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Abstract—Recent improvements in the throughput of next-
generation DNA sequencing machines poses a great compu-
tational challenge in analysing the massive quantities of data
produced. This paper proposes a novel approach, based on
reconfigurable computing technology, for accelerating short
read mapping, where the positions of millions of short reads are
located relative to a known reference sequence. Our approach
consists of two key components: an exact string matcher for
the bulk of the alignment process, and an approximate string
matcher for the remaining cases. We characterise interesting
regions of the design space, including homogeneous, heteroge-
neous and run-time reconfigurable designs and provide back
of envelope estimations of the corresponding performance. We
show that a particular implementation of this architecture
targeting a single FPGA can be up to 293 times faster than
BWA on an Intel X5650 CPU, and 134 times faster than SOAP3
on an NVIDIA GTX 580 GPU.

I. INTRODUCTION

DNA contains a long sequence of pairs of nucleotide
bases which can be abstracted into a character string with
an alphabet Σ = {‘A’, ‘C’, ‘G’, ‘T’}. DNA sequencing
is the process of identifying the order of the nucleotide
bases in a DNA molecule. This process has been utilised
in a wide range of applications; for example in medicine,
analysis of a patients genetic information can be used in
diagnosing hereditary diseases. Next-generation sequencing
(NGS) machines are able to rapidly and inexpensively
produce sequenced data. To improve the throughput and
measurement accuracy of these machines, shorter sequences
are processed, allowing tens of billions of bases to be
sequenced per day. These short sequences can be created
by cutting the DNA strand randomly, producing millions
of short fragments. As a consequence of this action, the
position and orientation information of the fragments with
respect to the DNA is lost. Based on the assumption that
DNA sequences within a species are similar, the sample
DNA can be reconstructed by determining the location of the
short fragments (short reads) in a known reference genome
of the species. An aligner system is used to find the possible
positions of these short reads in the reference DNA.

The performance of NGS machines has been improving
at a rate faster than Moore’s law for almost a decade. Large
computer clusters are often used to process short read data
generated by a single sequencing machine. However, the
processing speed of computer clusters does not seem to grow

as fast as the speed of sequencing machines and as a result
the performance of a software based aligner is usually the
bottleneck of a bioinformatic analysis flow.

FPGA technology is a promising candidate for accelerating
this application, which involves highly-parallel bit-oriented
operations. It is found that statistically around 70–80% of the
short reads in a typical workload can be exactly aligned to a
reference sequence. Some algorithms, such as FM-index [1],
are particularly efficient at exact matching. Based on these
observations, we propose a new reconfigurable heterogeneous
design containing two kinds of string matchers: exact string
matchers (ESMs) and approximate string matchers (ASMs).
The performance of the aligner design is benefited from
the decoupling of the ESM and ASM as a) the matchers
can be highly optimised for the expected input data type,
resulting in shorter aligning time and smaller circuit size and
b) the decoupling improves the flexibility of optimising the
population of each type of string matcher according to the
intended workflow, this results in a higher achievable level
of parallelism.

The major contributions of this work include:
• A two-stage architecture for accelerating short read

sequence alignment based on the decoupling of the ESM
and ASM. We characterise interesting regions of the de-
sign space, including homogeneous, heterogeneous and
run-time reconfigurable designs and provide estimations
of the corresponding performance (Section III).

• A hardware implementation of the reconfigurable archi-
tecture targeting a single FPGA. The ESM is based on
FM-index and the ASM based on a seed and expansion
strategy. Various features of the string matcher designs,
such as methods to reduce the memory size and improve
the throughput are covered (Section IV).

• Performance evaluation of the hardware implementation,
together with comparisons against some of the fastest
software solutions on multi-core processors, GPUs and
hardware solutions on FPGAs (Section V).

II. BACKGROUND AND RELATED WORK

A. Exact String Matcher

There exist a number of well developed methods for
efficient exact pattern matching. For example, in [2] a direct
comparison method is used in which the bases from a



streaming reference sequence and a stationary short read are
compared. Our approach for exact alignment is based on FM-
index [1], a data structure that has inspired several software
tools for analysing genetic sequences such as Bowtie [3]
and SOAP2 [4]. This index combines the properties of suffix
array with the Burrows-Wheeler transform (BWT) [5], to
provide an efficient method for finding all occurrences of a
pattern Q within a long reference sequence R.

To compute the BWT of a reference sequence R, first R is
terminated with a unique character ‘$’, which has the smallest
lexicographical value. All rotations of R are generated
and sorted lexicographically, then the BWT sequence is
extracted from the last column of the sorted rotations. Table
I(a) illustrates an example of generating the BWT for the
reference sequence R = ACTAGCTA. The character strings
preceding the ‘$’ symbol in the sorted rotations column form
a suffix array (SA), which indicates the starting position of
each possible suffix in R.

Table I
(a) BWT GENERATION AND SUFFIX ARRAY REPRESENTATION OF

REFERENCE SEQUENCE R. (b) VALUES OF FUNCTIONS c(x) AND s(x, i).

(a)
R = ACTAGCTA

Index SA Rotations
0 8 $ACTAGCTA
1 7 A$ACTAGCT
2 3 AGCTA$ACT
3 0 ACTAGCTA$
4 5 CTA$ACTAG
5 1 CTAGCTA$A
6 4 GCTA$ACTA
7 6 TA$ACTAGC
8 2 TAGCTA$AC
BWT (R) = ATT$GAACC

(b)
s(x, i)
i A C G T
0 1 0 0 0
1 1 0 0 1
2 1 0 0 2
3 1 0 0 2
4 1 0 1 2
5 2 0 1 2
6 3 0 1 2
7 3 1 1 2
8 3 2 1 2

c(x) {0 3 5 6}

After generating the BWT sequence and the suffix array
representation of the reference sequence, the functions c(x)
and s(x, i) are defined. c(x) (the frequency) is the number of
symbols in the reference sequence that are lexicographically
smaller than x, and s(x, i) (the occurrence) is the number of
occurrences of the symbol x in the BWT sequence from the
0th position to the ith position. These functions are usually
implemented as lookup tables using an array structure. Table
I(b) illustrates the c(x) and s(x, i) functions for the reference
sequence R.

The Suffix Array (SA) interval of a pattern Q is defined as
[k, l]. The pointers k and l are respectively the smallest and
largest indices in the suffix array which starts with Q. To
search for a pattern Q within the reference sequence, k and
l are initialised to the first and last indices of the suffix array
table respectively. Using equations 1 and 2 the SA interval
is updated for each character in Q, moving from the last
character to the first.

knew = c(x) + s(x, kcurrent − 1) + 1 (1)
lnew = c(x) + s(x, lcurrent) (2)

Figure 1 shows an example of searching the pattern Q =
CT in the reference sequence R = ACTAGCTA. First, k
and l are initialised to 0 and 8 respectively. Then equations
1 and 2 are applied twice, corresponding to the number of
characters in Q.

1st iteration: x = T 2nd iteration: x = C
knew = c(T) + s(T, 0) + 1 knew = c(C) + s(C, 6) + 1

= 6 + 0 + 1 = 7 = 3 + 0 + 1 = 4
lnew = c(T) + s(T, 8) lnew = c(C) + s(C, 8)

= 2 + 6 = 8 = 3 + 2 = 5

Figure 1. Example of searching using the FM-index

After the second iteration, k and l become 4 and 5 respec-
tively. Since k ≤ l, the pattern can be found in the reference
sequence. Note that if k > l for an iteration, the pattern
cannot be exactly matched to the reference sequence. The
suffix array elements corresponding to each index within the
SA interval give the location of the pattern in the reference
sequence. Table I(a) indicates that index 4 and 5 map to
positions 5 and 1 respectively in the reference sequence.

B. Approximate String Matcher

There exist a number of efficient and accurate methods
for approximate pattern matching. For example in [6] a bi-
directional BWT is developed which supports the detection
of mismatches and indels. Our approach for approximate
alignment is based on a Seed and expansion strategy, which
extracts seeds (even shorter sequences) from the short read
and uses these seeds to find the possible matching locations.
The matching locations can be found by lookup in a hash
table [7] or using suffix tree based algorithms, such as the
FM-index. Seeds can be generated as every possible fixed
length subsequence (e.g. BLAST [7]), or by partitioning the
short reads into fixed length segments (e.g. Bowtie [3]). The
short read is then aligned to the reference genome at each
matching location using the Smith-Wateman algorithm [8].

In the Smith-Waterman algorithm, a scoring matrix is used
to perform local sequence alignment, where a short read is
aligned to a local section of the reference genome. For the
sequences S and T where |S| = n and |T | = m, the scoring
matrix H is constructed using equations 3 and 4.

Initialisation

{
H(i, 0) = 0 0 ≤ i ≤ n
H(0, j) = 0 0 ≤ j ≤ m

(3)

H(i, j) = max



0{
H(i− 1, j − 1) + σ(match) if Si = Tj

H(i− 1, j − 1) + σ(mismatch) if Si 6= Tj

H(i− 1, j) + σ(deletion)
H(i, j − 1) + σ(insertion)

1 ≤ i ≤ m, 1 ≤ j ≤ n (4)

Here σ(x) is the score penalty for x, which is determined
by the gap-scoring scheme. The scores can be adjusted for



different comparison requirements. Table II illustrates the
construction of the scoring matrix for the alignment of a
pattern Q = CT and a reference R = ACTAGCTA.

Table II
EXAMPLE OF CONSTRUCTING THE SCORING MATRIX FOR THE PATTERN

Q = CT AND REFERENCE SEQUENCE R = ACTAGCTA.

- A C T A G C T A
- 0 0 0 0 0 0 0 0 0
C 0 0 2 1 0 0 2 1 0
T 0 0 1 4 3 2 1 4 3

σ(match) = +2 σ(mismatch) = −1
σ(deletion) = −1 σ(insertion) = −1

The highest score in the scoring matrix is used to determine
whether the pattern can be mapped to the reference sequence
within an allowed diversity. In Table II the highest score is 4
which indicates that the pattern can be exactly mapped to the
reference sequence. A traceback step can be included which
reconstructs a string representation of the optimal alignment.

C. Related Work

There are several hardware accelerators for genetic se-
quence analysis. In [9], an FM-index based algorithm is
proposed for FPGA. It concludes that using a single large
table for FM-index is more area efficient than splitting into
multiple smaller tables. The performance is 1000 reads in
60.2 µs if mismatches are not allowed. In [2], a short read
mapper is developed using a direct comparison approach. A
single LUT is used to compare 2 bases from a streaming
reference sequence and a stationary short read. Using a Xilinx
XC6V-LX550T FPGA, the system achieves 500000 reads in
212 seconds. In [10], the short read alignment is performed
by CPU and FPGA collaboratively. The indexing part is
performed by CPU and then the short reads, as well as the
corresponding reference segments, are sent to the FPGA for
pairwise matching. The design achieves around 16 million
reads in 110 seconds using a Xilinx XC5V-LX330 FPGA.
In [11], an FPGA based short read alignment accelerator is
proposed based on indexing of the reference sequence, with
Smith-Waterman alignment performed in FPGA. The main
optimisation in this work is to reduce the size of the candidate
alignment location (CAL) lookup table. The system, and also
the CAL table, is partitioned into 8 Pico M-503 boards
each with one XC6V-LX240T FPGA. This 8-FPGA system
can map 50 million short reads in 34 seconds. In [12], a
backtracking version of the FM-index is proposed for FPGA.
A bi-directional search is used to improve the performance
of approximate matching. The design achieves 1 million
reads in 2.6 seconds for up to two mismatches. Our work
differs from previous hardware designs by decoupling the
ESM and ASM, allowing optimisation of the population of
each matcher according to the intended workflow.

III. ACCELERATOR SYSTEM ARCHITECTURE

In a software aligner, the short reads enter the approxi-
mate alignment process once the exact alignment fails. No
additional CPU cycles are wasted for changing the alignment
algorithm. This is not applicable to specialised accelerators
since the alignment process is fixed in the hardware circuit.
To avoid wasting cycles when changing the alignment
algorithm, most specialised accelerator designs utilise a
generic alignment circuit. However, in this approach the
circuit for the approximate alignment algorithm permanently
consumes hardware space and power. Since approximately
70-80% of short reads can be exactly mapped in a typical
workload, this approach is suboptimal.

To address this problem, we propose an architecture in-
corporating specialised processors for exact and approximate
alignment, allowing the population of each type of matcher
to be optimised according to the intended workflow. When
a short read is to be aligned, it is first sent to the ESM.
The ESM is designed to be compact and efficient for exact
alignment. If the short read fails to be aligned by the ESM, it
is subsequently processed by the ASM for more complicated
analysis. The overall performance of the aligner is benefited
from the decoupling between the exact and approximate
string matchers as a) the matchers can be highly optimised
for the expected input data type, this results in shorter aligning
time and smaller circuit size and b) the decoupling improves
the flexibility of optimising the population of each type of
matchers according to the intended workload, resulting in
higher achievable parallelism.

Due to the decoupling of the ESM and ASM there is a
multitude of ways to configure the alignment accelerator.
Here we characterise the interesting regions of the design
space, including homogeneous, heterogeneous and run-
time reconfigurable designs and provide back of envelope
estimations for the corresponding performance. Furthermore,
we analyse the conditions in which each design is the most
favourable. The key parameters used in the analysis are
defined in Table III.

Table III
KEY SYSTEM PARAMETERS.

N number of short reads
α percentage of approximately matched short reads
NE , NA, NS number of ESMs, ASMs and software threads
TE , TA, TS run time for an ESM, ASM and a software

thread to match a short read
RE , RA, RP resources of an ESM, ASM, and an accelerator

platform
RO resources for overhead such as memory controllers
T alignment time

D1: statically populated ESM, software approximate match-
ing

In this design the accelerator is populated with only ESMs
and the unaligned short reads reported by the accelerator are



processed by software. The number of ESMs is limited by
the amount of critical resources of the ESM in the accelerator.
The effective parallelism is also limited by the number of
memory channels, since the memory accesses from the ESMs
must not interfere with each other. The maximum number
of ESMs, NE , is given by:

NE = (RP −RO)/RE (5)

Note that RO can include FPGA place and route overhead
between processors. The worst case alignment time is:

T =
N

NE
TE +

αN

NS
TS (6)

High performance can be achieved when the software aligner
is able to process the unaligned short reads as soon as they
are received, maximising the parallelism of the design.

This design should be considered when detailed alignment
output is required. The reason being that hardware approxi-
mate alignment designs often compromise the functionality
of the aligner in order to improve the performance.

D2: statically populated ESM and ASM

In this design, both the ESMs and the ASMs are instan-
tiated in the accelerator. All short reads are processed by
the ESMs first. The short reads which cannot be exactly
matched by the ESMs are internally forwarded to the ASMs
for approximate matching.

Without any platform specific constraints, the population
of these two matchers should agree with the ratio of exact
matches to approximate matches in the short read data.
However, in practice the number of matchers is limited by
the available resources in the accelerator. The population
ratio should fulfill:

NERE +NARA +RO ≤ RP (7)

Once these short reads are forwarded, the ESMs continue
to process new short reads in the data set. This introduces an
overlapping period when both the ESMs and the ASMs are
processing short read data. In the worst case, all approximate
matches are at the end of the data set, such that the overlap
period is minimised. This worst case alignment time is:

T =
N

NE
TE +

αN

NA
TA (8)

High performance can be achieved when the approximate
matches are distributed uniformly in the workload, maximis-
ing the overlap period.

This design should be considered for small workloads
where the reconfiguration time of the device is larger than
the total alignment time.

D3: dynamically reconfigured ESM and ASM

In this design, we take advantage of the reconfigurability of
the accelerator device. We consider dynamic reconfiguration
since a) a static design will need to contain at least one ASM
which is much larger than the ESM. Given that approximately
70%-80% of the short reads can be dealt with by the ESM,
it would make sense to populate the accelerator first with
as many ESMs as possible, then reconfigure it with ASMs
to process the unaligned short reads and b) For a typical
workload, the reconfiguration time is small compared to the
alignment time, therefore dynamic reconfiguration does not
bottleneck the design. Furthermore if components of the ESM
are used in the ASM, a process such as partial reconfiguration
could be used to efficiently swap in the ASM.

Initially, the accelerator is fully populated with ESMs. The
short reads are streamed to the accelerator and are processed
by the ESMs first. The short reads which are unable to be
aligned by the ESMs are stored in on-board memory. Once
all short reads are processed by the ESMs, the accelerator
device is reconfigured to become fully populated with ASMs.
The previously stored unaligned short reads are then loaded
and processed by the ASMs. This design allows all the short
reads to be processed within the accelerator using specialised
matchers which are optimised for the data characteristics.
The overhead of this design is the additional memory storage
for the unaligned short reads, and the reconfiguration time.
Note that it is possible to process the ESM results in the
host program and stream the unaligned short reads to the
accelerator after reconfiguration. In this case no additional
on-chip memory is required to store the unaligned short reads,
however the performance is limited by the PCIe bandwidth.

Since the accelerator is fully populated by either type of
the matchers, the maximum number of ESMs is the same as
D1 from Equation 5 and the maximum number of ASMs is:

NA = (RP −RO)/RA (9)

The total alignment time is:

T =
N

NE
TE +

αN

NA
TA + Treconfig (10)

where Treconfig is the time for reconfiguring the accelerator
device. Here we assume that the external memory of the
accelerator is large enough to store all the unaligned data.
If memory size is a limiting factor, then the process must
be repeated multiple times which depends on the unaligned
short read size and the available memory for data buffering.
As a result, the reconfiguration overhead in Equation 10 has
to be multiplied accordingly.

This design should be considered for typical short read
alignment workloads where millions of short reads are aligned
to a reference sequence. In such workloads the design benefits
from maximising the population of each type of matcher on
the accelerator device. For most devices, the reconfiguration



time is much smaller than the alignment time, therefore
the overhead maximising the population of each type of
matcher is negligible (even with multiple reconfigurations).
This design can be extended by replacing the ASM with
specialised approximate string matchers (SASMs), each
capable of efficiently testing a specific diversity (e.g. one
mismatch). Reconfiguration can be used to maximise the
population of each SASM according to the diversity being
tested for, further improving the design performance.

IV. ARCHITECTURE IMPLEMENTATION

Here we present a particular hardware implementation
of the architecture presented in Section III, targeting a
single FPGA device. The architecture is completely general,
therefore different ESM and ASM designs from the ones
used here are possible.

In our implementation, the ESM uses the FM-index to
align the short reads to the reference sequence. We choose
the FM-index as it is the most space and time efficient data
structure for exact matching. This allows a large number of
ESMs to populate the FPGA, resulting in a higher achievable
level of parallelism. Since the ESM is the critical component
in the proposed architecture, various methods are applied to
improve the performance. As shown in Section IV-A, the
methods are specific to the underlying FPGA platform to
achieve a throughput of one aligned base per cycle. In the
proposed architecture, multiple ESMs work independently
in a single accelerator.

The ASM uses a seed-and-expansion strategy to align
more diverse sequences. The input short reads are segmented
into fixed length seeds and the FM-index is used to align
the seeds to a large number of exactly matching locations in
the reference sequence. After finding out the most probable
alignment locations, the similarity is then evaluated using the
Smith-Waterman algorithm. The Smith-Waterman algorithm
is chosen as it is guaranteed to find the optimal alignment
according to the chosen gap scoring scheme.

Figure 2 illustrates the system level architecture of our
implementation. Auxiliary data structures, such as the BWT
sequence, the occurrence array and the suffix array, are
transferred from the host computer to the FPGA accelerator
in advance. This procedure has negligible impact since it
is performed only once for aligning hundreds of millions
of short reads. These data are static for read only accesses
throughout the alignment process. Once the FPGA platform
is initialized, the host computer starts streaming the short
reads to the accelerator. All short reads will be first processed
by the ESMs where alignment results are streamed back to
the host system when aligned exactly. If no exact alignment
position is found by the ESM, the short reads are processed
by the ASM, where a longer time is taken for running
the approximate alignment algorithm. A controller unit
is developed to coordinate the interactions between host
computer and the alignment processors.
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Figure 2. System architecture overview.

For exact alignment, all the alignment locations of the
short reads are reported to the host program. For approximate
alignment, the cost representing the similarity is reported,
as well as the alignment locations. No traceback step is
performed by the the ASM, therefore the string representation
of the optimal alignment must be reproduced by the CPU,
adding an overhead.

A. ESM: Exact String Matcher

The ESM provides a hardware version of the FM-index
algorithm described in Section II-A. Our design extends
the one in [9] by allowing for alignment against the full
human reference genome (3.2G bases). This requires that
memory external to the FPGA device is used to store the FM-
index data structures, rather than on-chip BRAMs. Figure 3
illustrates the architecture of our ESM implementation.
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Figure 3. ESM architecture.

The ESM design has the following features which improve
the efficiency:

• A scheme to reduce the memory footprint of the occurrence
array, s[x][i], so that it can fit on most FPGA platforms and
allows multiple copies of this array to be associated with
multiple ESMs. This is achieved by storing a full range
marker for every d elements in the occurrence array. To
reconstruct the occurrence value of s[x][i], the following
components are summed: a) the lower marker value relative



to position i and b) the result from counting the occurrence
of symbol x in the BWT sequence between the lower marker
position and i. In this approach we store the marker values
and the BWT sequence. The required memory storage is
then signifcantly reduced to:

4× 3.2G× 32bit

d
+ 3.2G× 3 bits

For example, the memory footprint is reduced from 51.2G
bytes to 2G bytes for d = 64.

• A method to maximise the throughput of the ESM, which
negates the latency of external memory access. This is
achieved by interleaving the processing of multiple short
reads. In this approach, the ESM contains a buffer able
to store a small batch of short reads. In each clock cycle
a symbol from a different short read is selected and the
corresponding external memory is requested. This allows
the processing of short reads while others are waiting for
external memory. As a result the design is fully pipelined
with a throughput of one aligned base per cycle. This
enables the equivalent of a multi- threaded program aligning
multiple short reads in parallel, but with zero thread switching
overhead.

• A scheme to reduce the number of connections to the
external memory and make effcient use of the available
memory bandwidth. This is achieved by interleaving the
marker array and BWT sequence such that the occurrence
array markers and the corresponding BWT sequence segments
are grouped together in external memory. By interleaving,
both the relevant marker and corresponding BWT sequence
segments can be accessed in a single memory access,
reducing the memory access frequency and external memory
connections by 50%.

B. ASM: Approximate String Matcher

The ASM provides a hardware version of the seed and
expansion based strategy described in Section II-B. Our
design draws inspiration from the work in [11], although
we use the FM-index described in Section IV-A to align the
seeds, rather than a hash table based approach. Furthermore,
we perform the Smith Waterman alignment on the most
frequent candidate alignment locations (CALs) rather than
on all unique CALs. Figure 4 illustrates the basic architecture
of our ASM implementation.

CAL
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sequenceaddress
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result
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Figure 4. ASM architecture.

In the ASM, a short read is partitioned into fixed length
seeds on which exact matches are performed. The length
of seeds, and thus the number of seeds, is configurable by
user application at runtime. By controlling this parameter, we
can control the permitted number of mismatches and gaps
in the alignment process. The FM-index is used to map the
seeds to the reference sequence as a) it is compact such that
multiple independant exact matches can be performed and
b) the time complexity of finding all matching locations is
linear in length of the seed and independent of the length of
the reference sequence. The resulting locations at which the
seeds can be exactly mapped are defined as the candidate
alignment locations. The CALs for each seed are stored in a
table on the FPGA using BRAMs as storage units. The most
frequently occurring CALs are then used as the address to
retrieve a segment of the reference sequence. By selecting
the most frequent CALs, no cycles are wasted on processing
CALs which are unlikely to align to the reference sequence
within the permitted diversity. The size of the reference
sequence segment is a few bases larger than the short read.
The actual starting position of segment is set to be a few
bases ahead of the CAL. These parameters usually depend on
the maximum allowed gap size. The similarity score between
the short read and the sequence segment is computed using
the Smith-Waterman algorithm as described in Section II-B.
The Smith-Waterman algorithm is performed in a systolic
array such that each base in the short read has its own systolic
element. The maximum score in the scoring matrix is used
to determine if the short read is mapped to the CAL within
the allowed diversity.

V. PERFORMANCE EVALUATION

In this work, we use the Human Genome version 18
reference sequence [13] and short read data sampled directly
from the reference sequence. We insert noise in random
positions in the short reads to simulate mismatches between
the short read and reference sequence.

Since memory size is the major concern in this application,
we target FPGA platforms such as the Maxeler MAX3
FPGA boards. In the MAX3 platform, the Xilinx Virtex-
6 SX475T FPGA is associated with 24G bytes of external
DRAM. The system can also support up to 15 independent
memory controllers. In this platform a design is described
using the MaxJ language, an extension of the Java language.
The MaxCompiler then maps the design into an FPGA
implementation and enables its use from a host application.

The ESM design is implemented in the Maxeler MaxJ
language and in Verilog. Both versions implement the
optimisations discussed in Section IV-A. Table V shows
the resource usage for the ESM implemented in the Maxeler
MaxJ language and in Verilog. Both implementations support
up to 100 bases for a single short read query and contain a 56-
entry short read buffer to allow for the processing of multiple
short reads as discussed in Section IV-A. The occurrence



Table IV
PERFORMANCE COMPARISON.

read size ref. size read count platform clock freq. device(s) core(s) run time bps
(base) (base) (million) (MHz) (s) (million)

SOAP2 [4] 90 3.1G 98.2 Intel Xeon E5335 2000 1 4 5547 1.59
SOAP3 [14] 100 3.1G 70.7 NVIDIA GTX 580 900 1 512 1839 3.84
BWA [15] 76 3.1G 82 Intel X5650 2670 1 20 3540 1.76
Bowtie [3] 35 3.2G 82 Intel X5650 2670 1 20 2760 1.04

this work D2 90 3.1G 82 Xilinx Virtex-6 SX475T 200 1 7 3454 2.13
Design in [11] 76 3.1G 50 Xilinx Virtex-6 LX240T 250 8 8 34 112
Design in [16] 101 107M 18 Convey HC-1 150 4 1 138 59.2
Design in [17] 76 4.9M 1 Xilinx Virtex-5 LX330 - 1 4 21 3.6
this work D3 90 3.1G 82 Xilinx Virtex-6 SX475T 200 1 6 49 150
this work D4 90 3.1G 82 Xilinx Virtex-6 SX475T 200 1 5 14.3 516

array is stored in external memory with the marker values
for every 64 bases. As a result the total storage requirement
for a single ESM is 2G bytes. The highest clock speed of
this design is found to be 200MHz and is achieved in the
Verilog implementation.

Table V
FPGA RESOURCE UTILISATION REPORT.

LUT D Flip-Flop freq. (MHz)
MaxCompiler ESM 3486 10143 150
Verilog ESM 570 671 200
Verilog ASM 1154 1790 200

In our implementations, the number of string matchers
populating the FPGA is limited by the BRAM resources and
the number of memory controllers supported by the device. In
the current designs each ESM is associated with two memory
controllers for accessing the k and l values concurrently,
whilst the ASM requires two additional memory controllers
for accessing the reference sequence and the suffix array.

With no limit on the number of memory controllers, we
estimate that each FPGA would be able to support nearly
100 of each type of string matcher, given that the Verilog
implementations consume fewer than 1% of the available
hardware resources. Table V indicates that the Maxeler
implementation uses more FPGA resources than the Verilog
implementation; this is due to platform wrapper overheads.

For the ASM architecture, we limit the length of a seed
to 20 bases in order to reduce the size of the CAL table and
the resources required to select the most frequently occurring
CALs. We set the threshold of the Smith-Waterman alignment
according to the permitted diversity at runtime. Any short
read which scores less than this threshold is considered to be
unaligned. Table V shows the resource usage for the ASM
implemented in Verilog. The highest clock speed of this
design is found to be 200MHz.

Since different packages report their performance using
different data sets and different designs, it is difficult to
directly compare using the raw results. To better assess the
performance of various designs, we define the bases per
second (bps) value as a normalised performance merit.

bps = read size× read count/process time

In Table IV we compare the designs in Section III with exist-
ing software and hardware aligners. We use the Verilog ESM
and ASM in our performance estimations. The following
commands are used to run the software aligners:

• ./bowtie -v 5 -S -p 20 reads.fq temp.sam
• ./soap -D Hg18.fa.index -a reads.fq -l 15 -v 5 -p 20 -m

0 -x 600 -r 1 -2 soap2.out1 -o soap2.out2
• ./bwa aln -l 12 -k 3 -n 5 -t 20 reads.fq > temp.sai

D1 has 7 ESMs and uses 14 out of the 15 available memory
controllers. SOAP2 is used in D1 as the software approximate
aligner, and the software runs 20 threads on a server with
dual Intel Xeon X5650 CPUs at 2.67GHz. Due to the large
number of memory controllers required by the ASM, D2 has
5 ESMs and 1 ASM. D3 has 7 ESMs in the exact alignment
phase and 3 ASMs in the approximate alignment phase. The
static memory structures in D3, such as the BWT sequence
and the suffix array, consume about 22.4GB external memory.
These data are shared between the ESMs and the ASMs to
reduce data loading overhead. For D3, the ESM results are
processed by the host and the unaligned short reads are
streamed to the accelerator after reconfiguration. This allows
a higher achievable population of string matchers, as no
additonal memory controllers are required for storing and
accessing the unaligned short reads. Furthermore, multiple
reconfigurations (for cases where the on-board memory size
is insufficient to store all the unaligned short reads) are not
needed. We find that for large designs, the accelerator device
can be reconfigured in around 115ms. If the reconfiguration
time is increased 10 times, the resulting performance for D3
would be 481Mbps.

In our testing, D3 has the highest bps value due to the
increased number of string matchers in each alignment phase.
Table IV indicates that D3 can be up to 293 times faster than
BWA [15] on the CPU, and 134 times faster than SOAP3
on the GPU. Note that the performance result of D3 is a)
an estimate, while the results of [11], [16], [17] could be
measured from full implementations, and b) dependent on



various assumptions, such as the reconfiguration time, the
achievable population and the achievable clock frequency for
a given population. Note that the memory bandwidth of the
system can also reduce the performance improvement when
higher populations of string matchers are achieved. Since the
ESM and ASM rely heavily on random access to external
memory, the memory bandwidth of a system can easily
become a bottleneck. For a more conservative performance
estimate, the achievable population of the ESM and ASM is
halved and the clock frequency is reduced to 100MHz. The
resulting performance for D3 is 129Mbps, which is still a
respectable figure for a single FPGA implementation.

In addition to runtime, another important attribute of an
aligner is sensitivity - the percentage of short reads that can
be successfully mapped to the reference sequence. Figure 5
compares the sensitivity of our design to various software
aligners. When running the software aligners for this test, the
options which improve sensitivity at the cost of performance,
such as --best for Bowtie and -R for BWA, are used when
available.

Figure 5. Sensitivity comparison for 90-base short reads.

The sensitivity values in Figure 5 indicate that for up
to two mismatches, our design has comparable sensitivity
to the software aligners. For short reads with more than
than two mismatches, the sensitivity of the software aligners
sharply decreases. This is a result of the aligner being unable
to explore the large search space within the cut off time.
The proposed design is able to significantly reduce the
search space by only performing local alignment on the
CALs most likely to map to the reference sequence (i.e. the
most frequently occurring). As a result, the sensitivity is
significantly better than the software aligners for greater
than two mismatches. The sensitivity of our design can
be improved by decreasing the seed length. However, this
increases the hardware resources required for the CAL table
as more CALs are found per seed, potentially limiting the
achievable level of parallelism by reducing the number of
ASMs able to populate the FPGA.

VI. CONCLUSION

In this work, we demonstrate that a carefully designed
architecture on an FPGA platform can achieve promising
high throughput for short read alignment. By optimising the
processor responsible for the most common workload and
trading off between storage and computation resources, the
efficiency of our designs is significantly enhanced. Current

and future research includes further optimisation of our
designs and their application in clinical procedures.
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