
Optimizing Hardware Design by Composing
Utility-Directed Transformations

Qiang Liu, Tim Todman, Wayne Luk, Fellow, IEEE, and

George A. Constantinides, Senior Member, IEEE

Abstract—Utility-directed transformations involve changing a design to optimize for given constraints while preserving behavior.

These changes are often achieved by techniques such as linear programming or geometric programming. We present a systematic

approach composing multiple utility-directed transformations for optimizing and mapping a sequential design onto a customizable

parallel computing platform such as a Field-Programmable Gate Array (FPGA). Our aim is to enable automatic design optimization at

compile time. Design goals specified by users drive the design transformations. Each utility-directed transformation achieves part of

the overall goal, and multiple utility-directed transformations, connected by pattern-directed transformations, are composed to fulfill the

overall design requirements. The utility-directed transformations in this work produce performance-optimized designs by exploiting

data reuse, MapReduce, and pipelining for the target parallel computing platform. Moreover, it is shown that performing

transformations in different orders allows users to trade speed for resources, and design performance for compile time. Several

applications are used to evaluate this approach on FPGAs. The system performance of a 64-bit matrix multiplication is shown to

improve up to 98 times compared to the original design, in the target hardware platform.

Index Terms—Design optimization, data reuse, MapReduce, pipelining, geometric programming

Ç

1 INTRODUCTION

HARDWARE designers increasingly use high-level descrip-
tions, such as C, to ease design description, develop-

ment, and simulation, and to enable fast design space
exploration. To meet design goals, designers must apply
multiple optimizations to their design, making it more
efficient but without affecting its intended functionality. This
makes it difficult for designers to quickly optimize designs.

Compilation techniques have been developed to auto-
mate optimization by using design transformations. Like the
classification of adaptation policies in automatic computing
[1], most of the transformations can be divided into two
types: pattern-directed transformations (PDTs) [2], [3], [4], [5]
and utility-directed transformations (UDTs) [6], [7], [8], [9].
Similar to action policies [1], a PDT defines explicitly the
design to be transformed, the transformed design, and the
conditions that trigger the transformation. What is also
needed is a mechanism for designers to specify the desirable
properties of the transformed design and algorithms that can
find such a design, rather than the transformed design itself
which may not yet be identified. UDTs model design goals that
capture desirable properties of the transformed design using utility

functions, and characterize design spaces using constraint
functions. Similar to adaption in utility function policies [1],
the transformation in a UDT is selected to achieve the
minimum/maximum value of the utility function in certain
design contexts including algorithm and hardware charac-
teristics. As a result, the UDTs provide designers with a
convenient means of describing complex optimizations.

PDTs have been widely used in existing compilation
tools as described in Section 2, while UDTs have been less
frequently used in design optimizations [6], [7], [8], [9]. This
is because there are challenges in using UDTs. First, UDTs
require modeling techniques to capture design contexts and
the impacts of optimization techniques on designs, i.e., the
capability of evaluating different transformation options.
The complexity of the models should also be taken into
account. Second, UDTs usually impose particular require-
ments on input designs, and thus need support from front-
end and back-end tools or manual direction to complete the
optimization process.

In this paper, we propose a new approach for design
optimization. The proposed approach provides multiple
UDTs with different optimization objectives, or with the
same objectives but using different optimization techniques.
PDTs are used to preprocess designs, transforming them to
the required input forms for UDTs. In this way, multiple
UDTs can be composed to enable automatic and powerful
design optimizations. This approach allows users to work at
more abstract design levels, where design goals are described
and, where necessary, desired transformations and transfor-
mation orders can be specified. The overall design goal is
then achieved by a sequence of transformations, each
fulfilling a particular subgoal. For instance, if one wants to
minimize the execution time of a design, then one could first
choose loop pipelining, then reusing data and finally
parallelizing loops.

1800 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

. Q. Liu is with the School of Electronic Information Engineering, Tianjin
University, Room 334, Building 26, 92 Weijing Rd., Nankai District,
Tianjin 300072, China. E-mail: qiangliu@tju.edu.cn.

. T. Todman and W. Luk are with the Department of Computing, Imperial
College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom.
E-mail: {timothy.todman, w.luk}@imperial.ac.uk.

. G.A. Constantinides is with the Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2AZ, United
Kingdom. E-mail: g.constantinides@imperial.ac.uk.

Manuscript received 12 Jan. 2011; revised 23 Aug. 2011; accepted 14 Sept.
2011; published online 18 Oct. 2011.
Recommended for acceptance by T. El-Ghazawi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-01-0021.
Digital Object Identifier no. 10.1109/TC.2011.205.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

The contributions of this paper are:

. a systematic approach composing utility-directed
transformations for automatic design optimization
(Section 3);

. utility-directed optimizations based on geometric
programming (GP) models, concurrently exploiting
optimization techniques: data reuse, MapReduce,
and pipelining (Section 4); and

. an evaluation of our approach based on three
benchmarks from digital signal processing, image
processing, and scientific computing (Section 5).

In this paper, we target designs captured in sequential
languages like C, and we transform and map them auto-
matically onto a parallel computing structure. The depen-
dence between transformations is investigated to determine
the order in which to apply them. The output is a transformed
C-like hardware description, preserving input design func-
tionality, with explicit timing and parallelism descriptions. A
meta language CML [10] is used to specify PDTs. Three UDTs
are presented in this paper for optimizing design speed.
Based on geometric programming, these UDTs explore the
design space of using data reuse, MapReduce, and pipelining
for design optimization.

Fig. 1 shows an example sequence of PDTs and UDTs
applied to the matrix-matrix multiplication. The original
design is transformed by four PDTs and two UDTs, and the
output is an optimized design. The optimization techniques
are explained in the rest of the paper. Each UDT has
multiple transformation paths, and only one path is chosen
according to design goals and target platform specified by
users. Note that the second UDT also considers the design
status after previous transformations. This example is used
throughout the paper to explain how the proposed approach
works.

The rest of the paper is organized as follows: Section 2
describes related work and tools. Section 3 presents our
optimization methodology composing UDTs. Section 4

details these transformations. Section 5 presents experimen-
tal results from applying our approach to several real
applications. Section 6 concludes with plans for future work.

2 BACKGROUND

Pattern-directed transformations match and transform syntax
or data-flow patterns of input programs. Each user-defined
pattern occurring in a program is transformed to a user-
specified form if Boolean conditions hold. Fig. 2 shows a
PDT decompose (DE), described in CML, with an empty
condition. This transformation can reduce logic levels of the
generated circuit, improving system clock frequency.

PDTs for hardware compilation have been explored by
researchers such as di Martino et al. [3] on data-parallel
loops written in C source code, as part of a synthesis
method from C to hardware. Compiler toolkits such as SUIF
[4] and CoSy [5] allow multiple syntax patterns to be used
together. However, these approaches give no support for
including utility-directed transformations. Syntax pattern
matching and transforming can also be done in tree
rewriting systems such as TXL [11], but such general
systems make it hard to incorporate hardware-specific
knowledge into the transformations.

In our approach, PDTs are written in a domain-specific
language called CML [10], based on CTT [12] and compiled
into a C++ description; the resulting program then runs a
source-to-source transformation. PDTs could be written
once by domain or hardware experts, then used many times
by nonexperts. We identify several kinds of transformation:
input (transforming code into a suitable form for a UDT),
tool-specific, and hardware-specific (optimizations for
particular synthesis tools or hardware platforms). We
provide a library of useful transformations: general-pur-
pose ones such as loop restructurings, and special-purpose
ones such as transforming Handel-C arrays to RAMs.

In contrast, utility-directed transformations do not ex-
plicitly specify how to transform programs. Instead, they
involve optimization problems (OPs); user-specified design
goals and specifications form the objectives and constraints
of the optimization problems. The solutions to the optimi-
zation problems determine how transformations are carried
out. For example, one may want a power-efficient design
that meets specific Speed and Area requirements. This
design could be generated by a utility-directed transforma-
tion according to design parameters ~x determined by the
following optimization problem:

minimize Pð~xÞ
subject to Sð~xÞ � Speed

Að~xÞ � Area

LIU ET AL.: OPTIMIZING HARDWARE DESIGN BY COMPOSING UTILITY-DIRECTED TRANSFORMATIONS 1801

Fig. 1. A sequence of transformations applied to 2D matrix multiplication:
four PDTs and two UDTs.

Fig. 2. Example of pattern-directed transformation: decomposing (DE)
an expression with two arithmetic operators into two expressions each
with one operator.

where Pð~xÞ;Sð~xÞ, and Að~xÞ are the system power, speed,
and area models, respectively.

Programs with composite objects such as arrays and
iteration statements such as loops usually need UDTs for
more efficient designs. For example, a geometric program-
ming model [6] determines loop tile size for multiple loops
to improve data locality in a hierarchical memory system.
Liu et al. [7] propose a GP framework to automate
exploration of the data reuse and loop-level parallelization
design space in the context of FPGA targeted hardware
compilation. An integer linear programming model is
proposed in [8] for pipelining outer loops in FPGA
hardware coprocessors. Lam et al. [9] use a tabu search
approach to determine loop unrolling factors. System
speedup over a single CPU implementation is considered
as the utility function. In [13], a model of affine recurrent
equations represents a biological application, for accelera-
tion on FPGAs. All these approaches need support from
front- and back-end tools or manual transformations to
complete the optimizations.

Table 1 lists several commercial hardware compilers, each
targeting different C-like languages. Optimizations used in
these tools are mostly pattern-directed and specific pro-
gramming rules are added upon the traditional C. Rewriting
a design from C/C++ to their target inputs, e.g., Impulse C
or Handel-C, is not trivial. Our approach complements these
tools by automating code transformation and, more im-
portantly, automating complex design optimizations.

High-level synthesis frameworks, SPARK [14], ROCCC
[15], DEFACTO [16], HYPER-LP [17], and LegUp [18],
perform optimization transformations, such as code motion,
loop transformation, dynamic renaming, pipelining, retim-
ing, scalar replacement, data reuse, operation chaining, and
area-saving binding, to optimize hardware circuit perfor-
mance. In these frameworks, heuristic and probabilistic
optimization algorithms are used to guide the transforma-
tions. However, these approaches do not allow users to
specify transformations, do not exploit large scale paralle-
lism, and the optimization algorithms only give local
suboptimal solutions.

In this paper, we combine UDTs to allow the automation
of sophisticated design optimizations. The proposed ap-
proach is instantiated in this paper as follows: we generalize
the transformations used in [28], [29] into PDTs and UDTs,
so that more transformations can be integrated. We extend

the UDT [7] which optimizes data locality and data-level
parallelism to considering practical design constraints, and
we combine it with UDT [29], which optimizes data-level
and instruction-level parallelism, using PDTs. This instan-
tiation can automatically exploit multiple techniques to
optimize designs. Among them, data reuse [30], [31], [32],
pipelining [8], [33], and MapReduce [34], [35] are particu-
larly powerful.

Each of these three design optimization techniques
requires design space exploration to determine the optimal
designs for a given target hardware platform. Moreover,
these techniques are related [7], [29]. We show in the result
section that combining these techniques in utility-directed
transformations can find more efficient designs and allows
designers to trade off design speed and area, automating
design space exploration.

3 SYSTEMATIC APPROACH

Our systematic approach starts with a sequential but possibly
inefficient design, and applies multiple transformations,
driven by user design goals and specifications, to achieve a
more efficient design. User design goals could involve
maximizing or minimizing a system metric (e.g., minimizing
execution time) or a specific target for a system metric (e.g.,
execution time less than 1 second). User specifications could
include the target hardware platform (e.g., Xilinx XC5VSX240
FPGA), chosen transformations, the execution order of
transformations, and so on.

Our approach provides multiple UDTs that users can
choose; different UDTs perform different optimization
objectives. A UDT involves an optimization problem in the
following form and can be used as a library or an executable.

UDT:Name{Objective, ExecutionOrder,

Requirements, Related PDT,

InputProgram,

OP(Input: Program parameters,

Platform parameters,

Design status;

Output: Design parameters)}

ExecutionOrder is a whole number, indicating the
execution order of a UDT. A UDT withExecutionOrder=0
does not execute, and a UDT with ExecutionOrder=a

1802 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

TABLE 1
Some Commercial Hardware Compilers

executes prior to a UDT with ExecutionOrder=b iff a < b.
Requirementsdescribes the required input form for a UDT,
e.g., loop affinity. Related PDT specifies those PDTs which
help transforming input programs for the associated UDT.

In our current approach, there is a default order of
executing a set of transformations, depending on the design
goals. An example is shown in Fig. 1, where the design goal
is to optimize speed and the order of applying the
transformations follows hardware optimization principles.
The effects of these transformations on matrix multiplication
are shown in Section 5. Users are allowed to experiment
with different transformation orders to choose the best. We
are developing methods (such as [36]) which enable
automatic exploration of the transformation ordering, so
that users have the options to manually tune the order in
applying transformations or rely on automatic methods.

Our approach meets user design goals by combining
multiple optimization stages. Different stages may achieve
different goals. For example, one stage optimizes speed and
another optimizes power consumption. At each stage, an
appropriate UDT is chosen by default (if users do not
specify it), in terms of the characteristics of the input code
and the design goal. If the input code is not in a suitable
form, PDTs are used to transform the code into a form such
that an appropriate UDT can be applied. The input
program parameters (such as the number of loop levels),
specified platform parameters (such as the number of
available DSP blocks), and the design status after prior
UDTs (such as DSP block utilization) instantiate the
optimization problem involved in the UDT. The solution
to the optimization problem tells us whether a more
efficient design exists. If it does, then the input code is
transformed according to the output design parameters
determined by the optimization problem, and the design
status after the transformation (such as system speed and
resource utilization) is logged.

The transformed design status provides information,
such as the number of execution cycles and on-chip
memory resource utilization, based on mathematical mod-
els used in utility functions which capture system behavior
in a cycle accurate way and represent on-chip embedded
resource utilization accurately. The effects of clock fre-
quency are not explored in the transformations presented in
this paper, since the overall execution time depends also on
number of clock cycles. Some transformations such as
pipelining would tend to improve clock frequency while
preserving number of clock cycles, while parallelization can
improve number of cycles and degrade clock frequency.
However, we observe that the overall execution time is
dominated by the number of execution cycles when
multiple UDTs and PDTs are composed, as shown in
Section 5. During design exploration, we assume a fixed
clock frequency (which can be known for a target hardware
platform), to avoid repeatedly running the placement and
routing toolchain.

After each stage, the transformed design is evaluated: if
it meets design requirements specified by users, then the
transforming procedure stops, otherwise further transfor-
mations follow. Finally, the chosen sequence of UDTs and
PDTs is recorded. This sequence of transformation choices
documents the design process, 1) forming an audit trail to

check design correctness after many transformations, and
2) allowing reuse for other applications. If the design goals
and specifications set by users are met after the sequence of
transformations, then an optimized design is generated.
Otherwise, users need to look at the log information,
identify the reasons for failure, and change the design goals
and specifications accordingly.

The advantages of composing UDTs are:

. individual UDTs can be simpler, thus allowing fast
and accurate solution to optimization problems;

. complex optimizations are supported; and

. customization of transformation sequences allows
optimizations to be adapted to applications, and
tradeoffs between system speed, power, and area.

Fig. 3 shows the implementation of our approach. The
input design is a sequential C description, and the final
design output could be any behavioral hardware descrip-
tion; this paper uses Handel-C [25]. The transformation
choice and design metric evaluation at each stage, as
described above, are done in the controller [37]. PDTs
perform common transformations, such as function inlin-
ing, multi-D array to 1D array, pointer-to-array dereference,
and subexpression elimination. These transformations
reveal the data flow of the input code and ease extraction
of input code parameters for UDTs. Moreover, some PDTs,
as shown in Section 5, can optimize the logic circuit and
exploit fine-grain parallelism of hardware.

In Fig. 3, there could be multiple UDTs, each addressing a
particular design goal. In this paper, two UDTs are
implemented for exploring combined data reuse and
MapReduce transformations (UDT1) and combined MapRe-
duce and pipelining transformations (UDT2), since these
optimization techniques are interlinked. The design goal is
to optimize speed, and hardware resources in the user target
platform constrain the transformations. UDT1 optimizes
data locality and loop-level parallelism for data-dominated
applications, which have the MapReduce pattern and
process large amounts of data stored in off-chip memory,
with predictable memory access pattern. The controller
directs input codes with these characteristics to this
transformation. UDT2 exploits loop-level parallelization
and pipelining. These two transformations are based on
geometric programming [38] models and are described in
Section 4, where the two GP models are also combined to
concurrently make decisions on both transformations.

LIU ET AL.: OPTIMIZING HARDWARE DESIGN BY COMPOSING UTILITY-DIRECTED TRANSFORMATIONS 1803

Fig. 3. Combining utility-directed transformations into a single approach.
UDTs have a set of associated PDTs.

The specification of transformation ordering can be

described using script. Python code for the sequence of

transformations in Fig. 1 applied to matrix multiplication is

presented below. Specific meaning of some of parameters

listed below is out of the scope of this paper; details can be

found in [37].

1: InDesign=parse(“matmult.c”)

2: des1=2DArrayTo1DArray(InDesign)

3: Program_params=[(“numLoop1”, 3),

(“loopBound1”, [64, 64, 64]),

(“loopParallelizability1”, [1, 1, 1]),

(“numArray1”, 3), . . .]

4: Platform_params=[(“numRAMBlock”, 168),

(“blockSize”, 16384), (“memBandwidth”,

32), (“numMultiplier”, 168)]

5: des2=UDT1(Speed, 1, “affineLoop”, [],

des1, OP(Program_params, Platform_params,

[], Out_design_params))

6: des3=decomposeExpressions(des2)

7: des4=reduceFanout(des3)

8: des5=parallelize(des4)

9: Program_params=[(“loopLevel”,

innermost), (“loopBound2”, [64]),

(“loopParallelizability2”, [1]), . . .]

10: Design_stat=[(“numMultiplier”,

utilization), (“numRAMBlock”,

utilization), . . .]

11:OutDesign=UDT2(Speed, 2, “affineLoop”,

[], des5, OP(Program_params,

Platform_params, Design_stat,

Out_design_params))

12:unparse(OutDesign, “out.c”)

The following explains each line in the above code:

1. The input file is parsed into a variable InDesign.
2. PDT 2D array to 1D array is applied, producing

des1.
3. Program parameters are placed into a variable

Program_params as a list of key-value pairs. Each
transformation is responsible for checking its para-
meters which are correct. Note that values can be
integers, Booleans, strings, or arrays of other values;
we omit some of the parameters for space reasons.

4. Platform parameters are similarly placed in another
variable.

5. UDT1 is applied to des1, yielding des2.
6. Three PDTs are applied to des2, yielding des5.
7. Parameters for UDT2 are placed in a key-value list.
8. Design status for UDT2 is stored. Note that the

utilization of embedded multipliers and RAM blocks
is updated after UDT1.

9. UDT2 transformation takes place.
10. Finally, the design is unparsed to an output file.

This script is just a simple sequence, and in practice, we

use more features of the scripting language and provide

more parameters for each transformation [37].
Other UDTs can be integrated into the proposed

approach, e.g., a low power UDT [39]. Although users can

define their own UDTs, UDTs are expected to be defined by

domain experts and are used by application builders who
may not be experienced in hardware optimization. UDTs
should be defined based on application characteristics, in
order to apply to a set of applications. Asanovic et al. [40]
identify seven classes of computation and communication
patterns, which cover a large range of numerical applica-
tions. The UDTs presented in this paper can work on three
of the seven classes and we intend to work on the others.

The design space exploration in each UDT with M
variables we present in this paper can be finished in
polynomial time OðMkÞ [38] for some constant k, and
exploring the order of N UDTs needs OðN !Þ. Therefore, in
the worst case, the complexity is OðMkN !Þ. However, N is
not large (three UDTs in our experiments), and not all
transformation orders are sensible in practice. Domain
experts can choose a limited set of useful transformation
orders in advance. Furthermore, different orders of applying
transformations can be evaluated concurrently to reduce
exploration time.

This section gives an overview of our approach to enable
the automation of system design optimization; the next
section presents the above mentioned UDTs in detail.

4 UDTS WITH GEOMETRIC PROGRAMMING

We observe that three optimization techniques, data reuse,
pipelining, and MapReduce, are interrelated. Memory
resources constrain all three techniques. Data reuse, after
distributing buffered data across multiple memory banks,
can improve memory bandwidth, benefiting pipelining, and
MapReduce. Computational resources constrain pipelining
and MapReduce. This interrelationship means that applica-
tion of these techniques separately may not lead to efficient
designs. Thus, we present one UDT for optimizing both
data locality and loop-level parallelism within a single step,
and another UDT [29] exploiting MapReduce and pipelin-
ing. Some formulas in the optimization problem models
shown below are nonlinear, due to the combination of the
techniques. We convert them into geometric programming
problems and use existing techniques to solve them.

Geometric programming [38] is the following optimiza-
tion problem:

min: f0ðxÞ
subject to fiðxÞ � 1; i ¼ 1; . . . ;m

hiðxÞ ¼ 1; i ¼ 1; . . . ; p

where x � 0, and the objective function and inequality
constraint functions are all in posynomial form, while the
equality constraint functions are monomial. Unlike general
nonlinear programming problems, GP can be transformed
into a convex form with efficient solution algorithms with
guaranteed convergence to a global minimum [38]. Also,
as the addition and multiplication of posynomials are still
posynomial, multiple GP models can be combined or
extended to cover more complex transforming tasks.

Since our target output design in this paper is a Handel-C
description, as mentioned in Section 3, the design execution
model described in the rest of the paper is in line with
Handel-C semantics that each assignment in the C descrip-
tion takes one clock cycle, although the formulation
described below can be extended to other cases. Our

1804 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

utility-directed transformations take care of the operation
scheduling and resource allocation, and the resource binding
is left to the Handel-C synthesizer.

4.1 UDT1 with Data Reuse and MapReduce

This section presents UDT1, which uses a GP model to
optimize both data locality and loop-level parallelism in one
step. The target applications are data dominated. The
transformation introduces for an array A an on-chip buffer
RLA, loads frequently used data of A from off-chip memory
into RLA at a loop level, and replaces the array reference A
with RLA for accesses (data reuse) [30], [31]. Then, the
buffered data are distributed into different scratch-pad
memory banks [7], [32] to increase memory bandwidth.
Finally, operations from different loop iterations are
mapped onto parallel processing units (MapReduce), using
loop strip-mining and interchange [41]. This UDT extends
[7] to apply to MapReduce patterns, and to consider
computational resource constraints and ensure that only
data accessed by a processing unit are transferred to that
unit’s buffers.

We use N �N integer matrix-matrix multiplication, as
shown in Fig. 4, to illustrate the transformation. We assume
arrays A, B, and C are stored in off-chip memory with a single
access port. Simple analysis shows that all elements of the
matrices A and B in the critical data path are accessed
more than once, loops i and j are parallelizable, and the only
dependence between iterations of loopm is the accumulation

of sum. We introduce on-chip buffers for arrays A and B to
reduce off-chip memory access, and apply MapReduce to
loops i and j, so elements of C can be generated in parallel in
the map phase; the reduce phase outputs results sequentially
as there is only one off-chip memory port.

The possible transformation options are shown in Figs. 4b
and 4c. There are two data reuse options (OP11 and OP12) for
array A and one (OP21) for array B. If the matrix size is
64� 64 elements (8 bits), the on-chip memory required and
the number of off-chip memory accesses for options OP11

and OP12 of array A are (32,768 bits, 4,096) and (512 bits,
4,096), respectively. Both options have the same off-chip
memory accesses, but different on-chip memory require-
ments. The data reuse options govern which loop to
partition. For example, for options OP12 and OP21, only
loops j and m can be parallelized, because the single-port
off-chip memory accesses for loading RLA exist in loop i, as
in Fig. 4b. If loop i must be partitioned for higher
parallelism, thenOP11 must be chosen as in Fig. 4c, requiring
more on-chip memory. This shows the interrelationship
between data reuse and MapReduce.

The design space combining data reuse and MapReduce
increases exponentially with the number of array references
and the number of loop levels [7]. We thus formulate the
design space exploration as a GP optimization problem as
shown in the left-hand side of Fig. 5, with the objective of
minimizing execution time (1), subject to on-chip resource
constraints (2)-(8). This GP model allows the optimal
solution and is scalable with the problem size [7].

Table 2 lists notation used in this paper. Lowercase letters
represent integer variables, corresponding to design para-
meters used for transformation; capitals represent compile-
time constants: input program parameters and platform
parameters specified by users. These constant parameters
are used to instantiate the models.

The objective (1) of this transformation is to minimize the
number of execution cycles. There are three parts to (1): the
number of execution cycles taken by S statements, except
for the result reducing statement Sr (e.g., the statement
Store in Fig. 4b) after mapping the loop nest to a parallel
structure, the number of execution cycles taken by the
reduce phase, and the cycles for loading reused data from
off-chip to on-chip memory. Together with the computa-
tional resource constraints (6), the number of execution
cycles spent on the reduce phase and the upper bound on
the number of data elements accessed in one parallel
segment of the partitioned loops in (3), not considered in
[7], complete the formulation.

Users can specify the constraints on the on-chip memory
B and the number of computational resources Cf in
inequalities (2) and (6) to trade area for speed. The
requirements of UDT1 for input programs are rectangular
loop structure, no pointers, and statically determined
memory access patterns. Related PDTs are function inlin-
ing, pointer-to-array converting, loop restructuring, and so
on. The design parameters, data reuse variables �ij, and
loop parallelization variables kl, determine how transfor-
mations are carried out in UDT1.

4.2 UDT2 with MapReduce and Pipelining

This section describes UDT2 exploiting MapReduce and
pipelining optimizations, and briefly describes the GP model

LIU ET AL.: OPTIMIZING HARDWARE DESIGN BY COMPOSING UTILITY-DIRECTED TRANSFORMATIONS 1805

Fig. 4. Motivating example: matrix multiplication. For brevity, N is a
multiple of kl1�l�3

. forall: all for loop iterations executing in parallel.
pipeline: loop pipelining.

[29] involved in UDT2. This transformation can always be
applied to applications for performing loop pipeline. Target
platform computational resources restrict the number of
parallel loop iterations, and bandwidth between processing
units and memories affects how operations are scheduled
after loop partitioning. This transformation generates a
locally parallel, globally pipelined structure to balance use
of memory bandwidth and hardware resources.

Fig. 4d illustrates the problem, using the innermost loop
of matrix multiplication. Our approach first applies PDTs.
The original complex expression is decomposed into simple
operations: two memory accesses, one multiplication and
the result accumulation. This example exhibits the MapRe-
duce pattern: multiplication executes independently on
element pairs of array RLA and RLB, while accumulation
is achieved by integer addition which is associative.

We thus map the innermost loop of matrix multiplication
onto a parallel computing structure, by loop strip mining.
We need to determine the number of iterations (k3) of each
loop strip, running in parallel, and the initiation interval (ii)
of pipelining the outer loop controlling the strip counter, as
shown in Fig. 4d. Given a hardware platform with sufficient
multipliers, there are multiple design options for mapping
the innermost loop under different memory bandwidth
constraints. For example, if the memory bandwidth is
2N bytes per execution cycle, Fig. 4e (pipeline registers are
not shown) shows a design with loop m fully parallelized,
which needs log2 N þ 2 execution cycles; assuming each
assignment takes one clock cycle. When memory band-
width is smaller, several designs exist, combining local
parallelization and global pipelining. Even more design
options result if multipliers are also constrained. Finding
the best design in terms of various criteria is not easy, and
requires design space exploration.

We therefore formulate mapping of loop l of a loop nest
onto a parallel computing platform in problem (10-19)
shown in the right-hand side of Fig. 5; detailed discussion
can be found in [29]. The design parameter variables

1806 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

TABLE 2
A List of Notation (# Means the Number of)

Fig. 5. Optimization formulations for UDT1 (1)-(9) and UDT2 (10)-(19).

include the number of parallel partitions kl of loop l and
pipeline initiation interval ii. Once these parameters are
determined, the corresponding transformation is carried
out. This transformation can be applied to a single loop
level with compile-time known loop bounds. Related PDTs
are loop restructuring, loop coalescing, and loop peeling.

If this utility-directed transformation (UDT2) is executed
after the transformation (UDT1) described in Section 4.1,
then the design status needs to be considered. For example,
UDT1 transformation generates a design that utilizes C0f
DSP blocks, increases memory bandwidth to M 0

b when
introducing on-chip buffers, and achieves a system speed
T 0. When the problem (10-19) is instantiated, Mb in (11) is
replaced with M 0

b and Cf in the constraint (15) for DSP
resource becomes Cf � C0f . After the instantiation, the
problem is solved. If the execution time achieved by UDT2

is slower than T 0, then UDT2 transformation is ignored and
the design transformed by UDT1 is retained.

4.3 Combined GP Model

The previous two sections, respectively, show two GP
models used in two UDTs. As the models are both GP, we
could combine them to simultaneously make design
decisions on data reuse, multilevel MapReduce, and
pipelining for applications with the target characteristics;
for example, matrix multiplication has data reuse and two
MapReduce patterns in different loop levels. The combined
model formulates the whole design space and can find
more efficient designs.

As hardware resources constrain MapReduce, the avail-
able resources need to be allocated among multiple
MapReduce levels to obtain an efficient design. This is the
link used to combine the two GP models described in the
previous two sections. For simplicity, we present a new
GP model exploring data reuse, two-level MapReduce and
pipelining with the inner-level MapReduce pattern in the
innermost loop of a loop nest; it can be extended to many-
level MapReduce cases.

The total number of execution cycles of a design
comprises four parts:

min: cyc ¼ cycs þ cycin þ cycr þ
XR

i¼1

XEi

j¼1

ð�ij � CijÞ: ð20Þ

The number of cycles taken by statements outside the
innermost loop cycs is given by (21). The number of cycles
taken by statements inside the innermost loop after two-level
MapReduce and pipelining is (22). The number of cycles cycr
taken by the reduce phase of the outer loop MapReduce is
(23), where two expressions for cycr correspond, respec-
tively, to using a linear structure or a tree structure in the
reduce phase [29]. The resource link between the MapReduce
levels is (24), where we assume all computations are in the
innermost loop. It can easily extend to cover cases where
some computations execute in outer loops.

Together with the constraint models described in
Sections 4.1 and 4.2, this new model is used in providing
a utility-directed transformation, which does the same job
as the previous two UDTs but could generate more efficient
designs.

cycs ¼
XSo

s¼1

YWs

l¼1

vl; ð21Þ

cycin ¼
YN�1

l¼1

vl � ðvN � iiþ Cdata

þ
XI

i¼1

di þ dlog2 kNe þ notFullÞ;
ð22Þ

cycr ¼
YWr

l¼1

ðvl � klÞ or cycr ¼
YWr

l¼1

vl � log2

YWr

l¼1

kl; ð23Þ

YN

l¼1

kl � xf � Cf; f 2 F: ð24Þ

A branch and bound algorithm used in [42] solves the
integer GP in all three models, using the geometric
programming relaxation as a lower bounding procedure.
Section 5 shows the performance of these GP models; as
expected, the combined GP model produces more promis-
ing designs, but large problem sizes are slow to solve.

5 EXPERIMENTAL RESULTS

In this section, we show results from applying our approach
to three kernels: multiplication of two 64� 64 matrices
(MAT64), the motion estimation (ME) algorithm [43] used in
X264, and Sobel edge detection (Sobel) [44]. In addition to
these, applications such as correlation in signal processing
and the widely used Monte Carlo simulation are all cases
where our approach succeeds [29]. Table 3 shows bench-
mark properties. Data reuse opportunities exist in all
kernels, and each benchmark contains the MapReduce
pattern; we identify two levels of MapReduce pattern in
ME, MAT64 and Sobel. We apply UDT1 to the outer level and
UDT2 to the inner level. Performance-optimized designs
under different constraints are represented by the chosen
data reuse option for each array reference, the number of
parallel loop partitions of each loop, and the pipelining
initiation interval (�ij, kl, ii).

Our experiments use an FPGA-based system with off-
chip SRAM. Without loss of generality, we assume the off-
chip SRAM is accessed by a single port with two cycle
latency; these off-chip SRAMs store input data. The FPGA is
an XC2v8000, which has 168 embedded hard multipliers,
168 dual-port RAM blocks, and runs at 100 MHz when all
hard multipliers are used. Users can specify other hardware
platforms, resulting in different platform parameters. The

LIU ET AL.: OPTIMIZING HARDWARE DESIGN BY COMPOSING UTILITY-DIRECTED TRANSFORMATIONS 1807

TABLE 3
The Properties of the Benchmarks

generated parallel computing structure consists of multiple
processing units, each with its own two-level on-chip
buffers: registers and on-chip RAM configured as scratch-
pad memory. For ME and Sobel, the frame size is that of the
QCIF luminance component (144� 176 pixels). All results
are obtained after synthesis, placement, and routing.

The experimental results include:

. examining a series of pattern-directed and utility-
directed transformations on MAT64 and Sobel to
show the performance of the proposed approach;

. verifying the proposed UDTs on MAT64, sobel, and
ME, and comparing the transformations executing
in different orders that result in different designs
and allow a tradeoff between optimization results
and running time for solving optimization pro-
blems; and

. comparing the designs proposed by our approach
with other two approaches on MAT64.

5.1 Results after Each Transformation

Table 4 shows the transformations used in our experiments.
Table 5 and Figs. 6 and 7 show the effects of transformations
on MAT64 and Sobel, with the results normalized over
original designs.

UDT1 improves data locality and parallelism simulta-
neously, as shown in Table 5. We see that the number of off-
chip memory accesses is significantly reduced, up to 64 times
for the two benchmarks, resulting in significant power
reduction in off-chip accesses. Also, the outer loops are
partitioned into multiple parallel segments, considerably
decreasing system execution time, as shown in Figs. 6 and 7.
The costs of these improvements are the use of on-chip RAMs
and slices. For example, in Table 5, the second design of Sobel
afterUDT1has 18 times less off-chip memory accesses and the
outer two loop levels are mapped into 144 executing parallel
segments, but requires 144 blocks of on-chip RAMs and
nearly 150 times more slices, compared to the original design.
The large increase in on-chip resources is due to the

transformed design executing in a single-program-multi-
ple-data (SPMD) model. Users can trade speed for area, by
specifying less number of available RAM blocks, for
example, leading to slower speed, as shown in Fig. 9.

As a result of the large and complex circuits, the
transformed designs also degrade clock frequency, as shown
in Figs. 6 and 7 (compare the second bar to the first). The
PDTs listed in Table 4 are used to optimize these circuits.

The last row of Table 5 shows the benefit of merging
loops in the Sobel code before UDT1, as an example of PDT
helping UDT. Without merging, UDT1 partitions the second
loop into 59 parallel segments, while after merging loops,
UDT1 partitions the outer two loops of the code into 144
parallel segments. With the same on-chip RAM constraint
and off-chip memory access reduction, the latter halves the
execution time of the former, as Fig. 7 shows.

After UDT1, we apply multiple PDTs, listed in Table 4,
one by one to the two benchmarks. The order of applying
these transformations follows hardware optimization prin-
ciples. DE and RF improve clock frequency of the resultant
designs by reducing logic level and latency (Figs. 6 and 7).
These transformations often increase execution cycles and

1808 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

Fig. 6. Effects of a series of transformations on MAT64.

Fig. 7. Effects of a series of transformations on Sobel.

TABLE 4
Transformations Used in Experiments

TABLE 5
Results after UDT1 and UDT2 Utility-Directed Transformations

a before merging loop. b after merging loop.

area as they introduce intermediate registers to implement
operations in multiple cycles. Afterward, Par parallelizes
statements to reduce execution cycles.

After each transformation, some design metrics may
worsen, but further transformations can still be applied to
try to meet the overall goal. For instance, execution times
for MAT and Sobel in Figs. 6 and 7 increase after DE and
RF, but decrease after Par. In fact, without DE and RF to
improve clock frequency, the execution time after UDT2

would not improve significantly.
Moreover, PDTs reveal more instruction-level paralle-

lism that can be exploited by UDT2. As Table 5 shows, UDT2
further partitions the innermost loop into parallel segments
and pipelines the operations. For example, the innermost
loop of MAT64 is partitioned by 2 and pipelined with ii ¼ 1.
We partition the innermost loop into two parallel segments;
given that there are 168 multipliers in this device, UDT1
maps the outer level MapReduce pattern onto 80 parallel
processing units, with two multipliers in each unit.

On the target platform, composing UDT1 and UDT2 with
several PDTs speeds up MAT64 and Sobel, by about 98 times
and 88 times, respectively, compared to the initial designs.

5.2 Design Space Exploration with UDTs

To verify the UDTs in Section 4, we apply them to MAT64,
Sobel, and ME, and implement the resulting designs on the
target platform. The results in Section 5.1 use a series of
transformations, where UDT1 executes prior to UDT2. In this
section, we perform them in three orders: UDT1 before UDT2
(UDT1-UDT2), UDT2 before UDT1 (UDT2-UDT1), and con-
current UDT1 and UDT2 (UDT3) as described in Section 4.3.

Given the number of computational resources, memory
size and bandwidth, a performance-optimized design in the
design space is generated by the UDTs in the three orders; all
designs from the same order form a performance Pareto
frontier. All results are shown in Figs. 8, 9, and 10, where the
y-axis follows a logarithmic scale. Fig. 8a shows results for
MAT64. First, designs from the three orders exhibit the same
trend, i.e., execution cycles decrease as the available on-chip
multipliers increase, due to greater parallelism; Figs. 9a and
10a show similar design trends. Users can constrain the
design exploration to obtain expected performance. Second,
given the same number of multipliers and comparing with
the designs given by UDT1-UDT2 and UDT2-UDT1, the
designs from UDT3 speed up to 6 and 72 percent, respec-
tively, and use about 0.5 and 8 times the respective number
of on-chip memories. In Sobel, multiplication operations are

replaced automatically by shift operations; Fig. 9a shows
designs from the three orders under different on-chip
memory constraints. Here, due to no computational resource
(multiplier) constraints between the two MapReduce levels,
the three orders generate the same designs. Similarly, ME
results are the same for each order, so Fig. 10a only shows
the Pareto frontier from UDT1-UDT2 under different
memory bandwidths. We observe that the combined
GP model UDT3 guarantees the performance-optimal design
in the design space, as it combines design spaces of data
reuse, MapReduce, and pipelining, while UDT2-UDT1

achieves best resource utilization. Therefore, by specifying
the order of composing different transformations, users can
balance the system metrics. Moreover, the combined model
needs over twice the runtime, compared to separate
approaches as Table 6 shows. Runtimes are for calling
YALMIP [42] from MATLAB on a 3 GHz PC.

To verify these results, we implement several designs of
MAT64, Sobel, and ME. Figs. 8b, 9b, and 10b show real
execution times and the use of on-chip multipliers, RAM
blocks, and memory bandwidth, respectively. These figures,
first, show similar trends in performance of Pareto frontiers
to those in Figs. 8a, 9a, and 10a under different design
constraints. This proves that our models can distinguish the
performance-optimal design from different design options.

The figures also show some suboptimal designs. In
Fig. 8b, some designs proposed by UDT1-UDT2 and UDT2-

UDT1 lie above the Pareto line formed by results from
UDT3. Note that most designs from UDT2-UDT1 are worse
than those of UDT3, while UDT1-UDT2 has only four
designs worse than UDT3. This agrees with Fig. 8a. Also,

LIU ET AL.: OPTIMIZING HARDWARE DESIGN BY COMPOSING UTILITY-DIRECTED TRANSFORMATIONS 1809

Fig. 8. Design space exploration results for MAT64. Fig. 9. Design space exploration results for Sobel.

Fig. 10. Design space exploration results for ME.

Fig. 8b shows four designs with different parameters in
angle brackets from UDT3 and UDT2-UDT1. From these
design parameters, we can see that UDT3 optimizes the
design as a whole and thus achieves better results, while
UDT2-UDT1 gives the priority of parallelism optimization
to the inner loops. Fig. 9b explicitly shows parameters of
performance-optimal and suboptimal designs of Sobel. For
example, when the on-chip RAM block constraint is 88,
design (0, 1, 0, 1, 88, 9, 3) runs as fast as design (0, 1, 0, 1,
88, 3, 1) from our GP model, but needs more logic
resources due to greater innermost loop parallelization.
There are two designs using all available on-chip RAM
blocks, as in the bottom-right corner of Fig. 9b, but they are
still slower than our design (1, 0, 0, 144, 1, 3, 1). Likewise,
for the same 8 bytes/cycle memory bandwidth in Fig. 10,
the design from our approach is (0, 1, 1, 9, 16, 5) rather than
design (0, 1, 1, 9, 8, 3) which matches the memory
bandwidth; our model identifies the 0.04 ms speed
difference. Finally, the original unoptimized designs of
MAT64, Sobel, and ME are also implemented, shown in
Figs. 8b, 9b, and 10b.

The results above demonstrate that our approach can
find the performance-optimized design in the design space
of data reuse, MapReduce, and pipelining, and that
different transformation orders enable trading off 1) speed
and resources, and 2) design performance and compile
time. These give users flexibility to customize designs.

5.3 Comparison with Existing Approaches

To evaluate our approach, we compare the matrix-matrix
multiplication against two existing approaches [45] and [46].
These approaches implement a blocked matrix multiplication
algorithm with fixed-point arithmetic on FPGAs. Each
approach uses different hardware platforms and FPGA
devices.

Table 7 compares estimated execution times for various
matrix sizes. Compared to [45], our approach is up to four
times faster, since our approach extracts higher parallelism
by exploiting MapReduce and pipelining. Compared to
[46], our approach is slower by a factor of 1.2 to 3.8, because
Sotiropoulos and Papaefstathiou [46] use double buffering
to pipeline data input/output with computation. As matrix
sizes increase, time spent on data loading/unloading
increases and thus the performance difference between
our approach and [46] increases. In future, we will integrate
outer loop pipelining into our model to bridge this
performance gap.

6 CONCLUSIONS

We present a systematic approach composing utility-
directed transformations for optimizing and mapping a

sequential design onto an FPGA-based parallel computing

platform. Our approach provides multiple UDTs, each

performing optimization transformations, and uses PDTs
to connect UDTs. This enables the automation of complex

hardware design optimizations. The combination of

modular and parameterized UDTs allows users to work
at a high level to describe design goals and specification.

The approach is illustrated in this paper with two UDTs

connected by several PDTs. Two geometric programming
models guide speed optimizing UDTs, exploiting data

reuse, multilevel MapReduce, and pipelining techniques.

Results from applying our approach to three applications

show that design speed can improve up to 98 times

compared to sequential designs in the same platform. Our

UDTs can produce performance-optimized designs in the

design space of exploiting data reuse, MapReduce, and

pipelining under different design constraints. Moreover,

performing transformations in different order allows users

to trade speed for resources, and design performance for

compile time. Finally, compared to two existing approaches

for matrix multiplication, our automated approach achieves

performance between them.
Current and future work includes extending the current

UDTs to include techniques such as outer loop pipelining,
supporting more applications, adding more transformations

to capture the whole hardware system design flow such as

hardware/software partitioning and data representation
optimization, and moving appropriate compile-time opti-

mizations to runtime. A direction of particular interest is to
investigate extensions of the proposed approach to support

self-optimization of designs to adapt to internal and external

changes at runtime. To avoid the time-consuming process of
placement and routing at runtime, we can generate multiple

configurations and switch between them by either 1) partial

runtime reconfiguration [47], or 2) compiling them into a
single configuration and activating them at runtime by clock

gating [48]. In both cases, placement and routing takes place

at design time while system performance optimization takes
place at runtime. In the future, we also intend to propose

transformations for GPGPUs to improve their performance
with reduced design effort.

ACKNOWLEDGMENTS

This work was supported in part by UK EPSRC under EP/

I020357/1 and EP/I012036/1, by the European Union

Seventh Framework Programme under Grant agreement
numbers 248976 and 257906, by the HiPEAC NoE, by Alpha

Data, by Celoxica, by nVidia, and by Xilinx.

1810 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

TABLE 7
Performance Comparison of Our Approach and
[45] and [46] in the Matrix-Matrix Multiplication

TABLE 6
Solution Time Comparison of Three

Execution Orders of Our UDTs

REFERENCES

[1] J.O. Kephart and R. Das, “Achieving Self-Management via Utility
Functions,” IEEE Internet Computing, vol. 11, no. 1, pp. 40-48, Jan./
Feb. 2007.

[2] A. Armonas and L. Nemuraite, “Pattern Based Generation of Full-
Fledged Relational Schemas from UML/OCL Models,” Informa-
tion Technology and Control, vol. 35, no. 1, pp. 27-33, 2006.

[3] B. di Martino, N. Mazzoca, G.P. Saggese, and A.G.M. Strollo, “A
Technique for FPGA Synthesis Driven by Automatic Source Code
Synthesis and Transformations,” Proc. Int’l Conf. Field-Program-
mable Logic and Applications (FPL), 2002.

[4] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, S.-W.
Liao, E. Bugnion, and M.S. Lam, “Maximizing Multiprocessor
Performance with the SUIF Compiler,” Computer, vol. 29, no. 12,
pp. 84-89, Dec. 1996.

[5] ACE, “CoSy Compilers: Overview of Construction and Opera-
tion,” http://www.ace.nl/compiler/paper-construct.pdf, 2011.

[6] L. Renganarayana and S. Rajopadhye, “A Geometric Program-
ming Framework for Optimal Multi-Level Tiling,” Proc. ACM/
IEEE Conf. Supercomputing, p. 18, 2004.

[7] Q. Liu, G.A. Constantinides, K. Masselos, and P.Y.K. Cheung,
“Combining Data Reuse with Data-Level Parallelization for
FPGA-Targeted Hardware Compilation: A Geometric Program-
ming Framework,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 3, pp. 305-315, Mar. 2009.

[8] K. Turkington, G.A. Constantinides, K. Masselos, and P.Y.K.
Cheung, “Outer Loop Pipelining for Application Specific Data-
paths in FPGAs,” IEEE Trans. Very Large Scale Integration Systems,
vol. 16, no. 10, pp. 1268-1280, Oct. 2008.

[9] Y. Lam, J. Coutinho, W. Luk, and P. Leong, “Optimising Multi-
Loop Programs for Heterogeneous Computing Systems,” Proc.
Southern Programmable Logic Conf., pp. 129-134, 2009.

[10] T. Todman, J.G.d.F. Coutinho, and W. Luk, “Customisable
Hardware Compilation,” The J. Supercomputing, vol. 32, no. 2,
pp. 119-137, 2005.

[11] “The TXL Programming Language,” http://www.txl.ca/, Oct.
2009.

[12] M. Boekhold, I. Karkowski, H. Corporaal, and A. Cilio, “A
Programmable ANSI C Transformation Engine,” Proc. Eighth Int’l
Conf. Compiler Construction, pp. 292-295, 1999.

[13] S. Derrien and P. Quinton, “Parallelizing HMMER for Hardware
Acceleration on FPGAs,” Proc. IEEE Int’l Conf. Application-Specific
Systems, Architectures and Processors (ASAP), pp. 10-17, July 2007.

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A High-
Level Synthesis Framework for Applying Parallelizing Compiler
Transformations,” Proc. Int’l Conf. VLSI Design, pp. 461-466, Jan.
2003.

[15] Z. Guo, B. Buyukkurt, and W. Najjar, “Input Data Reuse in
Compiling Window Operations onto Reconfigurable Hardware,”
Proc. ACM SIGPLAN/SIGBED Conf. Languages, Compilers, and Tools
for Embedded Systems (LCTES), pp. 249-256, 2004.

[16] B. So, M.W. Hall, and P.C. Diniz, “A Compiler Approach to Fast
Hardware Design Space Exploration in FPGA-Based Systems,”
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation, pp. 165-176, 2002.

[17] A.P. Chandrakasan, M. Potkonjak, J. Rabaey, and R.W. Brodersen,
“HYPER-LP: A System for Power Minimization Using Architec-
tural Transformations,” Proc. IEEE/ACM Int’l Conf. Computer-Aided
Design, pp. 300-303, 1992.

[18] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.
Anderson, S. Brown, and T. Czajkowski, “LegUp: High-Level
Synthesis for FPGA-Based Processor/Accelerator Systems,” Proc.
ACM/SIGDA Int’l Symp. Field Programmable Gate Arrays (FPGA),
pp. 33-36, 2011.

[19] “Introducing AccelDSP Synthesis,” http://www.xilinx.com/
support/documentation/sw_manuals/acceldsp_user.pdf, May
2008.

[20] http://www.mentor.com/products/c-based_design/catapult_c_
synthesis/index.cfm, Oct. 2008.

[21] http://www.synfora.com/products/picoexpress.html, Oct. 2005.
[22] http://www.impulsec.com/C_to_fpga_overview.htm, Oct. 2005.
[23] http://www.agilityds.com, May 2008.
[24] http://www.forteds.com/products/cynthesizer_datasheet.pdf,

May 2008.
[25] http://www.mentor.com, Jan. 2010.
[26] “Nios II C2H Compiler User Guide,” http://www.altera.com/

literature/ug/ug_nios2_c2h_compiler.pdf, May 2008.

[27] http://www.autoesl.com, Jan. 2011.
[28] Q. Liu, T. Todman, J.G. de F. Coutinho, W. Luk, and G.A.

Constantinides, “Optimising Designs by Combining Model-Based
and Pattern-Based Transformations,” Proc. Int’l Conf. Field-
Programmable Logic and Applications (FPL), pp. 308-313, 2009.

[29] Q. Liu, T. Todman, W. Luk, and G.A. Constantinides, “Automatic
Optimisation of MapReduce Designs by Geometric Program-
ming,” Proc. Int’l Conf. Field-Programmable Technology (FPT),
pp. 215-222, 2009.

[30] Q. Liu, K. Masselos, and G.A. Constantinides, “Data Reuse
Exploration for FPGA Based Platforms Applied to the Full Search
Motion Estimation Algorithm,” Proc. Int’l Conf. Field-Programmable
Logic and Applications (FPL), pp. 389-394, 2006.

[31] Q. Liu, G.A. Constantinides, K. Masselos, and P.Y.K. Cheung,
“Automatic On-Chip Memory Minimization for Data Reuse,”
Proc. Ann. IEEE Symp. Field-Programmable Custom Computing
Machines (FCCM), pp. 251-260, 2007.

[32] N. Baradaran and P.C. Diniz, “A Compiler Approach to Managing
Storage and Memory Bandwidth in Configurable Architectures,”
ACM Trans. Design Automation of Electronic Systems, vol. 13, no. 4,
pp. 1-26, 2008.

[33] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G.R. Gao,
“Single-Dimension Software Pipelining for Multi-Dimensional
Loops,” Proc. IEEE Int’l Symp. Code Generation and Optimization
(CGO), pp. 163-174, 2004.

[34] J.H. Yeung, C. Tsang, K. Tsoi, B.S. Kwan, C.C. Cheung, A.P. Chan,
and P.H. Leong, “Map-Reduce as a Programming Model for
Custom Computing Machines,” Proc. Int’l Symp. Field-Program-
mable Custom Computing Machines (FCCM), pp. 149-159, 2008.

[35] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Proc. Sixth Conf. Symp. Operating Systems
Design and Implementation (OSDI), pp. 137-150, Dec. 2004.

[36] T. Todman, Q. Liu, W. Luk, and G. Constantinides, “A Scripting
Engine for Combining Design Transformations,” Proc. IEEE Int’l
Symp. Field-Programmable Custom Computing Machines (FCCM),
pp. 255-258, 2010.

[37] T. Todman, Q. Liu, W. Luk, and G. Constantinides, “Customizable
Composition and Parameterization of Hardware Design Trans-
formations,” Proc. 13th Euromicro Conf. Digital System Design:
Architectures, Methods and Tools (DSD), pp. 595-602, 2010.

[38] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
Univ. Press, 2004.

[39] Q. Liu, T. Todman, and W. Luk, “Combining Optimizations in
Automated Low Power Design,” Proc. Design, Automation and Test
in Europe Conf., pp. 1791-1796, 2010.

[40] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K.
Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams,
and K.A. Yelick, “The Landscape of Parallel Computing Research:
A View from Berkeley,” Technical Report UCB/EECS-2006-183,
EECS Dept., Univ. of California, Berkeley, 2006.

[41] U.K. Banerjee, Loop Parallelization. Kluwer Academic, 1994.
[42] J. Löfberg, “YALMIP: A Toolbox for Modeling and Optimization

in MATLAB,” Proc. IEEE Int’l Symp. Computer Aided Control
Systems Design (CACSD), 2004.

[43] L. Merritt and R. Vanam, “Improved Rate Control and Motion
Estimation for H.264 Encoder,” Proc. IEEE Int’l Conf. Image
Processing (ICIP), pp. 309-312, 2007.

[44] http://www.pages.drexel.edu/~weg22/edge.html, 2006.
[45] N. Dave, K. Fleming, M. King, M. Pellauer, and M. Vijayaragha-

van, “Hardware Acceleration of Matrix Multiplication on a Xilinx
FPGA,” Proc. Int’l Conf. Formal Methods and Models for Codesign,
pp. 97-100, 2007.

[46] I. Sotiropoulos and I. Papaefstathiou, “A Fast Parallel Matrix
Multiplication Reconfigurable Unit Utilized in Face Recognitions
Systems,” Proc. Int’l Conf. Field-Programmable Logic and Applications
(FPL), pp. 276-281, 2009.

[47] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Ruckert,
“Design Optimizations for Tiled Partially Reconfigurable Sys-
tems,” IEEE Trans. Very Large Scale Integration Systems, vol. 19,
no. 6, pp. 1048-1061, June 2011.

[48] Q. Liu, T. Mak, J. Luo, W. Luk, and A. Yakovlev, “Power Adaptive
Computing System Design in Energy Harvesting Environment,”
Proc. Int’l Conf. Embedded Computer Systems (SAMOS), pp. 33-40,
2011.

LIU ET AL.: OPTIMIZING HARDWARE DESIGN BY COMPOSING UTILITY-DIRECTED TRANSFORMATIONS 1811

Qiang Liu received the BS and MSc degrees
from the School of Electronic Information En-
gineering, Tianjin University, China, in 2001 and
2004, respectively, and the PhD degree from the
Department of Electrical and Electronic Engi-
neering at Imperial College London, United
Kingdom, in 2008. From 2004 to 2005, he
worked for STMicroelectronics Co. Ltd, Beijing,
China. From 2009 to 2011, he was a research
associate in the Department of Computing at

Imperial College London. He is currently an associate professor at the
School of Electronic Information Engineering at Tianjin University, with
research interests in hardware compilation and synthesis, VLSI design
optimization and automation, and reconfigurable computing.

Tim Todman received the BSc degree from the
University of North London, and the MSc and
PhD degrees from Imperial College London, in
1997, 1998, and 2004, respectively. He is
currently a research associate in the Department
of Computing, Imperial College London, United
Kingdom. His research interests include hard-
ware compilation and implementation of gra-
phics algorithms on reconfigurable architectures.

Wayne Luk is a professor of computer en-
gineering with Imperial College London. He was
a visiting professor with Stanford University,
California, and with Queen’s University Belfast,
United Kingdom. His research includes theory
and practice of customizing hardware and soft-
ware for specific application domains, such as
multimedia, financial modeling, and medical
computing. His current work involves high-level
compilation techniques and tools for high-per-

formance computers and embedded systems, particularly those contain-
ing accelerators such as FPGAs and GPUs. He received a Research
Excellence Award from Imperial College, and 11 awards for his
publications from various international conferences. He is a fellow of
the IEEE and the BCS.

George A. Constantinides (S’96-M’01-SM’08)
received the MEng degree (with honors) in
information systems engineering and the PhD
degree from Imperial College London, United
Kingdom, in 1998 and 2001, respectively. Since
2002, he has been with the faculty at Imperial
College London, where he is currently a reader
(associate professor) in Digital Systems and the
head of the Circuits and Systems research
group. He is an associate editor of the IEEE

Transactions on Computers and the Journal of VLSI Signal Processing.
He was a program cochair of the IEEE International Conference on
Field-Programmable Technology in 2006 and Field Programmable Logic
and Applications in 2003, and is a member of the steering committee of
the International Symposium on Applied Reconfigurable Computing. He
serves on the technical program committees of several conferences,
including DAC, FPGA, FPT, and FPL. He is a fellow of the BCS and a
senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

