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ABSTRACT
Hawkes processes are point processes that can be used to
build probabilistic models to capture occurrence patterns
of random events. They are widely used in high-frequency
trading, seismic analysis and neuroscience. A critical calcu-
lation in Hawkes process models is intensity evaluation. The
intensity of a point process represents the instantaneous rate
of occurrence of events, but it is computationally expensive
and challenging to calculate efficiently in order to make pre-
dictions using Hawkes process models. To accelerate the
computation, we analyse data dependency in the intensity
evaluation routine, and present a strategy to enable multiple
intensity values to be computed with a single pass through
the data. We then design and optimise a pipelined hard-
ware engine based on our strategy. In our experiments, an
FPGA-based implementation of the proposed engine is eval-
uated by four case studies. This implementation achieves up
to 94 times speedup over an optimised CPU implementation
with one core, and 12 times speedup over a CPU with eight
cores.

1. INTRODUCTION
Hawkes processes [4] are point processes that can be used

to build probabilistic models to capture occurrence patterns
of random events. The study of Hawkes process models
is attracting the attention of researchers and practitioners
from various areas including high-frequency trading [1, 2],
seismology [7, 9] and neuroscience [3, 6].

For instance, Hawkes processes have been widely used in
financial modelling. They can generate accurate predictions
of order flow [10] but have a heavy computational load.
Since predictions are usually made at high frequencies and
in real time, efficient implementations are key to success in
practice.

A critical calculation in Hawkes process models is inten-
sity evaluation. The intensity of a point process taken at
a fixed point in time, t, is the instantaneous rate at time t
with which events occur. The calculation of the intensity of
the underlying Hawkes process is necessary in parameter es-
timation, simulation and prediction. The feature, however,
that makes the Hawkes process useful for making predic-
tions and modelling correlated data is that its intensity is
stochastic, changes in time and depends on the history of
all dimensions of the process. This makes the evaluation of
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the intensity a computationally demanding task.
For the purpose of obtaining predictions this evaluation

must be performed as fast as possible. This efficiency prob-
lem has become increasingly serious in recent years because
the length and dimension of real-world data sets have been
growing swiftly. For instance, financial markets order place-
ment frequencies have increased in orders of magnitude over
the last several years and so has the scale of the models used
to describe this activity. The conflict between data size and
computational efficiency is especially serious in time critical
problems such as high-frequency trading and optimal order
execution.

While data analysis systems can often benefit from the
speed, simplicity and power efficiency of hardware imple-
mentations, hardware acceleration of point processes is not
well-studied. To the best of our knowledge, our work is the
first to cover hardware acceleration of algorithms related to
point processes. Our key contributions are as follows.

• We analyse the data dependence pattern of the inten-
sity value computation. Using the result of the analy-
sis, we develop a computing strategy where the inten-
sity values of multiple dimensions can be computed
with a single pass of the data.

• We identify the computationally intensive part of our
strategy and propose a hardware architecture to han-
dle this part. We also optimise the hardware by ex-
ploiting data parallelisation to make full use of the
memory bandwidth.

• We evaluate an implementation of our proposed data
flow engine with four case studies and various data
sizes, and provide possible explanations to both ex-
pected and unexpected experimental observations.

The rest of the paper is organised as follows. Section 2
briefly describes point processes, Hawkes processes and the
intensity evaluation problem. Section 3 presents an analy-
sis of the data dependence pattern, and describes a strategy
that can be used to compute the intensity values of multi-
ple dimensions with a single pass through the data. Sec-
tion 4 describes a hardware design that maps our strategy
to a pipelined hardware engine, and a method to exploit
data parallelisation. Section 5 provides experimental results
about an implementation of our hardware design in four case
studies, and explains experimental observations. Section 6
provides a brief conclusion, and describes possible future
work.



2. BACKGROUND
In this section we provide a short introduction to Hawkes

processes. We first illustrate related concepts including point
processes and counting functions, and then briefly discuss
the intensity evaluation problem.

2.1 Point Processes
A sequence of random variables, {ti} = (t1, t2, t3, . . . ), is

a univariate point process if and only if ti > 0 and ti < ti+1

for all i ∈ N+. A univariate point process is typically used to
describe the occurrences of an repeatable event. Each entry
of the process is the time of an occurrence of the event.

The counting function C(t) of a point process {ti} is de-
fined by

C(t) =
∑

i∈N+,ti≤t

1 (1)

In other words, the value of the counting function C(t) is
the number of elements in {ti} that are less than or equal
to t. The intensity function λ(t) of a point process {ti} is
defined by

λ(t) = lim
h↓0

E
(C(t+ h)− C(t)

h

)
(2)

= lim
h↓0

1

h
P (C(t+ h)− C(t) > 0) (3)

where E is the expectation operator; P (A) is the probability
of random event A. A multivariate point process with M
dimensions, is in the form

ρ(M) =
{
{ti}1, {ti}2, . . . , {ti}M

}
(4)

where {ti}1, {ti}2, . . . , {ti}M are univariate point processes.

2.2 Hawkes Processes
A multivariate point process

{
{ti}1, {ti}2, . . . , {ti}M

}
is a

multivariate Hawkes process if for all dimensions m ∈ 1..M
the intensity function λm(·) of {ti}m satisfies

λm(t) = λ⊥m +

M∑
m′=1

∫ t

0

k(t− w)dCm′(w) (5)

where λ⊥m is a constant parameter; Cm′(·) is the counting
function of {ti}m and k(·) is a response function which needs
to be integrable and positive. In this study, we forcus on the
exponential response function defined by

k(u) = αm,m′e−u·βm,m′ (6)

where αm,m′ and βm,m′ are constant parameters. In other
words, a parameter set for anM dimensional Hawkes process
with an exponential response function is a triplet in the form

P = 〈λ⊥, A,B〉 (7)

where

λ⊥ =
(
λ⊥1 λ⊥2 . . . λ⊥M

)T
(8)

A =


α1,1 α1,2 · · · α1,M

α2,1 α2,2 · · · α2,M

...
...

. . .
...

αM,1 αM,2 · · · αM,M

 (9)

B =


β1,1 β1,2 · · · β1,M
β2,1 β2,2 · · · β2,M

...
...

. . .
...

βM,1 βM,2 · · · βM,M

 (10)

where the decay parameters B can be reduced to an M
dimensional vector by assuming that all rows are identical.

For example, a fragment of a two dimensional Hawkes
process is shown in Figure 1. The crosses on the horizontal
axes record the times of occurrences of the two event. The
two serrated lines are the two intensity functions. Given
a time point t, let H(m, t) be the set of points that occur
before t in the m-th dimension. In other words,

H(m, t) = {t′ : t′ ∈ {ti}m and t′ < t} (11)

A sample or a data set of a Hawkes process up to time t,
denoted by D(t), is a set defined by

D(t) = {H(1, t), H(2, t), . . . , H(M, t)} (12)

Intensity evaluation is the computation of the intensity val-
ues of all dimensions, λ1(t), λ2(t), . . . , λM (t), given a pa-
rameter set P, a time point t, and a data set D(t).
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Figure 1: A Two Dimensional Hawkes Process

3. STRATEGY OF ACCELERATION
In this section, we first describe the data representation

scheme adopted in this study, and then analyse the data
dependence pattern in the intensity evaluation problem. We
finally develop a computing strategy to calculate multiple
intensity functions in parallel with a single data pass.

3.1 Data Representation
There are two major data representation schemes for point

process data. One is to store the the points in all different
dimensions in a single sequence. In this scheme, each point
is recorded in the form (ti, li) where ti is the occurrence time
and li is the corresponding dimension label.



The other data representation scheme is to store the points
in different dimensions into separate sequences. More specif-
ically, for an M dimensional point process, M sequences are
created. Each sequence contains all points in a single di-
mension. With this scheme, dimension labels for the points
are not required. In other words, the i-th event in the m-th
dimension is denoted by its occurrence time tm,i.

We selected the later data representation scheme because
we consider it more suitable for hardware design than the
former one. Not only does the absence of dimension label
reduces the memory space requirement but it avoids redun-
dant memory bandwidth consumption in data access. Fur-
thermore, it brings simplicity for the hardware design and
saves computing resources in the reconfigurable hardware.

3.2 Straightforward Computing Strategy
By Equation 5 and 6, the intensity function can be written

in a computable form

λm(t) = λ⊥m +

M∑
m′=1

∑
t′∈H(m′,t)

k(t− t′)

= λ⊥m +

M∑
m′=1

∑
t′∈H(m′,t)

αm,m′e−βm,m′ ·(t−t′) (13)

At a given time t, it is straightforward to compute the
intensity values λ1(t), λ2(t), . . . , λM (t) individually using
Equation 13. However, we consider such a strategy ineffi-
cient from the perspective of reconfigurable computing.

λ⊥ A B

λ(t)D(t)

1
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Figure 2: Data Dependence Pattern of the Original
Intensity Evaluation Strategy

We can appreciate this efficiency problem by analysing
the data dependency pattern which is shown in Figure 2. In
this figure, an edge from a vertex x to vertex y describes the
fact that x is a necessary element to compute y. If y can be
computed with a single access to x, then the edge is labelled
with ‘1’, otherwise it is labelled with a star.

This data dependence pattern suggests that if we directly
perform the computation following the definition, we may
only obtain one intensive value after passing through the
whole data set. Then it is unavoidable to access the whole
data set for M times to compute all the M intensity values.

In this study we aim to design a hardware architecture
to accelerate intensity evaluation. The bandwidth between
the memory and computation unit is limited. Therefore we
consider it memory-inefficient to obtaining only one inten-
sity value with a data pass.

3.3 Computing Multiple Intensity Values with
a Single Data Pass

With regard to the memory-efficiency problem discussed
in the previous subsection, we study the possibility and
methods of obtaining multiple intensity values simultane-
ously with a single data pass. Let λm1(t), λm2(t), . . . ,
λmc(t) be a group of c intensity values at time t. By Equa-
tion 13, 

λm1(t)
λm2(t)

...
λmc(t)

 =


λ⊥m1

λ⊥m2

...
λ⊥mc

+ s(t) (14)

where

s(t) =

M∑
m′=1


∑
t′∈H(m′,t) αm1,m′e

−βm1,m′ ·(t−t′)∑
t′∈H(m′,t) αm2,m′e

−βm2,m′ ·(t−t′)

...∑
t′∈H(m′,t) αmc,m′e−βmc,m′ ·(t−t′)

 (15)

To compute these intensity values, one only needs to com-
pute the M dimensional column vector s(t). We decompose
this vector as

s(t) =

M∑
m′=1

Um′vm′(t) (16)

where Um′ is a c× c diagonal matrix defined by

Um′ =


αm1,m′ 0 0 0

0 αm2,m′ 0 0
...

...
. . .

...
0 0 0 αmc,m′

 (17)

and vm′(t) is a c dimensional column vector defined by

vm′(t) =
∑

t′∈H(m′,t)


e
−βm1,m′ ·(t−t′)

e
−βm2,m′ ·(t−t′)

...

e−βmc,m′ ·(t−t′)

 (18)

The diagonal matrix Um′ is irrelevant to the data. All the
elements needed to construct Um′ can be directly extracted
from the m′-th column of the model parameter A. The
vector vm′(t) is the crucial part of the computation. Once
vm′(t) for all m′ ∈ 1..M are obtained, λm1(t), λm2(t), . . . ,
λmc(t) can be computed effortlessly using Equation 14, 16, 17
and 18. However, the value of this vector depends on all his-
torical events. Therefore the computation of this part be-
comes the efficiency bottleneck when the number of points
in the data set is large.

Note that the data dependency underlying our proposed
computation strategy shown in Figure 3 is different from
that of the straightforward method shown in Figure 2. In
particular, with our proposed strategy, the data set is only
accessed once to compute all the c intensity values.

We consider this property valuable for developing hard-
ware acceleration solution. In a hardware design, it is usu-
ally the memory access time, rather than the logical re-
sources, that limits the performance and scalability of the
hardware. Obtaining multiple results with one data pass
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Figure 3: Data Dependence Pattern of our Proposed
Evaluation Strategy

improves the memory efficiency. This is especially beneficial
when the number of dimensions is large.

4. HARDWARE DESIGN
As we have discussed in the previous section, obtaining

vm′(·) is the most computationally expensive process. In
this section, we accelerate this part by designing and opti-
mising a pipelined hardware architecture. We first propose a
basic architecture and explain its core component, the glove.
We then propose a method to combine multiple gloves to
promote data parallelisation.

4.1 Basic Architecture
We propose an architecture, which is shown in Figure 4, to

compute vm′(·) following Equation 18. The major business
part of the architecture, which we call a glove, is enclosed in
the large rounded square in the figure. For ease of discus-
sion, we refer to a component in charge of accumulating the
statistical information for a single dimension as a finger. It
is necessary to deploy c fingers in a glove to compute the c
intensity values in a single data pass.
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Figure 4: Basic Architecture with a Single Glove

The output of the i-th finger is accumulated using an
adder and a chain of buffer registers, ri. When a data
instance in the m′-th dimension is streamed into the en-
gine, the contribution of this data point towards all the c

components in vm′(t) computed and accumulated in par-
allel. When all the data instances in the m′-th dimension
have been streamed into the engine, the entries in vector
vm′(t) can be harvested respectively from buffer chain r1,
r2, . . . , rc. When all the data are processed, vm′(t) for all
m′ ∈ 1..M are obtained. The host computer then calcu-
late λm1(t), λm2(t), . . . , λmc(t) using Equation 14, 16, 17
and 18.

4.2 Data Parallelisation
An ideal situation for the single-glove architecture is that

the number of fingers c is a factor of the number of dimen-
sions M . In this situation, all the M intensity values can
be computed with exact M/c data passes. No finger in the
architecture is idle during the computation, and therefore
the maximum performance can be achieved. If c is not a
factor of M , we need dM/ce data passes to finish the com-
putation of all intensity values, and in some data passes,
certain fingers of the glove are not active and therefore the
maximum performance cannot be obtained. Practically, we
may maximise c with respect to the limitation of hardware
resources on a particular platform to allow the demonstra-
tion of maximum performance. However, we also expect to
reduce c to avoid or reduce idleness.

Note that (i) the memory bandwidth requirement of the
single-glove architecture is both small and constant; and
(ii) there is no particular computational order in the sum-
mation operation in Equation 18. These two facts suggest
that we may take advantage of data parallelism to maximise
resource usage without increasing the number of fingers c.

We propose to deploy a group of g gloves in the way shown
in Figure 5 to exploit the data parallelism. More specifically,
we break data stream into g segments with identical or sim-
ilar length and stream them into the g gloves in parallel.
Then we add up the outputs of the i-th fingers of all gloves
and accumulate the results.
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Figure 5: Exploiting Data Parallelisation by Com-
bining g Gloves

5. EXPERIMENTAL EVALUATION
We implement our proposed architecture in an FPGA-

based acceleration device and evaluate it by four case stud-
ies. In this section, we first present the general experimental
settings and then present and discuss experimental results.



Table 1: Case Studies
No. Area of study M
1 Order Book Reconstruction (1 Stock) [10] 4
2 Earthquake analysis (10 Geological Areas) [9] 10
3 Stock Trading Behaviour Modelling (10 Stocks) [5] 20
4 Neurone Activity Modelling (32 Neurones) [3] 32

5.1 Experimental Settings
We implement our hardware design using a Maxeler MAX3

acceleration system in a fully-pipelined manner. This sys-
tem is equipped with a Xilinx Virtex-6 FPGA. It communi-
cates with the host computer via a PCI-Express interface.
The hardware is described in the MaxJ language and com-
piled with Maxeler MaxCompiler.

The focus of this paper is to develop our parallelisation
strategy and corresponding hardware design rather than ex-
ploiting the performance or resource efficiency of a particu-
lar implementation. In the experimental system, we deploy
4 gloves, each of which contains 32 fingers. The clock fre-
quency of the FPGA is set to 100MHz for fast compilation.

We also build an implementation that runs exclusively
on the CPU platform using the OpenMP library. To make
a fair comparison, we perform a series of optimisations on
this implementation, including avoiding redundant memory
access and selecting best parallelisation scheme.

Both the host code for the FPGA implementation and
the pure CPU implementation are written in the C pro-
gramming language and compiled with the Intel C compiler
with the highest compiling optimisation. The IEEE single
precision floating point numbers are used in both hardware
and software systems in our experiments. Both systems
are invoked in a server with an Intel Xeon CPU running
at 2.67GHz and 48GB DDR3 memory.

The general information of the case studies are listed in
Table 1. For each problem, we generate test data sets with
different sizes L from 104 to 109.5, using the thinning proce-
dure [8]. A data set is loaded in the main memory of the host
computer before the computation begins. The data are then
transmitted to the acceleration system via the PCI-Express
interface in real time during the computation. The perfor-
mance is measured by the execution time of computing all
the M intensity values.

5.2 Results and Discussion
Experimental results are shown in Figure 6. Each column

of the figures corresponds to a case listed in Table 1. The
first two rows of figures record the performance of the FPGA
and CPU implementations respectively. We record the data
size in log scale with base 10 in these figures. To reflect
the trend of the increment of the execution time, we also
record the the execution time in log scale. Note that a small
difference along the vertical axis in each figure means a huge
difference in execution time due to the properties of the
logarithm function. The third row of the figures shows the
speedup of the FPGA implementation over one core and
eight cores. We do not take the logarithms of these numbers.

The CPU implementation works well on eight cores. It
is consistently around 7.5 times faster than a single core in
all tested cases. The speedup of the FPGA implementation
over the CPU implementation increases as the size of data
set grows. The maximum speedup we observe across all the
case studies is in Case 4 when the data size reaches 109.5.

The FPGA implementation is 94 times, and 12 times faster
than the CPU implementation on a single core and eight
cores respectively.

The execution times of the CPU implementation increase
linearly as the data size grows. However, the growth pattern
of the FPGA implementation appears irregular. In all cases
except Case 1, there are huge leaps when the data size rises
from 104 to 105. We are unsure about the reason behind
these leaps, but they are likely to be caused by the hard-
ware platform rather than the design. After this leap, the
increment follows a convex function. Note that a convex
increment pattern suggests a better performance than a lin-
ear one. It means that when the size of the data grows by
h times, the execution time grows less than h times. This
is because, while the execution time spent on the pipeline
grows linearly with the size of the data set, the overhead,
including hardware initialisation time and post-processing
time of the host computer, does not increase.

The execution time for a fixed data size is similar across
the four case studies regardless of the number of dimensions.
This is not surprising because the numbers of dimensions in
all cases are less than or equal to the number of fingers c
in each glove. Therefore the engine is capable of handling a
data set with one pass through the data. As a result, the
time spent on the pipeline processing for difference data sets
are identical, and the small difference in the total execution
times is brought by the different efforts on post-processing
times in the host computer.

6. CONCLUSION
This paper presents a hardware architecture that acceler-

ates intensity evaluation for multivariate Hawkes point pro-
cesses. To the best of our knowledge, our work is the first to
design hardware acceleration solution for point processes.

Rather than directly mapping the definition of the in-
tensity values to a hardware architecture, we analyse the
data dependence pattern in the computation, and present a
strategy of acceleration to enable multiple intensity values
to be computed with a single pass through the data. We
then propose a hardware architecture based on our strat-
egy, and optimise it by taking advantage of the data paral-
lelism. Our experimental system implemented in a Vertex-6
FPGA achieves up to 94 times and 12 times speedup over a
single-core CPU and an 8-core CPU respectively.

This work shows the potential of reconfigurable comput-
ing for accelerating point processes. Possible future work of
this study includes (i) integrating the intensity evaluation
engine with real-time predictive systems to forecast future
occurrences of events in situations such as high-frequency
trading; (ii) building performance models for the engine to
predict the performance for different parameter settings or
hardware platforms; (iii) developing acceleration systems for
point processes on other acceleration systems such as graph-
ics processing units (GPUs).
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Figure 6: Experimental Results
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