
An FPGA-Based Data Flow Engine For Gaussian Copula Model

Huabin Ruan∗, Xiaomeng Huang†, Haohuan Fu†, Guangwen Yang∗,
Wayne Luk‡, Sebastien Racaniere§, Oliver Pell§ and Wenjing Han¶

∗Department of Computer Science and Technology,Tsinghua University, Beijing, China
†Center for Earth System Science, Tsinghua University, Beijing, China

‡Department of Computer Engineering, Imperial College London, London, Britain
§Maxeler Technologies, London, Britain

¶School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
∗Email:ruanhuabin@gmail.com, ygw@tsinghua.edu.cn

Abstract—The Gaussian Copula Model (GCM) plays an
important role in the state-of-the-art financial analysis field
for modeling the dependence of financial assets. However, the
existing implementations of GCM are all computationally-
demanding and time-consuming. In this paper, we propose a
Dataflow Engine (DFE) design to accelerate the GCM com-
putation. Specifically, a commonly used CPU-friendly GCM
algorithm is converted into a fully-pipelined dataflow graph
through four steps of optimization: recomposing the algorithm
to be pipeline-friendly, removing unnecessary computation,
sharing common computing results, and reducing the comput-
ing precision while maintaining the same level of accuracy for
the computation results. The performance of the proposed DFE
design is compared with three CPU-based implementations
that are well-optimized. Experimental results show that our
DFE solution not only generates fairly accurate result, but
also achieves a maximum of 467x speedup over a single-thread
CPU-based solution, 120x speedup over a multi-thread CPU-
based solution, and 47x speedup over an MPI-based solution.

Keywords-Gaussian Copula Model; DFE; FPGA;

I. INTRODUCTION

Gaussian Copula Model (GCM) is a kind of distribution

function for modeling the dependence between random

variables [1]. It has been widely used for modeling the

dependence between financial assets in the community of

finance analysis [2], [3]. As reported by Y. Malevergne et
al. [3], most pairs of currencies and pairs of major stocks are

compatible with the Gaussian Copula hypothesis, while this

hypothesis can be rejected for the dependence between pairs

of commodities. In the process of modeling the dependence

between assets, GCM always shows excellent ability on

the separation between the marginal distributions and the

dependence, since it allows for testing several scenarios

with different kinds of dependence between assets while

the marginals can be set to their well-calibrated empirical

estimates [3]. And as we know, this ability is potentially very

useful for risk management, option pricing, and sensitivity

analysis, or other financial analysis topics. Until now, a lot

of work has been done on the base of GCM due to its

above ability. Embrechts et al. [4] provided various bounds

for the value-at-risk of a portfolio made of dependent risk

using GCM. In addition, Rosenberg and Cherubini et al. [5]

employed GCM to price and analyze the pricing sensitivity

of binary digital options or options on the minimum of a

basket assets as well.
However, the implementations of the GCM algorithm pro-

posed in previous work are all considerably computationally-

intensive and time-consuming. In general, based on those

implementations, before getting the final output for every

input instance (i.e., a vector of random variables), hundreds

of arithmetic operations have to be performed. Moreover,

with the amount of input data increases, the computing cost

will also rise proportionally. In recent years, how to reduce

the high computational intensity and accelerate the GCM

computation has become to an urgent problem due to two

demands: first, with the development of internet technology

and the increasing focus on financial simulation research,

a demand for applying the GCM to process the massive

data collected from the internet arises. Most of the existing

implementations are too computationally demanding to meet

this demand. Second, in order to meet the fast response re-

quirement in some special scenarios (e.g. real-time decision

making on financial assets portfolio), the GCM algorithm

will be asked to be executed within a short period of time

on a large amount of input data.
To deal with the demands mentioned above, this paper

focuses on a GCM design that has relatively low resource

costs and high performance at the same time. Specifically,

an FPGA-based Dataflow Engine (DFE) design is proposed.

It is a fast GCM calculation engine running on a Maxeler

Technologies MAX3 DFE, and capable of handling all the

time-consuming computation operations in a fully-pipelined

manner. Our major contributions are:

• We propose four effective optimization strategies used

for optimizing computationally-intensive algorithm on

the DFE so as to reduce the hardware resource con-

sumption, and to enable the mapping of the algorithm

into the available chip logic.

• We design and implement the GCM algorithm on the

DFE platform by applying our proposed optimization

strategies, and achieve significant acceleration over

2013 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4969-9/13 $26.00 © 2013 IEEE

DOI 10.1109/FCCM.2013.14

218

well-optimized CPU versions.

• We present a systematic comparison of the performance

of our DFE GCM solution with three other highly

optimized CPU-based GCM solutions. Our solution

shows significantly improved performance.

The rest of this paper is organized as follows. Section

II presents a background introduction of GCM. Section III

introduces four effective optimization strategies for the DFE

algorithm implementations. Section IV describes the process

of our DFE implementation for GCM algorithm. Then

Section V presents our experimental results and discussions

before conclusion introduced in Section VI.

II. BACKGROUND

A. Algorithm implementation of Gaussian Copula Model

According to Sklar’s theorem [6], for every

(x1, x2, · · · , xd) ∈ R
d, a cumulative distribution

H(x1, x2, · · · , xd) = P[X1 ≤ x1, X2 ≤ x2, · · · , Xd ≤ xd]
(1)

of a random vector (X1, X2, · · · , Xd) with marginals

Fi(xi) = P(Xi ≤ xi), 1 ≤ i ≤ d can be written as

H(x1, x2, · · · , xd) = C
(
F1(x1), F2(x2), · · · , Fd(xd)

)
,
(2)

where C is a copula. The “copula” was named for its re-

semblance to grammatical copulas in linguistics. It contains

all information on the dependence structure between the

components of (X1, X2, · · · , Xd).
If we denote ui = Fi(xi), 1 ≤ i ≤ d, we can then

represent xi as:

xi = F−1
i (ui), (3)

where F−1
i is the inverse of Fi. Consequently, the copula

C can also be written as

C
(
u1, u2, · · · , ud) = P[X1 ≤ F−1

1 (u1),

X2 ≤ F−1
2 (u2), · · · , Xd ≤ F−1

d (ud)]. (4)

The Gaussian Copula Model (GCM) used in this work is

a distribution over the unit cube [0, 1]d. It is constructed

from a multivariate normal distribution over R
d by using

the probability integral transform. For a given correlation

matrix Σ ∈ R
d∗d, the GCM CGaussian

Σ , [0, 1]d → [0, 1]
for random vector (X1, X2, · · · , Xd) can be written as

CGaussian
Σ (u1, u2, · · · , ud) =

P[X1 ≤ Φ−1(u1), X2 ≤ Φ−1(u2), · · · , Xd ≤ Φ−1(ud)]

= ΦΣ

(
Φ−1(u1),Φ

−1(u2), ...,Φ
−1(ud)

)
, (5)

where Φ−1 is the inverse cumulative distribution function

(ICDF) of a standard normal, ΦΣ is the cumulative distri-

bution function (CDF) of a multivariate (e.g. bivariate in

our study) normal distribution with mean vector zero and

covariance matrix equal to the correlation matrix Σ.

As shown in Eq. (5), the algorithm of GCM is governed by

the ICDF Φ−1(·) and the CDF Φ(·). Their classic algorithm

implementations are shown as follow, respectively:

1) Inverse Cumulative Distribution Function (ICDF) Al-
gorithm: As mentioned above, Φ−1 is the ICDF of a

standard normal. For a given ui ∈ [0, 1], the goal of our

ICDF Algorithm is to calculate the value of

xi = Φ−1(ui). (6)

Here we present the pseudocode of a commonly used

ICDF algorithm in Algorithm 1 [7]. Our pseudocode exposes

sufficient details of the algorithm’s implementation, includ-

ing the patterns in memory access and computations. From

Algorithm 1, we can see clearly that from line 3 to line 13,

it contains massive basic arithmetic operations, such as +,

−, ×, ÷. In addition, extremely time-consuming basic math

function procedures are also called, like exponent function

exp(·), logarithmic function log(·), square root function

sqrt(·). All these basic arithmetic operations and math

functions result in a computation-intensive ICDF algorithm.

Algorithm 1 The ICDF algorithm of random variable Xi,

with ui as input.

Require: Input ui should fall in [−1, 1].
1: d = dd = 0.0, ui = 1.0− ui;

2: pp = (ui ≥ 0) ? ui : 2.− ui;

3: t0 = sqrt(−2.0× log(pp/2.0));
4: xi = −0.70711× ((2.30753+ t× 0.27061)/(1.0+ t0×

(0.99229 + t× 0.04481))− t0);
5: for (Int j = 0; j < 2; j ++) do
6: for (Int k = 27; k > 0; k −−) do
7: tmp = d, d = ty × d− dd+ cof [k], dd = tmp;
8: end for
9: t = 2.0/(2.0 + xi);

10: erfchebval= t× exp(−xi×xi+0.5× (cof [0]+ ty×
d)− dd);

11: erfvalue= xi > 0.0 ? erfchebval: 2.0−erfchebval;
12: err = erfvalue− pp;
13: xi+ = err/(1.12837916709551257 ×

exp(−sqrt(xi))− xi × err);
14: end for
15: return ui ≥ 0.0 ? xi : −xi;

2) Cumulative Distribution Function (CDF) Algorithm :
As shown in Eq. (5), we can obtain CDF of any number of

random variable (i.e., the number of dimensions of random

vector) in theory, but the algorithm implementation of CDF

with normal distribution of more than two random variables

is not generally available in practice [8]. Therefore, in this

paper we focus on the design and implementation of CDF

algorithm of two random variables, namely cumulative bi-

variate normal distribution function (CBNDF). The CBNDF

219

for random variables (X1, X2) is defined as follow:

Φ(x1, x2, ρ) = P(X1 ≤ x1, X2 ≤ x2, ρ) =
1

2π
√
1− ρ2

∗
∫ x1

−∞

∫ x2

−∞
exp

(−(X2
1 − 2ρX1X2 +X2

2)

2(1− ρ2)

)
dX2dX1

(7)

However, a closed form solution does not exist for this

integral, so a numerical approximation is required [8]. Here

we implemented the CDF algorithm according to Genz et
al.’s work [9] (See Algorithm 2). As can been seen in

Algorithm 2, line 11, 17, 19, 29 all contain a procedure

call named Cumnorm(·). It is a cumulative univariate normal

distribute function (CUNDF) for random variable X:

Φ(x) = P(X ≤ x) =
1√
2π

∫ x

−∞
exp

(−(X2)

2

)
dX. (8)

Again, an approximation is required for Eq. (8) as well

[8]. In our case, in order to reach the double precision, we

implemented the approximate algorithm according to Hart’s

[10] solution, which can be found in Fig.2 of literature[8] .

By now, based on the Algorithm 1 for Φ−1 and Algorithm

2 for Φ, we can then start the work on mapping the

GCM into FPGA hardware logic. And how to overcome the

resource limitation of FPGA hardware architecture becomes

the key issue during the mapping.

B. Related Work

There have been a number of attempts to accelerate

financial applications on the heterogeneous system where

a typical processor is paired with a hardware accelerator

device like FPGA and Graphical Processing Unit (GPU).

One of the most targeted classes of applications in the

financial world is option pricing, which gives the holder the

right to either buy or sell an asset by a certain date for a

set price. For instance, Baxter et al. [11] present Monte-

Carlo Asian option pricing on a 64 Xilinx Virtex 4 FX100

FPGA supercomputer with 32 fully interconnected 2.8Ghz

Xeon processors, and achieve 322 times faster than their

corresponding software implementation. McCool et al. [12]

implemented single precision floating point European option

pricing on an NVIDIA 7900 GTX GPU, and obtain 120

times faster than their software implementation. Morris et
al. [13] present a comprehensive comparison for European

option pricing between an FPGA, a GPU and a IBM ac-

ceralor Cell BE, and found that the single-precision floating

point implementations displayed similar acceleration across

the three different platforms: 41-fold on an FPGA, 32-fold

on an NVIDIA 7900 GTX GPU, and 29-fold on a Cell BE.

Due to the use of different processor architecture and the

lack of a standardized reference code or benchmarks, here

we do not compare above financial applications’ merit in

terms of performance, we just report the results.

Algorithm 2 The CDF algorithm of random variables X1

and X2, with X1 and X2’s ICDF results x1 and x2, and

determinant value r of correlation matrix Σ as input.

1: h1 = x1, h2 = x2, h12 = (h1× h1 + h2× h2)/2;
2: if abs(r) ≥ 0.7 then
3: r2 = 1− r × r, r3 = sqrt(r2);
4: if r < 0 then
5: h2 = −h2;
6: end if
7: h3 = h1× h2, h7 = exp(−h3/2), ;

8: if abs(r) < 1 then
9: h6 =abs(h1− h2), h5 = h6× h6/2, h6 = h6/r3;

10: AA = 0.5− h3/8, ab = 3− 2×AA× h5;
11: LH = 0.13298076×h6×ab×(1−Cumnorm(h6))

− exp(−h5/r2)× (ab+AA× r2)× 0.053051647;
12: for i = 1 To 5 do
13: r1 = r3×x(i), rr = r1×r1, r2 = sqrt(1−rr);
14: LH = LH −W (i)× exp(−h5/rr)×

(exp(−h3/(1 + r2))/r2/h7− 1−AA× rr);
15: end for
16: end if
17: biCDF = LH×r3×h7+Cumnorm(Min(h1, h2));
18: if r < 0 then
19: biCDF = Cumnorm(h1)− biCDF;

20: end if
21: else
22: h3 = h1× h2;
23: if r �= 0 then
24: for i = 1 To 5 do
25: r1 = r × x(i), r2 = 1− r1× r1;
26: LH = LH + W (i) × exp((r1 × h3 −

h12)/r2)/sqrt(r2);
27: end for
28: end if
29: biCDF= Cumnorm(h1)×Cumnorm(h2)+r×LH;

30: end if
31: return biCDF

III. FOUR EFFECTIVE OPTIMIZATION STRATEGIES

TOWARDS DFE IMPLEMENTATIONS

We utilize a Maxeler Technologies Dataflow Engine

which contains a large FPGA to perform computation. The

FPGA is a reconfigurable architecture featured by plenty

of functional units. Different from CPU who processes

computation tasks by reusing a limited number of functional

units over time, the DFE works in a fully pipelined manner

over space. Specifically, for a specific computation task, the

chip’s functional units are used to form a hardware logic

to organize data into streams which flow through those

functional units. Therefore, given this working mechanism

difference between CPU and DFE, if we want to map CPU-

friendly algorithms to a DFE, some adjustments are naturally

220

expected. In this section, four optimization strategies are

proposed to guide the mapping, and their detail usage will

be presented in Section IV.

A. Recomposing Algorithm To Pipeline-Friendly Manner

Two conditions need to be guaranteed at the same time

in order to map an algorithm onto a FPGA platform: (1)

The number of required functional units of the algorithm to

construct pipeline should not exceed the number of available

functional units of FPGA, and (2) no data dependency exists

to block the pipeline process. Once an algorithm is too

computation intensive to meet above conditions, two means

of solutions are proposed here: (1) Reselect an equivalent

algorithm consuming rather fewer functional units, even at

the cost of precision reducing within the acceptable range.

(2) Restructure the work flow of original algorithm by using

the methods like reordering the loop and input data to meet

the minimum FPGA timing schedule requirement, changing

the number representation format like substituting floating

point with fixed point to reduce computation latency, so that

data dependency can be eliminated, then be possible mapped

to a pipeline manner in FPGA architecture. In certain

extent, algorithm recomposing is the first step in considering

mapping an algorithm to FPGA hardware architecture.

B. Removing Unnecessary Computation

As mentioned before, completely different from the CPU

architecture which computes calculations in time, the FPGA

computes calculations in pipeline manner in space. However,

although this pipeline working style can result in high

computation efficiency, it will additionally lead to redun-

dant computation in some cases. For instance, if the same

function call with different input arguments is deployed in

each selection path of a IF-ELSE conditional structure, this

function will be executed twice simultaneously for pipelined

implementation on FPGA, though only one output is valid

actually. In other words, a waste of functional units for

producing a invalid output is caused. Therefore, for mapping

code segments with above feature on FPGA architecture,

what we can do is to calculate input arguments or operands

in advance according to context of current condition, storing

all possible input arguments or operands in advance for

similar code segments, then using multiplexer (MUX) to

select one of those possible arguments or operands according

to value of current condition combination as code segments

input, so that we can just use one copy of functional units

instead of multiple copies to implement the similar code

segments in conditional structure in FPGA logic. We name

this method as removing unnecessary computation. It can

help to save a considerable number of functional units in

the case massive similar calculations appear in conditional

structures, which is very common in certain applications

such as financial simulation and machine learning.

C. Sharing Common Computing Result

In CPU architecture, in order to make implementation

of algorithm which looks more logical and clarity, some

exactly same code segments producing same output are

often deployed in multiple conditional structures. There

is no performance degradation for implementation under

CPU. But in the context of FPGA-based implementation,

deploying those same code segments in hardware means

performance loss because multiple copies of functional units

for deploying the same code segment can be used for adding

more pipeline and achieving further acceleration . Therefore,

in FPGA architecture, what we should do is to extract those

same code segments, so that we can just use one copy

of functional units for those same computations, and then

share the output result of this one copy in left conditional

structures. We name this optimization method as sharing

common computing result, which is also frequently seen in

many algorithm implementations.

D. Reducing Algorithm Precision

In most cases, the use of optimization strategies described

above can save a great number of FPGA functional units, and

make the originally unsatisfying algorithms possible to be

implemented in a pipeline manner. However, there always

exists some fairly computation intensive algorithms which

require a considerable number of FPGA functional units, so

that even above optimization strategies can not help to meet

the pipeline construction requirement. In this case, we pro-

pose to reduce the algorithm’s precision into an acceptable

range by the way of changing float number representation.

For instance, changing floating point numbers to another

lower resource cost format like using fixed point numbers,

or reducing the mantissa bitwidth. We name this method as

reducing algorithm precision. For computational intensive

algorithms, it can reduce a significant number of FPGA

functional units in most cases, making the algorithm possible

to be implemented in a more pipeline friendly manner or

further achieve performance.

We can use any combination of the above optimization

strategies to reduce algorithms’ functional units usage on

FPGA, so that computational intensive applications can be

mapped into a pipeline-friendly manner to achieve accel-

eration. Even if we have richer functional units in future

FPGA chips, these strategies also makes sense since saved

functional units can be used for deploying multiple pipelines,

making applications achieving further acceleration.

IV. HARDWARE IMPLEMENTATION OF

GAUSSIAN COPULA MODEL

In this section, we focus on the implementation of GCM

algorithm which will be deployed on a Maxeler Tech-

nologies MAX3 DFE with one Virtex-6 SX475T FPGA.

Hardware resource provided by the Virtex-6 SX475T FPGA

can be found from the second column of Table I. We use

221

Maxeler’s MaxCompiler tool suite to program the GCM

algorithm in Java, and MaxCompiler compiles and builds

the Java code into a DFE configuration,. including FPGA

bitstream. The generated configuration file (.max file) can

be loaded into the Maxeler DFE card at runtime.

From the description in Section II, we understand clearly

that the commonly used GCM algorithms nowadays are

mainly designed towards CPU-based implementation, and

featured by a large number of complicated arithmetic op-

erations (e.g., ×, ÷, exp(·), log(·)). A comparison of the

available resources of FPGA and the required resources of

the algorithm described in Section II is shown in Table I.

Obviously, if we simply migrate the original GCM algorithm

to our FPGA chip, it will fail because of the overranging

resources consumption. In order to overcome above resource

limitation and then convert the GCM into a pipeline-friendly

hardware logic, here we apply four optimization strategies

proposed in previous section step by step as follow.

Table I
COMPARISON OF THE AVAILABLE RESOURCES OF THE FPGA CHIP

WITH THE REQUIRED RESOURCES OF THE ORIGINAL GCM ALGORITHM.

Resource Name Available Required / Percent
Lookup Tables(LUTs) 297600 593772 / 199.52%
Flip-Flops(FFs) 595200 935178 / 157.12%
Block RAMs(BRAMs) 1064 220 / 20.67%
DSPs 2016 3039 / 150.74%

A. Step 1: Recomposing ICDF Algorithm

For the implementation of GCM algorithm processing

2-dimension input vector, the subfunction ICDF (see Al-

gorithm 1) will be invoked twice, resulting in more than

400 basic arithmetic operations, and leading to a large

scale of functional units consumption. More specifically,

to obtain a FPGA-based implementation, twice invoking

of that ICDF algorithm requires 77.81% (231563) Lookup

Tables (LUTs), 53.82% (320336) Flip-Flops (FFs), 3.0%
(32) Block RAMs (BRAMs), and 47.62% (960) DSPs of

our FPGA chip. Here we replace current ICDF algorithm

with Acklam ICDF method [14](see Algorithm 3) to reduce

the computation resource spent on ICDF, so as to reduce the

global computation resource of GCM. The Acklam ICDF

provides a Maximum Relative Error smaller than 1.15 ×
10−9, but consumes much less functional units compared to

the original one. Specifically, it consumes 26.44% (78606)
LUTs, 17.44% (105588) FFs, 4.7% (50) BRAMs, 18.15%
(366) DSPs of FPGA resources. Obviously, compared to the

original ICDF algorithm, the Acklam ICDF algorithm saves

a great number of functional unit. The resources saved by

using Acklam ICDF component and the required resources

for the GCM algorithm can be found in Table II.

Here we give a brief description on why Acklam can save

such a lot of resources. This algorithm uses two separate

rational minimax approximations (RMAs). One is used for

the central region (0.02425 ≤ ui ≤ 1−0.02425 = 0.97575)
and another one is used for the tails (ui < 0.02425 or ui >
0.97575). Based on above two RMAs, the Acklam ICDF

algorithm only contains 60 arithmetic operations, which are

much less than the 200 arithmetic operations requirement by

the original one.

Algorithm 3 Acklam ICDF algorithm with ui as input and

xi as output, where a, b, c, d are arrays with constant values.

1: ui low = 0.02425, ui high = 1− ui low;

2: if 0 < ui < ui low then
3: q = sqrt−2× log(ui);
4: xi = (((((c(1)×q+c(2))×q+c(3))×q+c(4))×q+

c(5))× q+ c(6))/((((d(1)× q+ d(2))× q+ d(3))×
q + d(4))× q + 1);

5: end if
6: if ui low ≤ ui ≤ ui high then
7: q = ui − 0.5, r = q × q;
8: xi = (((((a(1)× r+ a(2))× r+ a(3))× r+ a(4))×

r+ a(5))× r+ a(6))× q/(((((b(1)× r+ b(2))× r+
b(3))× r + b(4))× r + b(5))× r + 1;

9: end if
10: if ui high < ui < 1 then
11: q = sqrt(−2× log(1− ui));
12: xi = −(((((c(1)× q+ c(2))× q+ c(3))× q+ c(4))×

q+c(5))×+c(6))/((((d(1)×q+d(2))×q+d(3))×
q + d(4))× q + 1);

13: end if

B. Step 2: Removing Unnecessary Computations

Though the Acklam ICDF algorithm saves a great number

of FPGA functional units, it still contains unnecessary

computations inside. If we look deeply inside of Algorith-

m 3, we can observe that the computation processes in

central and tails regions are almost the same except the

different coefficients. Here we use multiplexer (MUX) to

select corresponding coefficients, then those six polynomial

calculations and three division calculations are reduced to

two and one, respectively. After multiplex these coefficients,

the new calculation process of Acklam ICDF algorithm is

shown in Algorithm 4, which contains only one division

and two polynomials, leading to further reducing on the

FPGA functional units usage. To be specific, the optimized

Acklam ICDF algorithm only consumes 12.4% (36902)

Table II
RESOURCES SAVED BY USING ACKLAM ICDF COMPONENT AND STILL

REQUIRED BY THE GCM ALGORITHM AFTER STEP 1.

Resource Available Saved / Percent Required / Percent
LUTs 297600 152957 / 51.40% 440815 / 148.12%
FFs 595200 214748 / 36.08% 720430 / 121.04%
BRAMs 1064 0 / 0% 238 / 22.37%
DSPs 2016 594 / 29.46% 2445 / 121.28%

222

LUTs, 8.04% (47854) FFs, 0.75% (8) BRAMs, 7.74% (156)
DSPs of FPGA resources, and saves much more functional

units than unoptimized one.

Algorithm 4 Optimized Acklam ICDF algorithm with input

ui and output xi.

1: islow = ui < ui low, isupper = ui > ui high;

2: isbnd = islow‖isupper, iscentral =∼ isbnd;
3: pp = (isupper)?(1.0− ui) : ui;

4: q = (iscentral)?(ui − 0.5) : sqrt(−2.0log(pp));
5: r = q × q, xi = iscentral?r : q;mult = iscentral?q :

1;
6: for inti = 1; i ≤ 6;+ + i do
7: num c[i] = iscentral?a[i] : c[i];
8: end for
9: numerator = mult× (num c[6] + xi × (num c[5] +

xi × (num c[4] + xi × (num c[3] + xi × (num c[2] +
xi × num c[1])))));

10: for inti = 5; i ≥ 1;−− i do
11: denom c[i] = iscentral?b[i] : d[i− 1];
12: end for
13: denominator = ((((denom c[1]×xi+denom c[2])×

x + denom c[3]) × xi + denom c[4]) × xi +
denom c[5])× xi + 1;

14: result = numerator/denominator;
15: xi = isupper?− result : result;

Unnecessary computations can also be found during

the calling of univariate normal distribution function

Cumnorm(·) in the IF-ELSE structure of Algorithm 2:

Cumnorm(Min(h1, h2)) in Line 17 and Cumnorm(h2)
in Line 29. The only difference between two functions is

their input parameter. If we simply project these two callings

to FPGA hardware logic, two copies of hardware resource

for Cumnorm(·) will be consumed simultaneously, though

for every input only one output of above two functions

is valid. In our case, we are able to determine the input

parameter for function Cumnorm(·) in advance by the

combination of following conditions: (1) |r| ≥ 0.7, (2)

r < 0, (3) h1 < h2, (4) h1 < −h2. Specifically, this can be

done by saving all possible values in advance according to

result of these conditions combination, and then using MUX

to select a valid input value. Table III shows the boolean

combination of above four conditions and the corresponding

input value for Cumnorm(·). Through calculating input

parameters for Cumnorm(·) in advance, we finally save

a copy of FPGA resources spent on Cumnorm(·).
Some other unnecessary computations can still be found

in Algorithm 2 such as calculating result for r1 in Line

13 and Line 25, which also can be removed by using

MUX. After removing all these unnecessary computations

described above in GCM algorithm, we save a great number

of functional units again. We show the total hardware

resource saved by this step in Table IV.

C. Step 3: Sharing Common Computing Result

It can be seen from Algorithm 2 that function call

Cumnorm(h1) distributed in conditional structure in Line

19 and Line 29 is executed twice, but producing same result.

The same case is happened in r1× r1 in Line 13 and Line

25. Because those code segments produce same result, we

can extract those same code segments out of conditional

structure so as to avoid the repeated calculation in FPGA and

share the result in needed places. After sharing the result of

Cumnorm(h1) and r1×r1, we further reduce the resource

usage recorded in Table V.

D. Step 4: Reducing Float-Point Number Precision

So far, we have reduced a great number of functional units

for hardware implementation of GCM algorithm, but we still

do not have enough FPGA resources for GCM algorithm.

For instance, we still need 123.68% LUTs which exceeds the

Table III
POSSIBLE INPUT VALUES FOR CUMNORM(MIN(H1,H2)) AND

CUMNORM(H2) .

Conditions Input Value|r| ≥ 0.7 r < 0 h1 < h2 h1 < -h2
0 0 0 0 h2
0 0 0 1 h2
0 0 1 0 h2
0 0 1 1 h2
0 1 0 0 h2
0 1 0 1 h2
0 1 1 0 h2
0 1 1 1 h2
1 0 0 0 h2
1 0 0 1 h2
1 0 1 0 h1
1 0 1 1 h1
1 1 0 0 -h2
1 1 0 1 h1
1 1 1 0 -h2
1 1 1 1 h1

Table IV
RESOURCES SAVED BY REMOVING UNNECESSARY COMPUTATIONS AND

STILL REQUIRED BY THE GCM ALGORITHM AFTER STEP 2.

Resource Available Saved / Percent Required / Percent
LUTs 297600 59312 / 19.93% 381503 / 128.19%
FFs 595200 94935 / 15.95% 625495 / 105.09%
BRAMs 1064 63 / 5.92% 175 / 16.45%
DSPs 2016 379 / 18.80% 2066 / 102.48%

Table V
RESOURCES SAVED BY SHARING COMMON COMPUTING RESULT AND

STILL REQUIRED BY THE GCM ALGORITHM AFTER STEP 3.

Resource Available Saved / Percent Required / Percent
LUTs 297600 13422 / 4.51% 368081 / 123.68%
FFs 595200 18273 / 3.07% 607222 / 102.02%
BRAMs 1064 10 / 0.94% 165 / 15.51%
DSPs 2016 51 / 2.53% 2015 / 99.95%

223

maximum available LUTs shown in Table V. Note that the

Acklam ICDF algorithm provides a maximum relative error

smaller than 1.15×10−9 meaning that the final relative error

of output of the GCM algorithm will not smaller than 1.15×
10−9, so it is unnecessary to use IEEE-754 double precision

float-point number representation in GCM algorithm. In our

case, we change the mantissa bits of float-point number from

53 bits to 36 bits, and sufficient experimental test results

show that using float-point number with 36 bits mantissa can

still obtain a maximum relative error smaller than 4×10−9 in

GCM algorithm. More important, by reducing the mantissa

bits size to 36, we save a great number of FPGA resources

again. The final resource usage is shown in Table VI, from

which one can observe that all FPGA resource items required

by GCM algrithm are under 52% of the available items,

meaning that sufficient FPGA hardware resources can be

offered to form the hardware logic for GCM algorithm by

now.

Table VI
FINAL RESOURCE USAGE BY GCM.

Resource Name Available Finally Required / Percent
LUTs 297600 153234 / 51.49%
FFs 595200 249329 / 41.89%
BRAMs 1064 44 / 4.14%
DSPs 2016 399 / 19.79%

V. EXPERIMENTS AND RESULTS

A. Experimental Settings

With the purpose of performance comparison, three dif-

ferent CPU-based implementation versions of GCM algo-

rithm are also performed in addition to our FPGA-based

implementation, including (1) a Single-Thread CPU (S-

CPU) version, (2) a Multi-Thread CPU (M-CPU) version,

and (3) a MPI version. Specific settings for running each

version of implementation are presented as follow: The S-

CPU and M-CPU versions are deployed in a PC workstation

powered by a 2.93GHz quad-core Intel i7 CPU with a 4GB

DDR3 memory. The MPI version is deployed over a 16-

node cluster with Intel MPI Library configured at highest

optimization level, and each node powered by a 2.93 GHz

quad-core Intel i7 CPU with 4GB DDR3 memory. Moreover,

this version is performed with 64 MPI processes, which are

the maximum physical processes can be forked in our 16-

node cluster. Though better performance can be expected

with more physical processes forked in other larger scale

cluster, much more power will be also required at the

same time compared to the FPGA-based implementation.

Therefore, here we run the MPI-based implementation in a

limited number of processes (64 MPI processes in our case)

only for simple reference purpose, rather than discussing the

performance of scalable MPI solution. Additionally, above

three versions of implementation are all coded in the C

program language and compiled with the Intel C Compiler

configured at highest compiler optimization level. The DFE

implementation is deployed onto a Maxeler DFE card with

a Xilinx Virtex-6 SX475T FPGA running at 175MHz and

24GB DDR3 onboard memory.

These four GCM implementations are then performed on

four data sets, which are generated following the example

of data sets from real-world adopted in [15]. The size and

precision of these data sets are presented in Table VII.

Table VII
AN OVERVIEW OF FOUR EXPERIMENTAL DATA SETS.

Data Set Number of Precision of Float Type (bits)
ID Instances Exponent Mantissa
1 1.6×107 8 24

2 3.2×107 8 28

3 1.6×108 11 36

4 3.2×108 11 53

Moreover, two measures are calculated to evaluate the

FPGA-based implementation’s efficiency from differen-

t aspects, namely Maximum Relative Error (MRE) and

Speedup: (1) As we calculate the MRE on a given data

set, the same outputs produced by these three CPU-based

implementations are considered as reference values. So the

MSE actually describes the output difference between the

CPU-related implementations and the FPGA-based imple-

mentation, and the smaller the better. (2) And the speedup

represents how fast the FPGA-based implementation is in

contrast to other implementations.

B. Results and Discussion

We first illustrate the MREs of the DFE implementation

on four data sets in Fig 1. We can see clearly that, all

these MREs are between 1.71 × 10−9 and 3.74 × 10−9,

which are rather small and acceptable for most GCM-based

applications. This suggests that our optimization strategies

for DFE GCM implementation is rather effective.

1 2 3 4
1.5

2

2.5

3

3.5

4
x 10

-9

Data Set ID

M
a

x
im

u
m

 R
e

la
ti
v
e

 E
rr

o
r

Figure 1. Maximum Relative Errors of DFE GCM implementation on
four data sets with different sizes and precisions.

Next, we present the throughput (i.e., number of processed

instances per second) of each version of implementation in

Table VIII, and the speedups of DFE version over other

versions in Table IX. As shown in Table VIII, the throughput

of the DFE implementation stays at a constant level around

224

1.7 × 108 instances per second. As the FPGA runs at

175MHz, this performance implies that the system is able to

process an instance per clock cycle without being confronted

with memory bottlenecks since the bandwidth of PCIe is

already enough for the data transmission in our case. And as

shown in Table IX, our DFE implementation is significantly

more efficient than others. Moreover, with the increasing of

the size of data set, the speedup is obviously keeping rising.

In our case, the best speedups are achieved on the largest

data set (i.e., data set with ID 4) with 467x speedup over

the S-CPU solution, 120x speedup over the M-CPU version,

and 47x speedup over MPI-based solution.

Table VIII
THROUGHPUT OF GCM ALGORITHM ON S-CPU, M-CPU, MPI, AND

DFE.

Data Set ID
Throughput (Num. of Processed Inst. per Sec.)
S-CPU M-CPU MPI FPGA
×105 ×106 ×106 ×108

1 9.293 3.298 5.256 1.682
2 5.865 2.493 4.134 1.695
3 3.679 1.432 4.405 1.718
4 3.787 1.320 3.706 1.742

Table IX
SPEEDUPS OF DFE GCM IMPLEMENTATION OVER IMPLEMENTATIONS

ON S-CPU, M-CPU, AND MPI.

Data Set ID Speedup of DFE GCM Implementation
over S-CPU over M-CPU over MPI

1 181x 51x 32x
2 289x 68x 41x
3 460x 112x 39x
4 467x 120x 47x

We believe that the reason behind the high speedup of our

DFE implementation is the use of our proposed optimization

strategies, including recomposing ICDF algorithm, removing

unnecessary computations, sharing common computing re-

sult , and reducing float-point number precision. Applying

these optimization strategies on GCM algorithm saves a

large number of hardware resources on the FPGA chip,

and enable us to deploying sufficient functional units in

the pipeline. However, it is not feasible to perform similar

optimization on CPUs since CPUs only contain limited

functional units which are hard to achieve enough pipeline in

space. Furthermore, if we have richer hardware resources on

the FPGA, we can deploy more than one pipeline of GCM

algorithm which will result in more significant acceleration.

VI. CONCLUSION

This paper presents four effective optimization strategies

to guide the implementation of the GCM algorithm on DFE.

By applying these strategies step by step into the GCM

design, the original computationally-intensive GCM algo-

rithm was implemented as a deep pipeline. For comparison,

we evaluate the performance of the DFE implementation

and three CPU-based implementations on four data sets.

Experimental results show that our DFE solution achieved

better speedup with larger size of data set, and in best case, it

achieves a maximum of 467x speedup over the single-thread

CPU solution, 120x speedup over the multi-thread CPU

solution, and 47x speedup over the MPI solution. We believe

that DFEs have high potential for accelerating the GCM

algorithm, and for providing close to real time solutions for

financial applications.

VII. ACKNOWLEDGMENTS

The funding support from National High Technol-

ogy Development Program of China (2010AA012401,

2011AA01A203), Natural Science Foundation of China

(61073165) is gratefully acknowledged. We would also

like to thank the IEEE reviewers for their comments and

suggestions.

REFERENCES

[1] D. Li, “On default correlation: a copula function approach,”
Available at SSRN 187289, 1999.

[2] P. Embrechts, A. Höing, and A. Juri, “Using copulae to bound
the value-at-risk for functions of dependent risks,” Finance
and Stochastics, vol. 7, no. 2, pp. 145–167, 2003.

[3] Y. Malevergne and D. Sornette, “Testing the gaussian copula
hypothesis for financial assets dependences,” Quantitative
Finance, vol. 3, no. 4, pp. 231–250, 2003.

[4] P. Embrechts, A. McNeil, and D. Straumann, “Correlation and
dependence in risk management: properties and pitfalls,” Risk
management: value at risk and beyond, pp. 176–223, 2002.

[5] U. Cherubini and E. Luciano, “Bivariate option pricing with
copulas,” Applied Mathematical Finance, vol. 9, no. 2, pp.
69–85, 2002.

[6] A. Sklar, “Fonctions de repartition an dimensions etleurs
marges,” Publ Inst Statist Univ Paris, pp. 229–231, 1995.

[7] J. Dyer and S. Dyer, “Approximations to inverse error
functions,” Instrumentation & Measurement Magazine, IEEE,
vol. 11, no. 5, pp. 32–36, 2008.

[8] G. West, “Better approximations to cumulative normal func-
tions,” Wilmott Magazine, vol. 9, pp. 70–76, 2005.

[9] A. Genz, “Numerical computation of rectangular bivariate and
trivariate normal and t probabilities,” Statistics and Comput-
ing, vol. 14, no. 3, pp. 251–260, 2004.

[10] J. Hart, Computer approximations. Krieger Publishing Co.,
Inc., 1978.

[11] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Par-
sons, A. Simpson, A. Trew, A. McCormick, G. Smart et al.,
“Maxwell-a 64 fpga supercomputer,” in Adaptive Hardware
and Systems, 2007. AHS 2007. Second NASA/ESA Conference
on. IEEE, 2007, pp. 287–294.

[12] M. McCool, K. Wadleigh, B. Henderson, and H. Lin, “Perfor-
mance evaluation of gpus using the rapidmind development
platform,” in Proceedings of the 2006 ACM/IEEE conference
on Supercomputing. ACM, 2006, p. 181.

[13] G. Morris and M. Aubury, “Design space exploration of the
european option benchmark using hyperstreams,” in Field
Programmable Logic and Applications, 2007. FPL 2007.
International Conference on. IEEE, 2007, pp. 5–10.

[14] http://home.online.no/∼pjacklam/notes/invnorm/#An
overview of the algorithm.

[15] D. Wang, S. Rachev, and F. Fabozzi, “Pricing tranches of a
cdo and a cds index: recent advances and future research,”
Risk Assessment, pp. 263–286, 2008.

225

