Dynamic Stencil: Effective Exploitation of Run-time
Resources in Reconfigurable Clusters

Xinyu Niu*, Jose G. F. Coutino Yu Wang, Wayne Luk
* Dept. of Computing, School of Engineering, Imperial Colidgondon, UK
t Department of Electronic Engineering, Tsinghua Nationabaratory for Information Science and Technology,
Tsinghua University, Beijing 100084, China

Abstract—Computing nodes in reconfigurable clusters are 4, and would take 2 seconds to complete. Only half of the
occupied and released by applications during their execution. At computational capacity in node C is utilised, as the FoueNod
compile time, application developers are not aware of the amount Design pre-defines that one resource unit is used in each run-
of resources available at run time. Dynamic Stencil is an approach time node. The Dynamic Design, in contrast, can start at time
that optimises stencil applications by constructing scalable designs o \when node A becomes available: then at time 2, after node
which can adapt to available run-time resources in a recon- A processes two data units, node B becomes available too, so

figurable cluster. This approach has three stages: compile-time i
optimisation, run-time initialisation, and run-time scaling, and both nodes process another two data units in the next second.

can be used in developing effective servers for stencil computan. At time 3 node A, B and C are available, completing the
Reverse-Time Migration, a high-performance stencil application, Processing of the 4 remaining data units.

is developed with the proposed approach. Experimental results
show that high throughput and significant resource utilisation can
be achieved with Dynamic Stencil designs, which can dynamically
scale into nodes becoming available during their execution. When
statically optimised and initialised, the Dynamic Stencil design is
1.8 to 88 times faster and 1.7 to 92 times more power efficient than
reference CPU, GPU, MaxGenFD, Blue Gene/P, Blue Gene/Q and
Cray XK6 designs; when dynamically scaled, resource utilisation
of the design reache®91%, which is 1.8 to 2.3 times higher than

B, C D -— available nodes

OneNode Design
T 1T 1

. FourNode Design
~—idle ——

their static counterparts. . . B2 % Eggﬁs
_Dynamic Design 3 FPGAS (4 units
EEEES 1 4 FPGASs (4 units

I. INTRODUCTION

A B
0 1 2 3 4 5 6 7 89 10 time (sec)

~— available nodes

Designs for Application with 8 data units

The last few years have given rise to large computer
infrastructures, such as clusters and data-centres, tbeidp
amp!e C.OmpUte resources. Sharing resources in a Clusteewhg, . 1. Execution of various designs in the cluster, whenenadB, C, and
applications can be launched adds complexity to the develop are released. The execution time of three designs (OneNfodeNode and
ment process: applications must not only efficiently expdoi Dynamic) for the same applications is presented.
given set of compute resources, but also adapt dynamically |n a reconfigurable cluster with various computing nodes,
tq available I‘ESO'UI’.CGS at ryn time. In a reconflgurable etust Cha”enges for deve|0ping such dynamic designs inc|udﬁo(1
with nodes consisting of different FPGAs, the heterogeseougenerate optimised designs that exploit intra-node ressur
FPGA nodes are used and released by various computationgl the cluster; (2) to construct initial designs when appli-
tasks at different points in time. More specifically, for a cations are mapped into the cluster, which ensures scalable
given design, throughput can be potentially increased ifemo performance for utilised nodes and correct functionaliy f
resources are available to perform its computation. Howevethe app"cations; (3) to adapt designs to run-time resource
the effectiveness of current static design methods is dihit yariations.
by unpredictable run-time conditions. Due to non-deterstin

starting points of applications, node availability and dneount For parallel applications without inter-processor comimun
of computational resources in available nodes are unknowfation such as Monte-Carlo Simulation, the run-time sotuti
during compile time. is easy to generate as there is no communication operation. F

communication intensive applications, challenges (1)),af&

The basic idea of this paper is illustrated with the followin (3) described above become tightly coupled: communication
motivating example (Figure 1). In a reconfigurable cluster, is cycle-accurately scheduled to overlap with computation
FPGA nodes A, B, C and D are released by other applicationgperations; variations in device processing capacity,jcéev
at time 0, 2, 3 and 4, respectively; node A, B and D possess [gvel parallelism and distributed workload bring deviatim
resource unit and process 1 data unit per second, while nodge scheduled timing; if design configurations are not prigpe
C can process two data units per second; an application witipdated, incorrect results can be generated after the dgnam
8 data units to process is launched into the cluster. Lineagiesign scales into new nodes. In this work, stencil comjmutat
scalability is assumed for executed tasks, i.e., execulioa known to be communicationally intensive and difficult to
is halved if the number of utilised resource units doubles. | parallelise, is used as a case study for the proposed approac
this scenario, two static designs are illustrated in Figlire Contributions of this work include:

The OneNode Design will make use of only one node, so
would take 8 seconds to complete. The FourNode Design will - a novel design approach named Dynamic Stencil, which
take all 4 nodes when all of them become available at time exploits various intra-node resources with compile-time

time step t time step t+1

input data

s | Oy
% (halo data e : :4% £ : H

S8 output data
W (1) kernel data

[T
]|

TR
ST
TR

N
[T

R
[Emmmm:

(@ (b) (© 0] (e)

Fig. 2. (a) 1-D, 2-D and 3-D stencil in space; (b) Halo datehimitspace; (c) Stencil data after spatial blocking [1]; (oput and output results for time step
t and t+1 [2]; (e) Data exchange between neighbouring bl§&ks

L - . . . 1l: for t €0 td
optimisation, and utilises run-time resources with runeti 5! of forez :1"_> 7?2 —1do

initialisation and scaling. These three design stagesaroop 3: foryel—ny—1do

ate with each other to ensure high resource utilisation for4: forz €1 — nz—1do

stencil applications in reconfigurable clusters; 5 ferntawliel = Glalwlz—1 * fnEwe+) * @
- an as icati & A= ly—1l) * JaEy+111) * B

ynchronous communication model that schedules: + (e le] * fls 1) * 7

communication operations to eliminate communication 8: - Fl—1)[2] () [2]

overhead based on: intra-node computational capacity?: end for

inter-node communication bandwidth, and available nodeg' en defr(‘)‘: for

The communication model can be dynamically updated tQ_2§ end for
ensure linear scalability as well as correct functionality
when a Dynamic Stencil design scales; Fig. 3. An example of a stencil code pattern supported by Dyo&tencil.

- a run-time performance model that provides rapid evaluarhe high-performance requirements limit the usage of itenc

tion of benefits and overhead for scaling current Dynamiccomputations in scientific research and industrial develent.
Stencil design into FPGAs provisioned during run time. .]] . } .
Parallelism in stencil algorithms can be exploited with

. BACKGROUND optimisation techniques such as design parallelisatipatia
_) blocking (loop tiling, domain decomposition), temporabdi-
A. Stencil Computation ing and communication scheduling. In general-purposegsroc

Stencil computation refers to a class of iterative operatio SOTS such as CPUs and GPUs, stencil designs are parallelised

to update array data with a fixed pattern, named as a Ste(f?_rou_gh spatial blocking, which refers to dividing invotie
cil. Stencil computations are commonly used in simulating ﬁg%v'gt%'plijlmlee;(lg)cﬁ% :OalrgPISO\s/tee:wecriTI]%Oralligﬁgrlo%??cg(in
dynamic systems, such as fluid dynamics and heat diffuson, g , pp)

well as in solving Partial Differential Equations (PDEs)k an 1€ lowest two dimensions (x and y) in half reduces data
example, to capture dynamic properties within target syste distance between neighbouring data at the highest dimensio
a PDE can be formulated as follows: (z) by 75%, which allows four parallel cores to process

)) data blocks with improved data locality. When performance
PRGN (C) +C<9f(57t) (1) of parallelised designs is bounded by memory bandwidth,

ot2 0s? ds temporal blocking is used to propagate multiple time steps

where A, B and C' are PDE parameters, anfs,¢) denotes with one memory pass. As shown in Figure 2(d), propagating

simulated properties at spaseand timet. Finite difference gtengirll data for_timeh stepglt Eng otl+1' can be accol;nplished
is a numerical method to approximate derivative expressionY either executing the unblocked designs twice, or buftgri

In this example, the target spasdncludes three dimensions the intermediate results on-chip to eliminate the redundan
.y, > and derivatives are replaced with first-order finite dif-MeMOry access operations. Communication operations, as

ference expressions. The system status can be propagaPWwn in Figure 2(e), are required to exchange halo data
as shown in Figure 3a, 3 and~ are constant coefficients etween neighbouring devices, when stencil applicatioes a
calculated with finite-difference method. The correspogdi MaPped into multi-device clusters. If not properly schedul
3D stencil is shown in Figure 2(a). As neighbouring data aré"€ communication overhead increases with the number of
required to support the calculation, as shown in Figure,2(b)'nV°|Ved devices, which severely limits design scalapilit
boundary data are not updated during computation, named as

halo data. In each time step the constructed stencil sweeps B. Related Work

over kernel data to propagafds,t) in time dimension. The
number of arithmetic operations in Figure 3 can be calcdlate
asnt-nz-ny-nx- Ny, WhereN,, is the number of arithmetic
operations for each data point.

Stencil computations have been extensively studied across
various platforms including many-core processors, hardwa
accelerators such as GPUs and FPGAs, and large-scalesluste
In large-scale CPU clusters, communication patterns oiciite

As neighbouring data at multiple dimensions are requireccomputations are customised to fit into communication s¥fra
for each computation, spatial locality reduces as the daieen tructures [5], [6]. Data reuse method, workload distribntand
size and the number of dimensions increase. If the dimensiocommunication scheduling are optimised for various GPU ar-
size is 1024, data accessed in the stencil in Figure 3 span 8 Méhitectures [7]—[9] to exploit the massive parallelism digh
data. Limited by the sparse data access patterns, perfoemanmemory bandwidth. For reconfigurable platforms, streaming
of stencil computations is limited to 1.8 GFLOPS [4] on a 4-architectures with customised memory architectures ama da
core Intel i7-870 CPU for a fifth-order stencil. Propagatihg paths are proposed [10], [11] to exploit available resasirce
stencil for 1000 time steps 02410241024 space requires These hardware architectures, efficient as they are, eequir
63.4 Tera floating-point operations, and takes 10 hoursighfin high-level expertise and manual optimisation. Moreovke t

desi ffort t lv th h t timi tTABLE l. VARIABLES AND SELECTED PARAMETERS IN THEDYNAMIC
lesign etriort to apply these approaches 10 opumIS€ COMPUL&sreyc L ApPROACH(INDICES: I=DIMENSION, N=NODE, J={FRONT,END})
tional resources and enable efficient cooperation betwesn t

during run time is very high. variables - [- parameters
optimisation moae

Automatic design frameworks are proposed to enable nonf par,, design parallelri)sm A available resources
expert developers to utilise the various platforms for glen | sk spatial blocking ratio | BW available bandwidth
computations. Optimisation techniques are often techyyolo | t# t‘?mpofra' 3'00"'?9 ratio | w; Ste”C!: e
dependent, and vary with availability of resources and -algo -2 size of a data slce ____LD___stendll dmension
rithm properties. Parallel GPU codes are generated in [d2] t . computation delay 'a number of FPGAS
optimise stencil applications based on properties of GRU ar| dm, ; memory delay par, design parallelism
chitectures. Spatial blocking is optimised to balance \o@# trn,j arrival time for halo data| sk;,tk blocking ratios
among parallel threads [13], and auto-tuners are built aocke duwn, dt'Str:'t?IUt‘?d workload
for the optimal blocking strategies for various resourcb4] [SeroranGe Thodel stenctl size
and data structures [15]. Temporal blocking is supportett wi Tun-tme benefit 7 number of EPGAS
a blocking algorithm [2], and the design space is searched rov reconfiguration overnead par, design parallelism
with various searching algorithms to minimise executiondi ski,tk _ blocking ratios

for CPU and GPU designs. The auto-tuners, which are widel
used for general-purpose processors such as CPUs and GP
require a long execution time to traverse their search spac
Run-time construction and adaptation of designs requplira 4 constructing the initial Dynamic Stencil design when the
update in design configurations, therefore the auto-tuning,jication is launched into clusters. Interconnecticetsvieen
process is not suitable. MaxGenFD [16] provides a desigiEpGas are required to support data exchange with neighbour-
interface for users to specify design parallelisation gmatial 4 qevices, as shown in Figure 2(e). A topology where FPGA
blocking ratios during compile time. This semi-automaie & 5qes are chained with point-to-point connections or cotete
proach requires running a time-consuming synthesis tadich ot cpys is referred to as an FPGA path. Synthesised designs
multiple times to optimise designs, and the optimised @eSig tq \arious nodes are loaded and linked to occupy the longest
are statically configured. FPGA path among available FPGA nodes. An asynchronous

When stencil computations are mapped into multiple decommunication model is developed based on properties of
vices, communication operations are scheduled to providg'apped designs, resource status and communication band-
scalable performance. A programming model is proposed foridth. Communication operations among utilised nodes are
stencil computations to implicitly translate stencil dgstions ~ Scheduled to run in parallel with communication operatjons
into scalable GPU implementations [17], and a multi-FPGAWith data dependency expressed as timing constraints in the
design approach for 1-D stencil computations in FPGAs is pranodel. Run-time scaling is triggered if a Dynamic Stencil
posed in [18]. Communication patterns of these approaatees adesign finds available nodes to expand. Benefits and overhead
statically configured, and cannot adapt to run-time vanwi for expanding current design into the new nodes are evaluate
such as: the design parallelism, the communication barttyid With a run-time performance model. Once the benefits out-
the number of involved nodes and the distributed workload. Weigh the overhead, a run-time scaling algorithm is exettde

. . . reconfigure new nodes, switch context into the scaled Dyomami

In this work, we propose a novel approach in which threestencil design, and dynamically update design configuratio
models: an optimisation model, a communication model angy ensure correct functionality for the scaled Dynamic Siten
a performance model, are used to systematically derive afesign. Variables and parameters for a Dynamic Stencibdesi
optimised design that can automatically scale at both clempi 5re presented in Table I. Variables for the optimisation ehod

time and run time to exploit available resources during theyre ysed as parameters in the communication model and the
life cycle of the design. Results from the related work areperformance model.

compared with the proposed approach in Section IV.

chitecture is automatically optimised to achieve maxmu
oughput, and then synthesised with back-end vendaos tool
enerate executable bitstrearRain-time initialisation refers

Compile time (1) compile-time
I1l. M ETHODOLOGY optimisation
escription L. . . .
The proposed approach, known as Dynamic Stencil, starts rresourcs odel " OP"m%%med
with a description for stencil computations, as shown in \df
Figure 3, and ends up as a reconfigurable design that can adaptrun time ! | v (2) run-time
to available resources at run time. The development process asynchronous a initialisation

communication

of a Dynamic Stencil design is demonstrated in Figure 4, model
which includes three steps: compile-time optimisatiom-ru resource ¥T/
time initialisation and run-time scaling. Tlewmpile-time op- an—time
timisation step first translates a stencil kernel into a data-flow performance ®
graph. This data-flow grgaph captures all the kernel opesator | control units (CPUS) N compute units (FgéAs)
the operator dependencies and memory access patterns. Thi
intermediate kernel representation is USQd with the OpH[_TQH Fig. 4. The Dynamic Stencil design approach has three stepspite-time
model to generate a stream-based architecture supportiig m optimisation, run-time initialisation and run-time scaling.

ple inter-connected FPGAs to form a Dynamic Stencil. Design

parallelisation, spatial blocking and temporal blockimg &te- A compile-Time Optimisation

grated into our optimisation model which facilitates eeion P P

of their impact on the optimised architectures. Difference The basic streaming architecture for stencil computations
in FPGA nodes are expressed as variations of available re&s shown in Figure 5(a). Arithmetic operations in stencil
sources. Bounded by available resources, the basic haxdwadescriptions are mapped to pipelined data-paths, and a gemo

(3) run—time
scaling

—

architecture is built based on the extracted data accetermpat be properly updated without synchronising with neighbogiri
(stencil shape). At each clock cycle, the stencil moves t&@ s blocks. Therefore, the size of blocked dimensiomith spatial
forward in the fastestr) dimension, one data unit is streamed blocking ratio sk; and temporal blocking factotk can be
from off-chip memory, and_ >, w; - 2 + 1 stencil data units expressed agj- + 2 - w; - tk, wheretk layers of halo data
are loaded from the on-chip memory, wheog indicates the are represented &s- w; - tk. The size of one slice data after
number of data units in a stencil at dimension i. In the exampl spatial and temporal blocking is:

in Figure 5(a),w, is 1. Design parallelisation variablgur

indicates the number of replicated data-paths. For a strgam - = i o th 2
architecture withpar = 4, as shown in Figure 5(b), the sb= H sk oW (2)
replicated stencil moves four steps forward in thdimension i=1

at each clock cycle. The same memory architecture is used An optimisation model is developed to determine design
to share accessed data, while four data-paths are replitaéte parallelismpar, spatial blocking ratiosk and temporal block-
process data in parallel. Resources consumed by a pipelingdy ratio ¢tk to achieve minimum execution time, i.e., the ratio
data-path can be estimated by accumulating resources cdfetween overall data size and computational capacity. aliver

S T caing oo et o o i e (s e Is epressed asipy LT[i, where
op . . —1 B .

number of operatopp in the stencil description, respectively. ﬁﬁﬁir'soghga?;rg?&rkgf t;r::g Stiespft%[é:ls iZSeklOIfr]?fII%atSeE)vt/Zzt

Theoretically,n valid results can be generated per clock CyC|edimensi0n corresponding to [t)he number of data sli (

for a streaming architecture configured as- = n if the P 9 oes

: " ; ; ; in Figure 5). Computational capacipur - tk increases with
ggﬁgxigg‘n éa:rr?]?t(;ommodated in a single device and if memo esign parallelism and temporal blocking ratio, while esléize

and number of data blocks increase with temporal and spatial
on—ch e blocking ratios. Bounded by available on-chip resouicand
n ip memory on-chip memory

I [[1T

o 5

I

I

I

I

data-access pattern(stencil) data—access ;E)attern(stenci Off-Chip bandWIdthBW, the model is expressed as.

nsteps - sl - (H?:El sk;) - np

i

1111 T .. .
1T — .
EEEEE EaEE 1 gata-pat | - data-paths minimise: ar - 1k 3)
| S, E subject to:
JE oS i=T e ,
w1 5P 241 Z Sop - Rop - par -tk + Ipr/pr/pp < Arryrr/pp (4)
™ (@ (b) opeE®
ws-tk-sl-2-wp+Ipr < Apm (5)
Fig. 5. Data access patterns, memory architectures and dtta-fin)
streaming architectures for stencil computations with (ajngls data-path par - ws - max (I0in, [Oout) - fq < BW (6)

(par = 1) and (b) four replicated data-pathgaf: = 4). Infrastructure resource consumptiépy, r ¢/ pp,pr indicates
Spatial blocking is applied to reduce memory resourcghe LUTs, FFs, DSP and BRAM resources consumed by
consumption. While the number of buffered data slices isscommunication infrastructures. Eq. 4 expresses the dta-p
algorithm-specific, the slice size depends on the size of theesource consumption which increases linearly with andtk.
corresponding dimensions:{ and ny in Figure 5). When The memory resource consumption is estimated in Eqg. 5, with
the number of dimensions increases, memory resource cofk on-chip memories implemented, a?d, data slices stored
sumption can easily exceed resource constraints. Blockingn each on-chip memory. Design parallelispar does not
dimensions in memory slices regroups streaming patterns iaffect memory resource consumption, as the replicated- data
the blocked dimensions, which effectively reduces slia si paths share the same memory architectureis the width of
and memory resource consumption. As shown in Figure 2(ckach data unit (for single floating-point stencilss=32 bits).
to protect data dependency of boundary data after blockingihe impact of temporal blocking on memory bandwidth is
one layer of halo data is distributed to blocked data. In aexpressed in Eq. 6, where an increasékinioes not contribute
dimension: with n, kernel data (as shown in Figure 2(b)) to memory requirementd.O indicates the number of input /
and blocking ratiosk;, the size of blocked dimension can be output arrays, andg'q is the operating frequency.
expressed ag;- + 2 - w;. Since halo data are distributed to
each data block, spatial blocking increases the overalsiae B, Run-time Initialisation

compared with unblocked designs. . L . i
When a stencil application is mapped into a reconfigurable

Temporal blocking is applied to reduce memory bandwidthcluster, optimised designs for available FPGA nodes amelda
requirements. For a given memory bandwidth, there will be aand connected to form an initial Dynamic Stencil desigreiint
point where the memory system cannot afford to load and tmode communication channels are required between neighbou
write par data units per clock cycle. As shown in Figure 2(d),ing nodes to exchange halo data, as shown in Figure 6(a).
when memory channels are saturated, output data of curreAimong available FPGA nodes, we extract the longest con-
time step can be stored as intermediate data accessed reexted path to accommodate the initial Dynamic Stencilgiesi
input data for the next step, eliminating redundant memonpesign properties of an occupied nofl@re abstracted with
access and accomplishing multiple time steps in one memoriys computational capacity,,;;, i.e., the number of data
pass. The memory architecture is replicated to accommodaf@ocessed per clock cycle. As demonstrated in Algorithm 1,
the intermediate data, and the attached data-paths are alafter workload distribution (line 2), arrive times of remot
replicated to process the intermediate data in parallekriMe halo data can be calculated (line 3), wheréndicates the
while, for the spatially blocked data, accomplishing onereno involved FPGA, andj indicates the halo data region. To meet
time step on-chip introduces one more layer of halo data folocal timing constraints, an initial delay., can be inserted
data blocks, to ensure halo data of intermediate results camefore computation starts (line 5-10), and a memory delay

slices of data at z dimension

dne Can be inserted in each iteration to postpone the time to
~kIIIIIIIIIIIIIII.

update halo data in local memory (line 11-15), as illusttate

[front halo data

!‘:’
. _ \ ’iiiiiii [kernel data
in Figure 6(b) and (c). In the following, we elaborate on the 10 B endhaodaa @
workload distribution, the local timing constraints, artiet ii;i;i:i AT AL LT T T odond e ion
. ! i - o
scheduling operations. s (poRD e EPOAL e FrORE e 2 eheduled comptaton delay

..... = scheduled memory delay

consume time consume time
alid arrive time

For F available FPGA nodes, the slowest dimension with £ consume time consume time
size np is decomposed to balance the distributed workloads i
dw,, based on the computational capacity of involved nodes:

D-1
dw,, = sl - (H skzz> (nD “pary, + 2 - wp) (7)
=1

F
> k=1 Pary

FPGA2 FPGA1l FPGAO device

FPGA2 FPGAl FPGA

As shown in Figure 6(b), the decomposed data are processe ime T o) ime
simultaneously in the three involved FPGAS. In an FPGA node, . ¢ (gecomposed data for an EPGA p(;)th with three inferected
the distributed vyorkloapl are proce§sed with data per clock FPGAs, and the corresponding communication and computatieratipns in
cycle, propagating a time step wn;j-ﬁ%n cycles. Results for time dimension if (b) unscheduled and (c) scheduled. Eachigritle figure
kernel data are transmitted to neighbouring nodes to updafgpreserts one tdha.‘taf.s"ce- DT?ﬁa ft‘ﬁpe”gg}fsy valid timﬁ“ﬁ”'eq df'a>k’s
the_ CorreSpondmg halo datat used in next time step. Commu_ [ile? aeng3 commmlljsniclggigeri ch;nnerlzecan trar?sr?]ri(t)ie(sjzta ugitlpg?rc;ccl)g.
cation operations between involved FPGAs are performed in

parallel with the computation operations to eliminate camin
cation overhead. To satisfy data dependencies in a stearoi ¢
putation, halo data from remote devices must arrive: (araft
the halo data in current time step are consumed, and (b)éefo
the halo data in next time step are used. In the unschedul :
design in Figure 6(b), the end halo data RRGAO andFPGAL imilarly, end halo data at nodeare generated from thg}l;glrnel
arrive too early and overwrite the existing end halo datateef data (sl - wp,2-wp - sl) at noden + 1. As there aret’z-=

they are used, rendering all subsequent computationsreator Cycles delay between when the kernel data are loaded and
An “asynchronous communication model is built to facilitateWhen the correspondingly results are generated, unsaédul
translation of data dependencies into timing constraiats] arrival times of halo datg in noden can be expressed as:

expression of arrival times in terms of computational cépac
trn,j = {

Arrival times of halo data are determined by computational
capacity in neighbouring nodes and the communication time.
;l'he front halo data at node are derived from the kernel

ta(dwp—1 — 2 - wp - sl,dw,—1 — wp - sl) at noden — 1.

dwy, _1—wp-sl + wp-sl
parn—1 bws,
2-wp-sl + wp-sl
PaTn 1 bwy 1

and communication bandwidth. Variables and parameters for -mj = front

this model are presented in Table I.

(9)

-m j=-end

Algorithm 1 Communication scheduling algorithm for a Dy- where bw,, indicates the communication bandwidth between

namic Stencil design noden — 1 and noden, m is the margin factor for communi-
input: the number of FPGAs in detected FPGA pab, cation operations, andu’fuﬁ” -m is the communication time.
output: scheduled computation del and memory dela for each L . . .

i P o e Communication scheduling refers to configuring memory
1: for i € 0 = Dey, j € (0,1)do delay dm and computation delaylc to satisfy the timing

2: dwy;) = workload distribution() constraints. If halo data arrive too early, a memory deleyis

31 tqr[i,5] = unschedulecarrive time() inserted to postpone the update time of the halo data in local
4: end for . memory. On the other hand, when halo data arrive too late,
5: for i € 0 = Dey, j € (0,1) do . - - initiall heduled

6 if latestarrive ime() < t,,(; ; then since computation operations are initially scheduled aot sts

7: deoyi = max(ty,(; j— latestarrive time() early as possible, there is no space to schedule the haleadata
8: tarit1,4]F = deofi+1) arrive earlier. Instead, the starting time of the commuitca

9: endif operations is delayed to postpone the latest timing cdansira
10: end for . The actual arrival times after scheduling are, ; + dm,, ;.

11: for i € 0 = Dey, j € (0,1)do Si the i ted tati del t ’ th ’t- .
12: if earliestarrive time() > t,[; ; then Ince the Inseried compuiation delay postpones the tming
13: dyye(s) = max(earliestarrive time() - o, (; ;) constraints, if we keep the timing constraints the same as in
14: end if Eq. 8, the arrival times can be expressedras; +dm,, ; —dc,,.

15: end for

Timing constraints can be expressed with the consume timg' Run-time Scaling

of halo data in the current time step and in the next time step, Once initialised, a Dynamic Stencil design investigates
as shown in Figure 6(b). For the halo dagtdan noden, the run-time status variations to utilise FPGA nodes provisihn
arrival timestr,, ; are bounded as follows: with = front during its lifetime. The mapped FPGA path can be expanded if
indicating the front halo data and= end indicating the end available FPGA nodes can be connected to either the first node

halo data: or the last node in the current FPGA path. Scaling a Dynamic
0 <tr. < duwy Stencil design involves run-time evaluation, context shiitg,

dw—slwp mfront = parn (8) run-time reconfiguration and configuration update. Context
e S trnend S T 2 switching refers to redistributing the intermediate résiriom

do S) the current Dynamic Stencil design into the FPGAs of the
where %= is the computation time for one time step, andnew scaled Dynamic Stencil design. Input and output arrays
dw, — sl -wp indicates the distance between front halo dateof the current FPGAs are loaded from off-chip memories
and end halo data. back to the host memories; appropriate bitstreams are used

TABLE II. SINGLE-DEVICE AND MULTI-DEVICE PERFORMANCE

to configure the newly-available FPGAs; and the intermediat COMPARISON

arrays are redistributed into the FPGAs of the expanded . ,

Dynamic Stencil design, thus ensuring that the context ef th single-device performance 1

current stencil computation is preserved in each FPGA. A (S;ﬁﬂem fzri;%(GHz) I_T;(Gflops)l Eé\g/an)l gﬁﬂopsm} 72

control unit for the Dynamic Stencil design is implementedGrUT7] 115 58.8 369 0.159 2.2x

on the host CPU, which executes run-time evaluation, desmngaxGenFsDt [16]I 81 ggm ﬁ; 8-33 1-8x
H H H ynamic sStencli . . . X

Sca“ng and Conflguratlon update. multi-device performance (throughput (Gflops)

4 : PR ; System/number of device$ 2 4 82 167 32 S
__Run-time benefit-tb refers to the reduction in execution —="sercrs] 298 | 596 | 11.02 | 23.84 | 47.68 | 87.8x
time for the remaining stencil computation when a Dynamic—gfue Generq 6] 384 | 768 | 1536 | 307.2 | 6144 | 6.8%
Stencil design expands into more FPGAs. Remaining workload Cray XK [9] I81 | 362 | 524 | 1048 | 2096 | 2.00x
for a stencil application is calculated with its remainirignet MaxGenFD[16] 128.3 | 1968 | nia | n/a nfa__ | 2.66x

Dynamic Stencil 261.3 | 523 1045 2091 4184 1x

stepsnsteps and distributed workloadw,,. If available nodes

. . A 1 o a2
are employed, the distributed workload is reducedutd, and ™ P> E and S respeciively stand for throughput, power cogsion, power
efficiency and speedup.

the reduction in execution time is expressed as: 2 Limited by available resources, performance for more than 4 AP@
, simulated. When 1 to 4 FPGAs are involved, measured performandernos
nsteps (dwy, — dwy,) (10) the simulated results.
tk pary, - fq 3 MaxGenFD supports up to 8 FPGAs, performance cannot be sigauthte
to lack of optimisation details. Measured scalability for BGAs is 0.69.

rth =

where dw,, — dw), indicates the reduction in workload. As
distributed workload is proportional far,, (Eq. 7),7tb is the
same for each node.

Dynamic Stencil design and the dynamically scaled Dynamic
Stencil design. RTM is an advanced seismic imaging tecleniqu
to detect terrain images of geological structures, basethen
The scaling overhead refers to time consumed to reconfigzarth’s response to injected acoustic waves. The propagati
ure devices and redistribute data, and can be estimated as: of injected waves in terrains is modelled with the isotropic
acoustic wave equation [19], which is solved with a fifth-erd

/
rov = max (R 9 dwn) dwy, (11) stencil in space with three dimensions. Hardware desigas ar
0 7 bwpyei bwpei compiled by MaxCompiler version 2012.1. They operate at
4 dw’ . o) 100 MHz, and run on an MPC-C500 compute node from Max-
where £ and ;= respectively indicate the time to load eler Technologies. The MPC-C500 has four MAX3 dataflow

and redistribute memory data, through PCI-E channels wittengines, each of which has a Xilinx Virtex-6 SX475T FPGA.
bandwidthbw,.;. The reconfiguration time can be estimated o .)

with bitstream size and throughput of reconfiguration ifaiee Resource exploitationin an FPGA s evaluated in terms

9. The bitstream size is calculated with resource consumptio©f resource consumption and achieved design throughput. Re
R and bitstream size per resource ugit Since memory Source consumption and design _throughput of the optimised
controllers and streaming architectures are configurexitirg ~ design are presented in Figure 7. The resource consumption
same FPGA in current designs, context data can only b normalised against available resources, and the resourc
written into new FPGA nodes when run-time reconfigurationconsumption when design parallelism is O indicates the re-
is finished. The loading of context data, on the other hand, i§ources consumed by communication infrastructures. Befor

executed in parallel with reconfiguration operations. off-chip memory channels are saturated when = 16, each
replicated data-path generates one result per clock, \etfgd

The scaling algorithm for a Dynamic Stencil design coordithroughput and data-path resource consumption scaleatlyne
nates the communlcatlon. model_ and the run-time pel’-fOI’manC'-Bemporal blocking ratigk is increased to 2 when the memory
model. Resource status is monitored after a Dynamic Stenchottleneck is hit. One more on-chip memory with 16 attached
design is initialised at time 0, with run-time benefits anddata-paths are replicated, doubling the performance ak wel
overhead evaluated for detected available resourcesifime as resource consumption. Design variahbes, tk, sk, and
benefitrtb outweighs the scaling overheadv, the scaling sk, of the optimised design are respectively configured as 16,
algorithm stalls computation for the next time step in FPGA2, 6 and 5. The optimised design consumes 270816 LUTSs,
nodes, reconfigures available nodes and switches context da823134 FFs, 952 DSPs and 989 BRAMSs, with the optimisa-
into the new nodes. Parameters of communication model ifion model estimating the design to consume 255936 LUTS,
Algorithm 1 are updated, and the communication variables ar357120 FFs, 806 DSPs and 947 BRAMs. The optimisation
rescheduled to respond to the design variations. Compatati model can capture variation in resource consumption wtremor
operations are then resumed for the scaled Dynamic Stenathan90% accuracy, enabling automatic optimisation of stream
design, and the scaling algorithm goes back to the mongorinarchitectures for FPGAs with various characteristics.
phase. The algorithm is executed iteratively to adapt a Byoa
Stencil design to run-time resource variations. Design performance is listed in Table Il. Reference single-
device designs include parallelised software designs tizug
a 4-core Intel i7-870 CPU, Blue Gene/P [5] and Blue Gene/Q
designs [6], a GPU design optimised by NVIDIA [7] and

Starting from a simple stencil description, the proposedcustomised for NVIDIA Tesla C2070, and an FPGA design
approach generates a run-time scalable design for reconfigeveloped with MaxGenFD [16]. Overall performance of the
urable clusters. A benchmark application, Reverse-Time Mioptimised RTM is reduced from 156.8 GFLOPS to 130.67
gration (RTM), is developed with the proposed approach. Th&FLOPS, due to the additional data introduced by spatial and
developed design is evaluated with three aspects: resour¢emporal blocking. Performance of CPU and GPU designs
exploitation, design scalability and run-time adaptivighich is limited by their general-purpose memory system. Run-
respectively reflect how available resources are expldived time profiling shows that the optimised GPU design can only
the optimised single-node design, the initially constdct achieve35% memory efficiency, i.e., loading one data unit

IV. RESULTS

1%}
2 "
140 ; : T = 700 ; T T T T . T 14 §
LUTs o = X current design —— 2
FFs === P14 £ 600 [Spp———— if avaiable nodes are included] >
120 | DSPs ;o E i predicted execution time ---x--- 4 12 =
BRAMS ==] measured execution time 8 S
_ _ bandwidth E==3 temporal blocking ratig’=2 | 1-2 5 S00r 110 ¥
o design throughput ---e--~ g pal At each iteration: g
G 100 1 / 1 & @ 400 G remaining execution time for current o
T ~~ ! El o design and the scaled design is 1lg =
o i © E 300 | predicted, and the difference between | 8
= 80 temporal blocking ratio = 1 g < them is the saved execution time_ =
3 08 © ks) for scaled design (run-time benefits). 4 6 <=
5 8 S 200 X 1 £
= - Q T =
2 60 06 9 3 100 | Y 1% s
£ ‘s k3 i leiviminialy 5
Q § o 0 L L L L L L L iz = WS R 8
@ 40 S 5 <
% 04 £] 0 50 100 150 200 250 300 350 400 450 500)
Q
o ava T T F rE—— T T T T 1
20 0.2 5] Pk node A —— node C -+ 4 0.8
3 node B node D e] 98
7 R .
- o R 4 0.2
o 0 £ busy . L ih 0
0 1 2 4 8 16 32 0 50 100 150 200 250 300 350 400 450 500
design parallelism application iterations

Fig. 7. Design throughput and resource consumption of the B&dgn. The Fig. 8. Evaluation and prediction of the run-time performanulel during
optimisation increases design parallelism to 16 until thedadth bottleneck one of the test cases, at the application iteration (time) stepension. The
is hit, and increase the temporal blocking ratio to utilis tesources. resource status is measured from target cluster. 'ava’ stiordavailable.

takes 3 clock cycles. Since temporal blocking is not covered Run-time adaptivity of the developed design is evaluated
by the automatic optimisation process of MaxGenFD, designvith design performance and device-level resource utitina
parallelism of MaxGenFD designs is limited to 16, when off-ratio, when the RTM design is mapped into the reconfigurable
chip memory channels are saturated. While temporal blockingluster. For the available 4 FPGAs, static designs with 1, 2,
can be manually implemented for MaxGenFD designs, to keef8 and 4 device-level parallelism are developed and executed
the design effort comparable, we use automatically opéchis to provide comparison. Run-time status during 10 separated
parameters for both Dynamic Stencil designs and MaxGenF@ime periods is measured and used as 10 test cases in this
designs. In summary, the optimised design for RTM is up toexperiment. Evaluation process of the run-time perforreanc
1.8 to 72 times faster and 1.7 to 92 times more power efficientodel for one of the test cases is demonstrated in Figuree3. Th
than the reference designs. run-time performance model predicts the execution time for
. .) the remaining tasks of the current design as well as thedcale
Design scalability reflects the effectiveness of the asyn-gesign. When new nodes become available, the difference
chronous communication model. For the current platformpetween the two predictions indicates the run-time benefits
inter-FPGA communication operations are either throughtpo FpGA node A is available when the application is launched,
tO—pOII’It Channels W|th 3.2 GB/S bandW|dth or through 10 Gb/%nd node B' C and D are released by other Computationa|
Ethernet connections between CPUs, with data moved betwegRsks at 150, 142 and 209 iterations, respectively. Althoug
CPUs and FPGAs through 1GB/s PCI-E channels. The lowefiode C becomes available earlier than node B, the detected
bound of inter-node bandwidtbw is 1 GB/s, while on-chip FpGA path first expands when B is released due to the lack of
results are streamed with 48 bytes per clock cycle. In thgommunication channels between node A and node C. If node
asynchronous communication model, the computation délay B and C are included in the Dynamic Stencil design, execution
in involved FPGAs is scheduled to bev, = 25 data slicessl time for the following tasks is reduced by 357.4s, with 0.71s
to reduce the bandwidth requirement to 0.8 GB/s, with marginyn-time overhead introduced. As the benefit outweighs the
factor m = 1.25. Memory delaydm is scheduled to ensure gyerhead, node B and node C are reconfigured to cooperate
local halo data are consumed before being overwritten.teini ith the existing node A. Context data are redistributed| an
by available FPGAs in our platform, our current design stale gesjgn variables are rescheduled using Algorithm 1 to ensur
up to 4 FPGAs. Based on computation throughput of utilisedinear scalability and correct functionality when the Dymia
FPGAs and available bandwidth, performance of the Dynami&tencil design is expanded. Similarly, node D is employed by
Stencil design when more FPGAs are involved is simulatedpe Dynamic Stencil when it becomes available. As shown
The simulated and measured results are presented in Tablel{ Figure 8, the measured performance aligns with predicted
which shows that linear scalability has been achieved fer theyecution time for the remaining tasks showing high acgurac
initialised Dynamic Stencil design. Previous large-scdé&e of the performance model. Corresponding results in the test
signs on Blue Gene/P [5], Blue Gene/Q [6] and Cray XK6 [9] case are shown in Figure 9. Device-level parallelism for the
are also introduced to provide a comparison. As shown in Tastatic design using one FPGA is limited to 1, while the static
ble II, the measured results confirm the simulated perfooman designs using multiple FPGAs need to wait for released nodes
and overall design throughput reaches 4.09 TFLOPS whef start. The Dynamic Stencil design finishes 490 time steps i

32 FPGAs are involved, outperforming the reference designsg7 seconds, outperforming the static designs by 1.67 @ 2.7
by 2 to 88 times. Besides throughput, power consumption ifjmes.

large-scale clusters determines the maintenance costasich

cooling infrastructures and electricity, and plays an intguat Resource utilisation ratio is calculated with measured per
role in large-scale designs. Power consumption informatio formance and the theoretical performance upper bound. The
is not provided in previous work [5], [6], [9]. If we make a theoretical performance is calculated as the overall perfo
conservative assumption that the Tesla X2090 GPUs in Cragnance if FPGAs are fully utilised once released by other ap-
XK6 consume the same power as the Tesla C2070 design plications. The measured performance and resource titilisa
Table II, the Dynamic Stencil design is 5.2 times more effitie for the 10 test cases are shown in Figure 10. Averaged resourc
than the stencil design running on Cray XK6 when includingutilisation ratio for the Dynamic Stencil design is%®1The

all host and accelerator power consumption. gap between the achieved resource utilisation ratio anéuthe

T
—_—

T T
Dynamic Stencil design
static design with 1 FPGA

static design with 2 FPGAs -+
static design with 3 FPGAs &
static design with 4 FPGAs

Dynamic Stencil scales into D
Dynamic Stencil scales into B and C

finished time steps
N
o
o

node A —— node C -
node B nodeD =

resource

busy L L L L L
0 50 100 150 200 250

time (s)
Fig. 9. Performance of a Dynamic Stencil design and a statigaegth 1,
2, 3 and 4 FPGAs at the time dimension.

300

(1]
utilisation ratio (108%) is introduced by the reconfiguration
overhead and communication infrastructure. As shown in the[
test case in Figure 9, node C remains idle until the Dynamic
Stencil design expands into node B, as there are no com-
munication channels between node A and node C. Resource
utilisation for static designs is limited between%4@nd 496. (5,
In other words, limited by pre-defined communication and
computation pattern0% of resources in the cluster remain
idle. On average, the high resource utilisation of the dyioam [4]
designs enables them to run 1.8 to 2.3 times faster than th?
static designs. 5]

(6]
600 T T T T T T T T T T
Dynamic Stencil design == Static design with 3 FPGAs ===
@ 500 Static design with 1 FPGA =2 Static design with 4 FPGAs =3
& [Static design With 2 FPGAs T [7]
[T
€ 400
3 8
& 300 (8l
g
£ 200 E)
£
L
2 100
®
0 [10]
0 1 2 3 4 5 6 7 8 9
k=l
] 2 T T T T T T T T T T
c Dynamic Stencil design =~ —+— Static design with 3 FPGAs & [11]
k<] 1.5 + Static design with 1 FPGA Static design with 4 FPGAs B
g Static design with 2 FPGAs %+
R 1 [12]
8 os5f]
2, ‘ N S ‘ ‘ ‘
S 0 1 2 3 4 5 6 7 8 9 [13]
test cases
Fig. 10. Design performance and resource utilisation foreld tases.
[14]
V. CONCLUSION& DISCUSSION [15]

For large-scale reconfigurable clusters, effectiveness of
conventional static design methods which pre-define Commlfis
nication patterns and hardware configurations are limitgd b |
unpredictable run-time conditions. In this paper, we ps&po
Dynamic Stencil, a novel approach that statically optimise
target applications for various FPGA nodes, and dynanyicall [17]
constructs an executable design that automatically adapts
resources available at run time. In particular, we achiegh h
resource utilisation ratio and significant speedup overesfce
designs at each stage of the approach for computationallys]
intensive stencil applications. Limitations of our curtreisign
approach mainly come from its single-task considerati@ns: [19]
Dynamic Stencil design tends to occupy all available resesir
during its execution, which may not be the optimal solution

when targeting maximum overall performance of multiple
tasks; idle nodes due to lack of communication channels to
existing Dynamic stencil design can be occupied by other-com
putational tasks, which can further increase resourcisatiibn.
Future work includes supporting dynamic design methods for
multi-task and multi-user environments, which will be bwih

top of the current Dynamic Stencil approach, to exploit more
complex run-time scenarios.

Acknowledgement. This work was supported in part by
UK EPSRC, by the European Union Seventh Framework
Programme under Grant agreement number 257906, 287804
and 318521, by 973 project 2013CB329000, National Natural
Science Foundation of China (No. 61373026), by the HIPEAC
NoE, by Maxeler University Program, and by Xilinx.

REFERENCES

D. A. Reed, L. M. Adams, and M. L. Patrick, “Stencils and lplem
partitionings: Their influence on the performance of multiptecessor
systems,”|EEE Trans. Computers, vol. 36, no. 7, pp. 845-858, 1987.
A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey5-8.
blocking optimization for stencil computations on modern CRidsl
GPUs,” inProceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2010, pp. 1-13.

M. Ripeanu, A. lamnitchi, and I. T. Foster, “Cactus apation: Perfor-
mance predictions in grid environments,” Huro-Par, 2001, pp. 807—
816.

X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell, “Exploiting rutime
reconfiguration in stencil computation,” iRPL, 2012, pp. 173-180.
M. Perroneet al., “Reducing data movement costs: Scalable seismic
imaging on blue gene,” ilPDPS, 2012, pp. 320-329.

L. Lu and K. Magerlein, “Multi-level parallel computingf@everse time
migration for seismic imaging on blue Gene/Q,” iRPOPP, 2013,
pp. 291-292.

P. Micikevicius, “3D finite difference computation on GBWising
CUDA,” in GPGPU, 2009, pp. 79-84.

E. H. Phillips and M. Fatica, “Implementing the himeno bemetnk
with CUDA on GPU clusters,” inPDPS, 2010, pp. 1-10.

M. Rietmannet al., “Forward and adjoint simulations of seismic wave
propagation on emerging large-scale GPU architectures3Cin2012,
p. 38.

K. Sanoet al., “Scalable streaming-array of simple soft-processors
for stencil computations with constant memory-bandwidth,”Firoc.
FCCM, 2011.

H. Fu and R. G. Clapp, “Eliminating the memory bottleneak:FPGA-
based solution for 3D reverse time migration,”fnoc. FPGA, 2011.

J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “Higihformance
code generation for stencil computations on GPU architestuin ICS,
ACM, 2012, pp. 311-320.

S. Krishnamoorthet al., “Effective automatic parallelization of stencil
computations,” inACM Sgplan Notices, vol. 42, no. 6. ACM, 2007,
pp. 235-244.

K. Datta et al., “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,”®¢. |IEEE, 2008, p. 4.

S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “Aaato-tuning
framework for parallel multicore stencil computations,” Parallel &
Distributed Processing (IPDPS), 2010 |IEEE International Symposium
on. |EEE, 2010, pp. 1-12.

O. Pell, J. Bower, R. Dimond, O. Mencer, and M. Flynn, ‘n
difference wave propagation modeling on special purposefldat
machines,”|[EEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 5, pp. 906-915, 2013.

N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Phyais:
implicitly parallel programming model for stencil computations
large-scale GPU-accelerated supercomputers,High Performance
Computing, Networking, Sorage and Analysis (SC), 2011 International
Conference for. IEEE, 2011, pp. 1-12.

X. Niu, J. G. F. Coutinho, and W. Luk, “A scalable desigspeoach for
stencil computation on reconfigurable clusters,FRL. |EEE, 2013.
M. Araya-Poloet al., “Assessing accelerator-based HPC reverse time
migration,” |[EEE Transactions on Parallel and Distributed Systems,
vol. 22, pp. 147-162, Jan. 2011.

