed problem
1–13 (allowing all variables to be real numbers) not a
GP problem is the logarithm �log2 k�. The logarithms
must be eliminated in order to use a GP solver. How-
ever, we note that �log2 k� is constant in certain ranges
of k. Therefore, the problem 1–13 can be seen as a
piecewise integer geometric problem in different ranges
of k; the number of subproblems increases logarithmi-
cally with k. For large k = 1,000, there are 11 integer
GP problems and each problem can be quickly solved
using a branch and bound algorithm used in [21] with a
GP solver as the lower bounding procedure. Section 6
shows the performance of the piecewise GP model. The
solution (k, ii) to the problem 1–13 tells us how to
MapReduce and pipeline the loop under consideration.

The formulation 1–13 targets mapping a loop onto
a parallel computing structure. The loop need not be
innermost. For example, in order to map a 2-level
loop nest, unrolling the innermost loop allows the for-
mulation to work. Equivalently, we can add several
constraints as shown below, to the formulation 1–13.
Then we can automatically determine pipelining the
innermost loop (ii′), strip-mining (k) the outer loop
and global pipelining (ii); the Monte Carlo simulation
of Asian Option benchmark in Section 6 exhibits this
case. Inequality 14 shows the constraint, the innermost
loop (with N′ iterations) scheduling length, on the ini-
tiation interval ii of the outer loop, as the outer loop
cannot start the next iteration before the innermost
loop finishes. Inequalities 15 and 16 are the compu-
tation resource and data dependence constraints on
the initiation interval of pipelining the innermost loop.
The required resources W ′

f in the innermost loop are

included in W f , in order to share resources among
operations.

(N′ − 1) × ii′ × ii−1 + ii−1 ×
I′∑

i=1

d′
i ≤ 1 (14)

W ′
f × x−1

f × ii′−1 ≤ 1, f ∈ F (15)

RecII′ × ii′−1 ≤ 1 (16)

Finally, the MapReduce pattern is also present in
some applications in 2-D form. Our pattern-based
transforms could coalesce 2-D loops into 1-D, so the GP
formulation described above can apply. We extend in-
equality 7 to cover 2-D data block (Row × Col) access,
allowing for the 2-D data block access to not necessarily
be linearized:

Row × (
B × k × M−1

b × ii−1 + notAlign × ii−1) ≤ 1.

(17)

5.2 Extension of the Model for Linear Reduce

In the previous subsection, the logarithm expression in
the objective function results from using a tree struc-
ture for Reduce. Alternatively, a linear structure could
be used; Fig. 1f shows an example for dot product.
For k parallel computations, the linear structure needs
k execution cycles to merge all intermediate results.
Although longer than the tree structure, some appli-
cations with the MapReduce pattern using the linear
structure to merge results can both keep the same
throughput as the tree structure and reduce the mem-
ory bandwidth requirement. Other merging structures
are possible; we have not yet found a compelling use
case for these.

Figure 3a shows an example of 1-D correlation. The
innermost loop j of the code has a similar computa-
tion pattern to the dot product, and can map onto a
parallel computing structure using MapReduce. The
differences from the dot product are that one multipli-
cation operand w j is constant and when the outer loop
i iterates, the data of A are shifted invariantly into the
computation. This is potentially suitable for pipelining.

(a) The original code
(b) Fully parallel structure for loop 

j with linear merging

Figure 3 An example: 1-D correlation.
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If the innermost loop j can be fully strip-mined, then
the N multiplications execute at the same time, and the
intermediate computation results are linearly merged,
as shown in Fig. 3b. An important characteristic of this
structure is its regular shape, which could benefit the
placement and routing of hardware resources. After
mapping loop j, fully pipelining loop i produces a C[i]
every cycle after N execution cycles. If any multipliers
and memory access bandwidth are still available, loop i
could be further partitioned.

Many signal and image processing applications use
1-D correlation or convolution or show similar be-
havior, so we extend the formulation in Section 5.1
for linear reduction. In the objective function 18, we
replace

∑�log2 k�
j c j with k. Constraints 4–6 are no longer

applied. When the loop is partially strip-mined, notFull
here represents a delay of the accumulated result which
feeds back to the linear structure in the next iteration.
Because the number of cycles taken to multiply each
element of A with the N coefficients decreases as the
number of parallel partitions increases, the data depen-
dence distance of loop j similarly decreases. Therefore,
we add inequality 19.

minimize v × ii +
I∑

i=1

di + k + notFull (18)

N × k−1 × ii−1 ≤ 1 (19)

Now, the formulation with objective 18 and con-
straints 7–19 is a GP model, mapping MapReduce pat-
terns to a parallel computing platform with a linear
reduction.

5.3 Extension of the Model for Multi-level
MapReduce

The GP models presented above are for mapping a
single loop level with the MapReduce pattern onto
a parallel computing platform. This section extends
the models to map nested loops with the MapReduce
patterns. We target a rectangular loop nest with L loops
(I1, I2, . . . , IL), where I1 is the outermost loop, IL is the
innermost loop and the loop length of loop l is Nl. For
simplicity, we assume that all computational operations
reside in the innermost loop, and only the innermost
loop is pipelined. The statements outside the innermost
loop are divided into two disjoint sets: S1 = {merging
statements outside the innermost loop} and S2 = {non-
merging statements outside the innermost loop}.

Expressions 1 and 18 correspond to the execution
cycles of the innermost loop alone using tree or linear

reduction structures. We redefine them as e = vL ×
ii + ∑I

i=1 di + rL + notFull, where rL is the number of
execution cycles of the merging statement sL in the in-
nermost loop. Then, we can formulate the total execu-
tion cycles of the target loop nest as the new objective:

minimize
L−1∏

l=1

vl ×e+
∑

s∈S2

Is∏

l=1

vl +
∑

s∈S1

(
vIs ×notFullIs +rs

)

(20)

where Is is the loop level in which statement s is located,
and

rs =
�log2 kIs �∑

j

csj or kIs (21)

is the number of execution cycles taken by merging
statement s using tree reduction structure or linear
reduction structure, where csj have the same meaning
as c j in Eq. 1, but for merging statement s outside the
innermost loop. rL also complies with Eq. 21 for the
merging statement in the innermost loop.

The number of iterations vl of loop l after partition-
ing into kl parallel segments is

Nl × k−1
l ≤ vl, 1 ≤ l ≤ L (22)

1 ≤ kl ≤ Nl, 1 ≤ l ≤ L. (23)

Moreover, the constraints of the resources used for
merging operations in the tree structure (4–6) and (10)
need to be defined according to each merging statement
in the loop nest.

ms1 ≥ kIs/2, s ∈ S1 ∪ {sL} (24)

msj ≥ msj−1/2, s ∈ S1 ∪ {sL}, 2 ≤ j ≤ �log2 kIs� (25)

csj ≥ msj/Mr, s ∈ S1 ∪ {sL}, 1 ≤ j ≤ �log2 kIs� (26)

kL × M−1
r × ii−1 ≤ 1 (27)

Correspondingly, the memory bandwidth constraint 7
is redefined as:

Ba ×
∏

l∈Qa

kl × M−1
b × ii−1 + notAligna × ii−1 ≤ 1, a ∈ A

(28)

where each of A array references under operations is
stored in a memory bank with bandwidth Mb , each
reference a requires Ba memory bandwidth in one loop
iteration and Qa is the set of loop variables in the
indexing function of reference a. Unlike Eq. 7, here,
each array reference is treated individually, because dif-
ferent array references may have different bandwidth
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Table 3 Benchmark details. Benchmark # loops Refs MapReduce pattern

MAT64 3 2 Two levels: in the outer loops
and the innermost loop

ME Implicit 2 Two levels: implicit and in SAD
Sobel 4 2 Two levels: in outer two loops

and inner two loops
MCS 2 0 In the outer loop
1-D correlation 2 1 In the innermost loop
k-means 4 1 In the inner three loops

requirements after mapping multiple MapReduce pat-
terns. Meanwhile, the computational resource con-
straint 11 is redefined as:

L∏

l=1

kl × x f ≤ C f , f ∈ F (29)

This model allows us to map the multi-level MapRe-
duce pattern and thus extends the applicability of the
proposed approach. This model is still a piecewise GP
problem. With multiple nested patterns, however, this
problem has more variables and more subproblems
caused by the logarithm, and thus could take longer to
solve.

6 Experimental Results

We apply the proposed approach to six kernels: multi-
plication of two 64 × 64 matrices (MAT64), the motion
estimation (ME) algorithm [15] used in X264, the Sobel
edge detection algorithm (Sobel) [17], Monte Carlo
simulation (MCS) of Asian Option Pricing [16], 1-D
correlation and k-means clustering [18]; Table 3 shows
benchmark parameters. Each benchmark contains the
MapReduce patterns. One level of the MapReduce
pattern exists in MCS and 1-D correlation, to which the
models presented in Sections 5.1 and 5.2 are applied,
respectively. Two levels of the MapReduce pattern are
identified in ME, MAT64 and Sobel. We apply the
transforms [6] to the outer level, exploiting data reuse
and loop-level parallelism. For the MapReduce pattern
in the inner loops, we apply the model in Section 5.1 to
exploit inner loop parallelization and pipelining. Lastly,
we apply the extended model in Section 5.3 to k-means
clustering, which has three levels of the MapReduce
pattern. All GP models are solved by a MATLAB
tool box, named YALMIP [21]. Different designs are
represented by the number of parallel loop partitions
and the pipelining initiation interval, (kl, ii).

In our experiments, the target platform is an FPGA-
based system with off-chip SRAM. The Monte Carlo
simulation of Asian Option involving floating point

arithmetic is implemented in Xilinx XC4VFX140 with
192 DSP48, and the other five kernels are implemented
in XC2v8000, which has 168 embedded hard multipli-
ers and 168 dual-port RAM blocks. On-chip RAMs
configured as scratch-pad buffers and registers are used
to increase memory bandwidth. All experimental re-
sults are obtained on the target platform after synthesis,
placement and routing. For ME and Sobel the frame
size is the QCIF luminance component (144 × 176
pixels).

Matrix–matrix Multiplication is a typical arithmetic
kernel used in many applications. Each element of the
output matrix is the dot product of one row of one input
matrix and one column of the other input matrix. The
dot product is the inner MapReduce pattern level and
computing multiple elements of the output matrix in
parallel is the outer MapReduce level. In our imple-
mentation, each matrix element is 8 bits. Memory band-
width and the number of hard multipliers embedded
in the FPGA are the constraints on mapping the inner
level MapReduce pattern. Figure 4 shows results from
applying our proposed piecewise GP model (1–13) to
the innermost loop of MAT64. Given a memory band-
width and the number of multipliers, the figure reveals
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the performance-optimal design: for example, when
the memory bandwidth is 3 bytes/execution cycle and
3 multipliers are available, the performance-optimal
design is (k = 3, ii = 2); when the memory bandwidth is
5 bytes/execution cycles and 5 multipliers available, the
performance-optimal design is (k = 5, ii = 2), as shown
in Fig. 4. As the memory bandwidth and the number of
multipliers available increase, the execution cycles of
the performance-optimal designs decrease.

To verify these designs, we implement several repre-
sentative designs on the target platform. Figure 5 shows
the real execution time and the utilization of on-chip
multipliers, RAMs and slices of four designs, where y
axes are in a logarithmic scale. The first is the original
design without any optimisation. The second is opti-
mised by the transforms [6], where the inner MapRe-
duce pattern is not mapped. Based on the second
design, the third design applies our proposed frame-
work to parallelize the innermost loop by 2 and pipeline
the sequential iterations with ii = 1 with memory band-
width 4 bytes/execution cycle. This corresponds to the
design (2, 1) in Fig. 4. Here, we only partition the
innermost loop into two parallel segments, because
the outer level MapReduce pattern has been mapped
onto 80 parallel processing units and thus each unit
has two multipliers available as there are in total 168
multipliers on the target platform. The third design in
Fig. 5 shows the result after mapping the two MapRe-
duce pattern levels. The system performance speeds up
by about 66 times compared to the original design and
speeds up about twofold compared to the second design
which only maps the outer MapReduce pattern level.

To test the impact of mapping the outer level and
the inner level of MapReduce patterns in MAT64 in
different orders, we also first apply the proposed GP
framework to the innermost loop and then apply the
transforms [6] to the outer loops. For the inner level,
the design (4, 1) in Fig. 4 is chosen, as the maximum
bandwidth of the on-chip RAMs is 8 bytes/execution
cycle, given that two input matrices are stored in two
independent RAM blocks and each is accessed through
one port. The outer level, then, is mapped onto 40
parallel processing units by [6]. The optimised design
after mapping the MapReduce patterns in this order is
the fourth design in Fig. 5. Figure 5a shows that this
design has a performance almost equal to the third
design generated by mapping the outer MapReduce
pattern first, whereas the fourth design reduces the re-
quirement of on-chip RAM blocks and slices, as shown
in Fig. 5c and d.

Fast Motion Estimation Algorithm by Merritt and
Vanam [15], used in X264, is highly computation-
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Figure 5 Implementation results of some designs of MAT64. y
axes use a logarithmic scale and in c the first design does not
involve on-chip RAM.

intensive. To determine the motion vectors for each
macro block of the frame being encoded, the algorithm
performs multiple searches on the reference frames.
During a search the current macro block being encoded
is matched with several candidate blocks of the same
size, and each matching involves the calculating the
sum of absolute differences (SAD) of the pixels from
the current block and a candidate block. Finally, the
candidate block with the minimum SAD is chosen
as the reference block to estimate the current macro
block. This algorithm has the MapReduce pattern at
two loop levels: 1) the outer-level loop matching the
current block with several candidate blocks, merging
results with a min function, and 2) within the SAD
computation. Due to the use of pointers and function
calls, the former is not obvious in the algorithm level
description. Directly mapping the algorithm onto a par-
allel computing structure leads to an inefficient design:
the original design shown in Fig. 6b. Our proposed
pattern-based transforms perform function inlining to
reveal this MapReduce pattern, and the model-based
transforms are applied for data reuse [6] as the block
matching process reuses much data. The proposed ap-
proach in this paper is applied to SAD computation.
Results are shown in Fig. 6a. Memory bandwidth is the
main constraint, given that logic for addition and com-
parison operations is adequate on the target platform.
The design Pareto frontier proposed by our approach
under a range of memory bandwidths are shown.

We implement one search path of the motion esti-
mation algorithm; sequential searches can use the same
circuit. The original design, three designs (1, 1), (16, 9)
and (32, 5) proposed by our approach and four possible
designs are implemented on the target platform to
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Figure 6 Experimental results of ME. a Design Pareto frontier;
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obtain the real execution time and memory bandwidth.
Figure 6 shows how different memory bandwidth con-
straints affect the designs from our approach. The de-
sign applying our approach to both loop levels with
the MapReduce pattern improves performance by up
to 170 times compared to the original design, and by
up to two times compared to the design which only
applies our approach to the outer-level loop, shown by
the downward-pointing triangle in Fig. 6b.

Monte Carlo Simulation (MCS) has wide applications
in finance. Asian Option prices depend on the average
price observed over a number of discrete dates in the
future, and the mathematical pricing model has no
closed solution [16]. Therefore, MCS is used to estimate
the average price. This simulation contains two loops:
the outer loop that controls the times of executing MCS
and sums the results together, and the inner loop that
sets several observation points during a contract period;
we mention this case in Section 5.1. Therefore, the
extended piecewise GP model applies to the outer loop.
As this application uses floating point, the number of
DSP blocks that execute the floating point operations is
the constraint on the target platform limiting the com-
putations in both Map and Reduce phases. Figure 7a
shows the performance Pareto frontier generated by
the proposed approach. Again, as the number of DSPs
increases, more iterations of the outer loop can execute
in parallel and the execution cycles decrease. Four
promising but sub-optimal designs are also shown in
the figure. The design parameters of these four designs
and the corresponding optimal designs are shown in
Fig. 7a as well. We can see that our proposed approach

allocates DSP blocks between loop parallelization and
pipelining to achieve better balanced and faster designs.

We have implemented the MCS of Asian Option
Pricing using the HyperStream library [22] on the target
platform. Because the library implementation tries to
greedily pipeline all operations, we can only imple-
ment the application by first allocating the DSPs to
pipeline the innermost loop, and thus the resources to
parallelize the outer loop iterations are limited. We
have been able to only implement the four sub-optimal
designs as shown in stars in Fig. 7a. The implemen-
tation results of these four designs in Fig. 7b show
that the extended GP model can correctly reflect the
relative performance figures of different designs and
thus is able to determine the performance-promising
one. We believe that this can also be observed for the
performance-optimal designs.

In the three benchmarks above, the MapReduce
pattern has been mapped to the target platform and
the computation results have been accumulated using
a tree structure. In the next two benchmarks, the linear
structure is examined.

1-D Correlation is an important tool used in image
and signal processing; Fig. 3 shows an example. In this
experiment, we implement three instantiations of 1-D
correlation: 3-tap, 5-tap and 11-tap. We map each case
onto the target FPGA platform with both the linear and
the tree accumulating structures; Fig. 8 shows results
when memory bandwidth is limited, such as 1 byte per
execution cycle as shown here. It can be seen that in
all three cases, tree reduction costs more slices, up to
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two times for the 11-tap case, and as the number of
taps increases the cost difference between the linear
and the tree structures increases, as shown in Fig. 8a.
Also, implementations with linear reduction show a
small execution time decrease, as Fig. 8b shows. These
are because for correlation operations, MapReduce
with tree reduction requires input shift registers to feed
data for parallel processing, resulting in larger area and
longer latency.

Sobel Edge Detection algorithm [17] is a well known
image processing operator, comprising four loop levels
with two 2-level loop nests in the inner two levels. The
transforms in [6] merge the inner two 2-level loop nests,
buffer reused data in on-chip RAMs and parallelize
the outer two loops. In the inner loops, there is a 2-
D correlation with a 3 × 3 filter. We first apply the
extended GP model in Section 5.2 to map the inner-
most loop with linear reduction, and then apply the
piecewise GP model in Section 5.1 to map the loop
next to the innermost loop with tree reduction. We do
not map the two loops with a linear reduction because
linearly reducing results from 2-D has a large latency
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Figure 9 Experimental results of Sobel designs proposed by the
framework. The bracket next to each design shows (k, ii).

and requires many registers to buffer intermediate re-
sults. The design mapping only the outer MapReduce
pattern level and designs that map the two MapReduce
pattern levels are implemented on the target platform,
together with the original design. Figure 9 shows that
when memory bandwidth is 2 Bytes/execution cycle,
the design with the hybrid tree and linear reduction
improves the performance about three times compared
to the design mapping only the outer level MapReduce
pattern, and shows 125 times speedup compared to the
original design.

K-means Clustering [18] is often used in computer vi-
sion. Data are segmented into k clusters, depending on
similarity. The inner three loops of this algorithm [18]
exhibit three nested MapReduce patterns. Therefore,
we apply the extended model presented in Section 5.3
to map the inner three loops onto the target parallel
platform. The experimental results are shown in Fig. 10
for clustering 64 randomly generated 8-dimensional
vectors into four clusters. The design Pareto frontier
proposed by our approach is plotted in Fig. 10a when
the target platform has 168 embedded multipliers avail-
able. We implement the original design, which does
not exploit embedded MapReduce patterns and some
designs automatically mapped by our approach on the
target platform, as shown in Fig. 10b. The parameters,
which guide the mapping of the three loops under the
different multiplier constraints, of some designs are
presented. We can observe that the Pareto frontier
proposed by our approach clearly matches the real
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design trend over the multiplier constraints. On the
target platform, the designs proposed by our approach
improve the speed of the tested clustering algorithm by
up to 12 times compared to the initial design.

The execution time for solving the piecewise GP
models proposed in this paper increases linearly as
the number of pieces increases and exponentially with
the number of nested MapReduce pattern levels. On
average, for the first five benchmarks, an optimal de-
sign is generated by the piecewise GP framework within
15 s, while for the last one with three nested MapRe-
duce patterns about 190 s are needed to obtain a design;
the execution times are obtained on a machine with a
single 3 GHz CPU. Since each piece of the piecewise
GP models is independent, it is possible to speed up the
solving process on a multi-core machine.

7 Conclusion

In this paper, we present an automated approach for
mapping designs in a sequential description exhibit-
ing the MapReduce pattern onto parallel comput-
ing platforms. Our approach combining model-based
and pattern-based transformations automates the iden-
tification and mapping of MapReduce patterns using
geometric programming. Using our approach on six
applications achieves up to 170 times speedup on the
target platform compared to the unoptimised initial
designs. The experimental results also demonstrate
that our approach can find performance-optimal de-
signs within the design space of each application under
different platform constraints.

Future work includes identifying other possible vari-
ants of the MapReduce pattern and dealing with other
common patterns for parallel applications. These may
further improve system performance.
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