Reconfigurable Filtered Acceleration of
Short Read Alignment

James Arram* and Wayne Luk* and Peiyong Jiang'
*Department of Computing, Imperial College London
TDepartment of Chemical Pathology, The Chinese University of Hong Kong

Abstract—Recent trends in the cost and demand of next gener-
ation DNA sequencing (NGS) has revealed a great computational
challenge in analysing the massive quantities of sequenced data
produced. Given that the projected increase in sequenced data far
outstrips Moore’s Law, the current technologies used to handle
the data are likely to become insufficient. This paper explores
the use of reconfigurable hardware in accelerating short read
alignment. In this application, the positions of millions of short
DNA sequences (called reads) are located in a known reference
genome. This work proposes a new general approach for ac-
celerating suffix-trie based short read alignment methods using
reconfigurable hardware. In the proposed approach, specialised
filters are designed to align short reads to a reference genome
with a specific edit distance. The filters are arranged in a pipeline
according to increasing edit distance, where short reads unable
to be aligned by a given filter are forwarded to the next filter
in the pipeline for further processing. Run-time reconfiguration
is used to fully populate an accelerator device with each filter
in the pipeline in turn. In our implementation a single FPGA is
populated with specialised filters based on a novel bidirectional
backtracking version of the FM-index, and it is found that in
this particular implementation the alignment time can be up to
14.7 and 18.1 times faster than SOAP2 and BWA run on dual
Intel X5650 CPUs.

I. INTRODUCTION

The downtrend in cost of DNA sequencing has increased
the demand for sequenced data in a broad range of research
areas. As a result, current sequence analysis applications are
quickly becoming unable to handle the massive quantities of
data within a satisfactory time frame and accuracy. One such
sequence analysis application is short read alignment, where
the short DNA sequences generated by an NGS machine are
mapped to a known reference genome. This is essentially a
pattern matching problem, where the positions in which a short
string occurs in a much larger string are computed. Due to
possible sequencing errors and genetic diversity, cases where
the reads approximately map to the reference sequence must
also be considered. This, the size of the reference genome
(>billion characters), and the large quantity of short reads
generated by the NGS machines (>Gb per run), make short
read alignment computationally intensive.

Short read aligners are typically run in software on high
performance CPUs. Current software implementations can take
multiple CPU-days depending on the problem size, creating a
bottleneck point in sequence analysis. Since exciting medical
prospects such as pre-natal diagnostics are hinged on the fact
that an individuals DNA can be analysed quickly and at a low
cost, this application is an excellent candidate for acceleration.

978-1-4799-2198-0/13/$31.00 ©2013 IEEE

In this paper we explore the use of reconfigurable hardware
in accelerating short read alignment. We propose a new general
approach for accelerating suffix-trie based short read alignment
methods. The novel features of this approach (as compared
to previous related work) is summarised in the following two
statements:

1) specialised circuits (filters) are built to align short reads
to a reference genome with a specific edit distance: for
example, exact match, one mismatch, two mismatch,
etc. The filters are arranged in a pipeline according to
increasing edit distance, where reads unable to be mapped
by a given filter are forwarded to the next filter in the
pipeline for further processing.

2) The accelerator device is fully populated with each filter
in the pipleline in furn using run-time reconfiguration,
such that the population of each type of filter is max-
imised for the respective alignment stage.

The alignment performance is benefited by this approach
as: a) specialised alignment heuristics can be applied to each
filter to greatly reduce the process time, and b) the hardware
configuration is optimised according to the intended work flow,
short read data properties, and available resources.

II. BACKGROUND AND RELATED WORK

The most commonly used algorithms for short read alignment
can be categorised into two methods: suffix-trie methods, and
seed-and-extend methods. For short reads of length ~ 1012
bases (such as those produced by Illumina sequencing devices),
it is found that suffix-trie methods can outperform seed-and-
extend methods in terms of alignment time. In this paper
we propose a new general method for accelerating suffix-trie
based short read alignment methods, using the FM-index in
our implementation.

A. FM-index

The FM-index [1] is a space-efficient data structure which
supports substring matching. This data structure has been used
to perform exact and approximate matching in several software
short read aligners, such as SOAP2 [2] and BWA-backtrack [3].

The FM-index combines the properties of suffix array with
the Burrows-Wheeler transform (BWT) [4], to provide a
compact and efficient method for finding all occurrences of
a pattern in a reference sequence (exact matching). In this
approach each character in the pattern is matched against a
suffix-trie of the reference sequence generated using the BWT.

-438-

Suffix-trie methods can be extended with backtracking to
allow for approximate matching between a short read and
reference genome. In this approach, when a mismatch is
detected, a stack is used to store the current search state.
A new character in the reference alphabet is then attempted
for matching to the reference genome. When the number of
mismatches exceeds the permitted value, the state is restored
from the stack and an untested character is attempted for
matching to the reference genome.

When using backtracking to extend suffix-trie methods for
approximate matching, the performance is greatly affected by
the mismatch position. For example, reads with mismatches
at the end are matched several times slower than ones with
mismatches at the beginning. This problem can be reduced
by using a bi-directional search, where the read is matched in
both a forward and backward direction. This is supported by
the 2BWT [5] data structure, which supports searching in both
directions and allows dynamic switching of search direction.

B. Related Work

There exist several efficient hardware designs for accelerating
short read alignment using reconfigurable hardware. In [6], a
multi-threaded design based on the FM-index is proposed for
FPGA. For every n allowed mismatches, n + 1 exact string
matchers (engines) from [7] statically populate an accelerator
device. Short reads are first processed by engine 0. If a
mismatch is detected, the read is copied and the mismatch
character is replaced with different characters in the reference
genome alphabet. The copies are then sent to the next engine
in line for further exact matching. In [8], a similar design is
proposed, where an FPGA is statically populated with exact
string matchers based on the BWT. The host CPU sends reads
to the FPGA for processing. If the FPGA reports that a read
cannot be mapped to the reference sequence, the host modifies
one or two characters, and sends the short read back to the
FPGA for further processing. The host maintains a stack to keep
track of the variations of a short read sent to the FPGA. In [9],
an alignment processor based on a backtracking version of
the FM-index is designed. Several optimisations are applied to
improve the alignment performance, these include; interleaving
the processing of multiple reads to hide external memory
access latencies, reducing the external memory requirement,
and improving the external memory bandwidth utilisation.

The main contribution of this work is a general method
for accelerating suffix-trie short read alignment methods. The
proposed method consists of a pipeline of specialised filters,
where each filter is able to align short reads to a reference
genome with a specific edit distance. Run-time reconfiguration
is used to fully populate the accelerator device with each filter
in the pipeline in turn. This differs from the previous work
above which all consist of an accelerator device statically
populated with a homogeneous array of string matchers.

III. METHOD OVERVIEW

In this section the two novel features of the proposed ap-
proach for accelerating suffix-trie short read alignment methods

are presented, namely the pipeline of specialised filters and
the use of run-time reconfiguration to populate the accelerator
device. The advantages of these features over previous related
work are discussed and a particular implementation for each
feature is presented.

A. Specialised Filters

In software, suffix-trie methods are typically implemented
as a filtered search. In this approach when a short read cannot
be aligned to the reference genome within a given constraint
(e.g. number of mismatches), it is processed again and the
constraint is slackened. In previous work this functionality has
been attempted by using two different approaches:

1) A homogeneous array of exact string matchers. In this
approach when a short read cannot be aligned with
a permitted number of mismatches, all the possible
permutations of the short read with an increased number
of mismatches are generated and reprocessed.

2) A homogeneous array of general backtracking processors.
In this approach when a short read cannot be aligned
with a permitted number of mismatches, the permitted
number of mismatches is incremented in the processor
and the short read is reprocessed.

For both approaches the search space increases exponentially
with edit distance, and as a result the alignment performance
scales poorly with the number of permitted mismatches.

In the proposed method, rather than using a homogeneous
array of string matchers, specialised filters are built to align
short reads to a reference genome with a specific edit distance:
for example, exact match, one mismatch, two mismatch, etc.
The filters are arranged in a pipeline according to increasing
edit distance, where reads unable to be mapped by a given
filter are forwarded to the next filter in the pipeline for further
processing. The benefit of this approach is that it allows the
incorporation of specialised alignment heuristics in each filter to
greatly speed up the alignment time (especially for approximate
matching).

For our particular implementation the backtracking FM-
index design in [9] is transformed into a pipeline of specialised
filters for aligning reads with up to two mismatches with
respect to the reference genome (exact match, one mismatch
and two mismatch filters). A specialised alignment heuristic is
incorporated in each mismatch filter to greatly speed up the
alignment time for approximate matching. For reads with one
mismatch, the mismatch can either occur in the first half of
the read (case A) or the second half of the read (case B). For
reads with two mismatches, the mismatches can either occur
in: the first two thirds of the read (case A), the last two thirds
of the read (case B), or the first and last third of the read (case
C). By constraining the mismatch position, long sections of
the read can be exactly matched first. The resulting suffix array
interval is usually very small, therefore each permutation of the
short read can be tested for with only a few additional search
steps. Note that this alignment heuristic would be impossible
to implement in a homogeneous array of string matchers.

-439-

Since the alignment heuristic features both forward and
backward searching, the 2BWT data structure presented in
Section II is used. Each filter comprises of processing elements
(PE’s) which map the reads according to the cases in the
alignment heuristic for the permitted number of mismatches.
The packed short reads are streamed to each PE, where they are
stored using on-chip BRAMs. The PE’s contain a buffer which
is able to store a small batch of short reads. This allows for
the processing of reads whilst others are waiting for external
memory (for accessing the 2BWT data structure). As a result
the throughput for each PE is one short read symbol matched
per cycle. BRAM is also used to store the search state for
each mismatch permitted to allow backtracking when a given
permutation cannot be aligned to the reference genome. A
system of counters and multiplexers is used to control the
backtracking functionality and alignment heuristic (when to
exact match or test for mismatches) for each PE.

B. Run-time Reconfiguration

In previous work the accelerator device is statically populated
with a homogeneous array of string matchers. For filtered
approaches such as the one in [7], the short reads are internally
forwarded to the next string matcher in the pipeline when a
mismatch is detected. Given that the majority of the reads can
be mapped with small edit distances, the filters at the later
stages of the pipeline are mostly idle. As a result the hardware
configuration is unoptimised according to the intended work
flow, short read data properties, and available resources.

In the proposed method, rather than statically populating
the accelerator device, run-time reconfiguration is used to fully
populate the accelerator device with each filter in the pipeline in
turn, such that the population of each type of filter is maximised
for the respective alignment stage. This maximises the hardware
efficiency as the entire population of filters on the accelerator
device is active in each alignment stage. The overhead of this
approach is the reconfiguration time of the accelerator device,
however for typical workloads this is negligible compared to
the total alignment time.

For our particular implementation the packed short reads
are streamed from the host to the FPGA device, where they
are processed by the first filter in the pipeline. The alignment
results are streamed back to the host and parsed. The FPGA
device is then reconfigured to become fully populated with the
next filter in the pipeline. The unaligned short reads from the
previous alignment stage are then re-streamed to the FPGA
for further processing. This procedure is repeated until the
unaligned short reads have been processed by the last filter in
the pipeline. The overhead of this approach is transferring the
reads via PCle to and from the accelerator board, however since
this application is memory bound, the impact is negligible.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of the imple-
mentation in Section III on the MaxWorkstation provided by
Maxeler Technologies. In this work, we use the Human Genome
version 18 [10] and single-end 75 character reads sampled

directly from the reference genome. Noise is inserted in random
positions in the reads to simulate mismatches between the reads
and reference genome.

In Table I the FPGA resource utilisation for each filter is
presented. Note that the logic resources required to orchestrate
the data flow between the filters and host application are
included in the measurements. The resource utilisation values
indicate that the filter size linearly increases with the number
of mismatches. Based on this result, it makes sense to use
run-time reconfiguration to populate the FPGA with each filter
in the pipeline in turn, as in a static design most of the available
hardware resources and power would be used for the mismatch
filters which only process a small fraction of the short reads.

TABLE 1
RESOURCE UTILISATION COMPARISON.

Filter LUT Flip-Flop | BRAM | approx. relative
size
exact match 37366 58467 116 1x
one mismatch 55173 89085 249 2x
two mismatch 72980 119703 382 3x

Since different short read alignment implementations report
their performance using different data sets and parameters, it
is difficult to directly compare designs using raw results. To
better assess the performance of various designs, we define
bases aligned per second (bps) as a normalised performance
merit. The bps value of a design is given by Equation 1.

read size x read count
bps =

. ey
process time

A limitation of implementing the proposed filter designs on
the Maxeler Workstation is the MAX3 memory architecture.
The fast DRAM is designed for accessing large contiguous
chunks of data, rather than random access. Since memory
access is completely random for FM-index, the performance
is significantly lower than anticipated. Furthermore, for the
MAX3 DFE, all the memory pins are used in a single channel,
therefore one burst can be read per cycle at most. Since in each
filter more than one burst is read per cycle, the performance
does not improve when increasing the population of filters on
the FPGA. We estimate the alignment performance without the
platform-specific limitations of the MAX3 DFE by maximising
the population of each type of filter according to the available
resources, and assuming that there is sufficient bandwidth to
process the reads concurrently. Given that accelerator platforms
have multiple memory channels with random access speeds
close to that for sequential access, the assumptions made here
are reasonable.

In Table II, the alignment run-time of the implementation
presented in Section III is compared to BWA and SOAP2.
We include measurements for: a) a single filter design, where
one filter populates the FPGA device in each alignment stage,
and b) an upper bound estimate, where the filter population is
maximised according to the available resources. The following
commands are used to run the software aligners:

-440-

TABLE I
PERFORMANCE COMPARISON. NOTE THAT OUR RUN-TIME MEASUREMENTS TAKE INTO ACCOUNT ONLY THE ALIGNMENT TIME.

read size | read count platform clock freq. | device(s) cores | run time bps bps
(base) (million) (MHz) per device (s) | (million) | per slice
SOAP2 [2] 75 18 Intel X5650 2670 2 6 204 6.6 -
BWA [3] 75 18 Intel X5650 2670 2 6 252 5.4 -
single filter 75 18 | Xilinx Virtex-6 SX475T 150 1 1:1:1 60.4 20.8 280
upper bound 75 18 | Xilinx Virtex-6 SX475T 150 1 7:3:2 13.8 97.5 1310
SOAP3 [11] 100 70.7 NVIDIA GTX 580 900 1 512 1839 3.84 -
Design in [12] 76 50 | Xilinx Virtex-6 LX240T 250 8 8 34 112 372
Design in [6] 101 18 | Xilinx Virtex-5 LX330 150 4 3 138 13.1 63.2
Design in [13] 76 1 Xilinx Virtex-5 LX330 - 1 4 21 3.6 17.3
Design in [9] 76 1 | Xilinx Virtex-6 SX475T 150 1 3 5.6 13.5 181
e ./soap -D Hgl8.fa.index -a reads.fq -M 2 -v 2 -p 12 -0 REFERENCES

soap2.out
e ./bwaaln -k 2 -n 2 -t 12 Hg18.fa.index reads.fq > bwa.out

The bps values in Table II indicate that a single filter
implementation is 3.1 and 3.8 times faster than SOAP2 and
BWA run on 12 cores respectively. It is found that ~ 66%
of the alignment time is spent on exact matching the reads,
therefore the performance is significantly limited by the small
population of exact match filters. The total reconfiguration time
is 1.6 seconds, which is less than 3% of the alignment time. In
the upper bound estimate, the FPGA can be populated with 7
exact match filters, 3 one mismatch filters, or 2 two mismatch
filters (“7:3:2” in Table II). The performance is estimated to be
14.7 and 18.1 times faster than SOAP2 and BWA respectively.
The significant speed up is due to the higher population of
filters in each alignment stage.

In Table II, the alignment run-time of previous hardware and
GPU-based implementations are listed. It is difficult to compare
results as the reporting methods and short read data sets differ.
Furthermore previous work such as [14] only provides upper
bound estimates with no real measurements. By comparing
the bps per slice in Table II, to take into account for each
design the number of FPGAs and the number of slices in
each FPGA, we predict that this implementation is the fastest
suffix-trie alignment method implementation, and among the
fastest overall.

V. CONCLUSION

In this work, we demonstrate that by designing highly
specialised alignment filters, and using run-time reconfiguration
to configure an FPGA device with each type of filter in turn,
high throughput short read alignment can be achieved. Future
research includes; designing more complex filters, further
optimising the external memory accessing, and fully integrating
our designs into an existing software aligner.

ACKNOWLEDGEMENT

We thank Dennis Lo and Rossa Chiu for their advice and
encouragement. This work was supported in part by Maxeler
University Programme, Xilinx, UK EPSRC, the European
Union Seventh Framework Programme under grant agreement
number 257906, 287804 and 318521, and the HIPEAC NoE.

(1]
(2]
(3]

(4]
(5]

(6]
(71
(8]
(9]
[10]
[11]
[12]
[13]

[14]

-441-

P. Ferragina and G. Manzini, “An experimental study of an opportunistic
index,” in Proc. SODA, 2001, pp. 269-278.

R. Li et al., “SOAP2: an improved ultrafast tool for short read alignment,”
Bioinformatics, vol. 25, no. 15, pp. 1966-1967, August 2009.

H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754—
1760, 2009.

M. Burrows and D. Wheeler, “A block-sorting lossless data compression
algorithm,” Digital Equipment Corporation, Tech. Rep., 1994.

T. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. Yiu, “High throughput
short read alignment via bi-directional BWT,” in Proc. BIBM, nov. 2009,
pp. 31 -36.

E. Fernandez, W. Najjar, S. Lonardi, and J. Villarreal, “Multithreaded
FPGA acceleration of DNA sequence mapping,” in Proc. HPEC, 2012.
E. Fernandez, W. Najjar, and S. Lonardi, “String matching in hardware
using the FM-index,” in Proc. FCCM, 2011, pp. 218-225.

P. Draghicescu, G. Edvenson, and C. Olson, “Inexact search acceleration
on FPGAs using the burrows-wheeler transform,” 2012.

J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Hardware acceleration of
genetic sequence alignment,” in ARC, 2013, pp. 13-24.

[Online]. Available: http://hgdownload.cse.ucsc.edu/goldenpath/hg18/
chromosomes/

C. Liu et al., “SOAP3: Ultra-fast GPU-based parallel alignment tool for
short reads,” Bioinformatics, vol. 28, no. 6, pp. 878-879, 2012.

C. B. Olson et al., “Hardware acceleration of short read mapping,” in
Proc. FCCM, 2012, pp. 161-168.

Y. Chen, B. Schmidt, and D. Maksell, “An FPGA aligner for short read
mapping,” in Proc. FPL, 2012, pp. 511-514.

J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Reconfigurable acceleration
of short read mapping,” in Proc. FCCM, 2013.

