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Abstract—Ordinal analysis is a statistical method for analysing
the complexity of time series. This method has been used in
characterising dynamic changes in time series, with various ap-
plications such as financial risk modelling and biomedical signal
processing. Ordinal pattern encoding is a fundamental calculation
in ordinal analysis. It is computationally demanding particularly
for high query orders and large time series data. This paper
presents the first reconfigurable accelerator for this encoding
calculation, with four main contributions. First, we propose a
two-level hardware-oriented ordinal pattern encoding scheme to
avoid sequence sorting operations in the accelerator, enabling
theoretically best code compactness. Second, we develop a hard-
ware mapping method by promoting data reuse, by parallelising
arithmetic operations, and by pipelining the data path. Third,
we conduct an experimental implementation of the proposed
system, showing promising accelerated performance compared
to software solutions. Finally, we apply the proposed accelerator
to the computation of permutation entropy, demonstrating the
significant potential for acceleration that would benefit such
computation.

Keywords—ordinal analysis; customisable accelerator; permu-
tation entropy

I. INTRODUCTION

The study of time series is a crucial topic in many fields. In
particular, it is one of the essential foundations of biomedical
signal processing and financial computing. One important task
for time series analysis is to quantify the complexity of a
time series. A complexity measure is expected to reflect the
regularity and predictability of the time series. Ordinal analysis
is an approach to analyse the complexity of time series by
considering how subsequences in the time series are ordered.
This approach does not depend on a particular time series
model, and it is robust against various types of noise.

A practical problem of ordinal analysis is the lack of fast
encoding systems for ordinal patterns. This problem was not
significant at the time when the concept of ordinal analysis
was introduced. However, in recent years, data analysts began
to appreciate the value of microscopic statistical patterns in
large time series data. Therefore, the efficiency problem arose.
Moreover, the value of temporal data decays as time goes by.
It is critical to extract useful information as fast as possible
before the data become meaningless. As a result, it is desirable
to encode ordinal patterns of a time series as fast as possible.

Reconfigurable computing is a promising acceleration tech-
nology for encoding ordinal patterns, but all acceleration solu-

tions we know in existing work are based on CPU platforms. It
is challenging to design a reconfigurable accelerator for ordinal
pattern encoding because the calculations involve operations
such as sequence sorting that do not have efficient hardware
implementations.

We address this challenge and propose the first reconfig-
urable accelerator for ordinal pattern encoding. A highlight of
our solution is that we do not follow the encoding schemes in
existing software solutions. Instead, we derive a novel encod-
ing scheme and computational routines from the perspective of
hardware design. This solution is both fast and scalable, and
hence particularly useful for encoding ordinal patterns for large
time series data and high query orders. Our key contributions
are as follows.

• A two-level ordinal pattern encoding scheme that
avoids sequence sorting and reduces data transmission.

• A pipelined hardware architecture for the proposed
encoding scheme.

• An experimental implementation on a commercial
FPGA-based accelerator.

• A case study applying our encoding engine to the
calculation of permutation entropy

The aim of our study is not just to accelerate the ordinal
pattern encoding for a particular application. Instead, we hope
to accelerate this form of calculation in general. Our proposed
accelerator can be applied to most ordinal analysis problems
with little or no modification.

The rest of the paper is organised as follows. Section II
briefly describes the ordinal pattern encoding problem and
reviews acceleration solutions for statistical data analysis.
Section III presents our proposed pipeline-friendly ordinal
pattern encoding algorithm and discusses its hardware-oriented
features. Section IV describes a hardware design based on
mapping our algorithm to a fully-pipelined architecture. Sec-
tion V provides experimental results of an implementation
of our proposed hardware design, and explains experimental
observations. Section VI describes a case study applying our
proposed architecture to calculate the permutation entropy for
time series. Section VII concludes this paper and discusses
possible future work.



II. BACKGROUND

Ordinal analysis is a statistical method to investigate the
complexity of time series. In this section, we first introduce
ordinal analysis and ordinal pattern encoding. We then discuss
existing acceleration solutions for ordinal analysis and other
time-series processing methods.

A. Ordinal Pattern Encoding

Given a sequence of n distinct values b = (b1, . . . , bn),
the ordinal pattern of b is mathematically described by a per-
mutation π = (k1, . . . , kn), such that b′ = (bk1

, . . . , bkn
) is in

ascending order. For instance, the sequences b = (b1, b2, b3) =
(5, 2, 4) satisfies b2 < b3 < b1. Therefore, the ordinal pattern
of this sequence is (2, 3, 1).

Given a time series x = (x1, . . . , xT ) and an integer
n ∈ [1..T ], we know that x contains (T − n + 1) contiguous
subsequences with length n. Ordinal patterns of these subse-
quences contain rich information about chaotic properties of
the time series.

Ordinal analysis refers to the study of the distribution
of these ordinal patterns. One may use such distributions to
detect dynamic changes, to estimate the predictability, and to
gather information for regression or classification. In order to
estimate the ordinal pattern distribution, the first step is to
extract all ordinal patterns in the time series and encode them
in a predefined format. This calculation is typically referred to
as ordinal pattern encoding. The length of the subsequence we
consider is the query order of the encoding problem. Ordinal
pattern encoding is time-consuming for large time series data
or high query orders.

The encoding procedure is computationally intensive in
terms of arithmetic operations, but it only requires sequential
access to the time series data. We consider it beneficial to
encode ordinal patterns with a pipelined data engine using
a reconfigurable acceleration device. The abundant logical
resources in modern reconfigurable devices enable the arith-
metic operations to be efficiently parallelised and pipelined.
Moreover, it is practically attainable to use a large off-chip
memory to store the time series data. As long as the memory
provides adequate reading bandwidth for sequential access, it
may feed the data to the accelerator efficiently without causing
data starving.

B. Accelerating Time Series Processing

Hardware acceleration for time series data processing has
not been well-studied. It is only in recent researches that
acceleration systems based on GPUs and FPGAs are proposed
to process time series data.

Guo and Luk [1] classifies acceleration solutions for time
series processing into two categories namely pattern matching
accelerators and correlation analysis accelerators. The first type
of accelerators focus on matching and aligning problems for
time series. For instance, Sart et al. [2] propose acceleration
solutions to speed up dynamic time wrapping (DTW) for
sequences using GPUs and FPGAs. The aims of these studies
are to solve sequence matching problems which do not involve
the discovery of underlying patterns of time series data from
a statistical perspective. The second type of accelerators aim

at discovering the self-correlation in univariate time series or
the cross-correlation between dimensions in multivariate time
series. For instance, Gembris et al. [3] present a real-time
system to detect correlations among multiple medical imaging
signals using GPUs.

Ordinal pattern encoding is computationally demanding,
but it belongs to neither of the above two categories. The only
acceleration solution we know is based on a CPU platform [4].
They accelerate the calculation of permutation entropy, which
is a particular ordinal analysis technology. They claim that
their experimental implementation to process around 3 × 106

data entries with query order 3 in one second.

III. TWO-LEVEL ORDINAL PATTERN ENCODING

We propose a two-level encoding scheme for ordinal
patterns for ease of hardware computation. The first level
of encoding produces an intermediate representation for an
ordinal pattern without sorting. The second level of encoding
compresses the intermediate representation to a compact final
result. In this section, we describe the two levels of encoding
scheme and discuss their properties.

A. Sorting-Free Ordinal Pattern Encoding

Permutations are natural representations of ordinal patterns,
while sorting is a straightforward way to encode the ordinal
pattern of a sequence into a permutation. Specifically, one may
first store the data entries in value-index pairs, and then sort
these pairs by their values. The encoded permutation can be
obtained by collecting the indexes sequentially. For instance,
let (6, 8, 2) be a subsequence in a time series. We first associate
the index of each number to the number itself and obtain (6−
1, 8 − 2, 2 − 3). Sorting the pairs by the value, we get (2 −
3, 6−1, 8−2). Therefore, the ordinal pattern in the permutation
representation is (3, 1, 2).

Although this sorting-based method is straightforward, we
propose to avoid sorting in our solution because we consider
sorting unsuitable for reconfigurable hardware. There are two
types of sorting algorithms namely comparison-based sorting
and non-comparison-based sorting.

Non-comparison-based sorting algorithms usually have bet-
ter time complexity compared with comparison-based algo-
rithms. Nevertheless, they may not be effectively applicable
to real-world time series data. The amount of fast memory
required by a non-comparison sorting algorithm depends on
the number of distinct values in the sequence. The number of
distinct values may be as large as the length of the time series
data, but the amount of fast memory in a hardware platform
is usually very limited.

Comparison-based sorting algorithms are mathematically
acceptable for time series data. There are papers adopting
reconfigurable architectures for sorting sequences [5], [6],
[7], [8]. However, these architectures are typically expensive
in terms of hardware resources. This is because, to sort a
sequence of n values, the theoretical lower bound of the
number of comparison operations is n log2 n. In terms of
hardware computation, although it is possible to use any
number of comparators to perform the computation, one needs
to deploy at least n log2 n comparators to make the design fully



pipelined. Furthermore, one needs to plan additional data paths
and buffers to support at least n data movement operations.

To avoid sorting, we first encode the ordinal pattern of a
sequence into a Lehmer code rather than a permutation. Let
x = (x1, . . . , xn) be a sequence of length n, the Lehmer code
of x is also a sequence with length n in the form L(x) =
(l1, . . . , ln) where

li = #{xj : i < j, xj < xi} (1)

and #S is the cardinality of set S.

In other words, li is the number of entries in the sequence
appearing after xi and smaller than xi. For instance, the
Lehmer code of the sequence x = (3, 9, 5, 1, 7, 4, 8) is L(x) =
(1, 5, 2, 0, 1, 0, 0). One property of this encoding scheme is that
one ordinal pattern uniquely maps to a Lehmer code. In other
words, the Lehmer code may serve as an alternative to the
permutation in terms of representing ordinal patterns.

Divergent algorithms are available for encoding the ordinal
pattern of a sequence to a Lehmer code. For instance, it is easy
to compute a Lehmer code from the corresponding permutation
representation, but this strategy brings no improvement in
efficiency. One may also encode a sequence by calculating
Equation 1 for each entry, but this makes no fundamental
difference from sorting the sequence in terms of resource
consumption.

We aim to develop an encoding scheme that can effectively
use the on-chip hardware resources of a reconfigurable device.
Therefore, we hope to parallelise as many encoding operations
as possible. Two properties of the Lehmer code [9] draw our
attention:

1) If the Lehmer code of x = (x1, . . . , xn) is
L(x) = (l1, . . . , ln), then the Lehmer code of x′ =
(x2, . . . , xn) must be L(x′) = (l2, . . . , ln). In other
words, a Lehmer code entry li is independent of all
data entries xk such that k < i. Hence the removal
of data entry x1 directly result in the removal in the
corresponding Lehmer code entry l1.

2) If the Lehmer code of x′ = (x2, . . . , xn) is
L(x′) = (l2, . . . , ln), then the Lehmer code of x′′ =
(x2, . . . , xn, xn+1) must be in the form L(x′′) =
(l+2 , . . . , l

+
n , 0), where

l+i =

{
li + 1 if xi > xn+1

li otherwise
(2)

In other words, if we append one entry to a data
sequence, the corresponding Lehmer code entry must
be zero because it is structurally the last data entry.
If an entry xi in the original data sequence is larger
than the newly appended entry, then the Lehmer code
entry li needs to grow by one because a new inversion
is produced.

The two properties are key insights for our hardware
design. They enable the possibility for efficient hardware-based
ordinal pattern encoding. The sequences we encode are not
isolated. These sequences are subsequences from large time
series data. Therefore, as long as we encode the sequences
in their natural temporal order, a sequence to be encoded

is largely overlapped with the previous encoded sequence.
The above two properties enable us to encode a sequence
by updating the last encoding result. Let x = (x1, . . . , xT )
be a time series of length T , and let n be the query order.
Assume that the Lehmer code of a sequence (xk+1, . . . , xk+n)
has been computed. We can easily obtain the Lehmer code of
(xk+2, . . . , xk+n+1) using the two properties.

To encode the ordinal pattern of a sequence with length n,
we only need n− 1 comparison operations and at most n− 2
addition operations. This resource consumption is significantly
less than the sorting-based method. Therefore, given a fixed
amount of hardware resources, it is expected that we can
parallelise more encoding operations with Lehmer codes than
using permutations.

B. Compressed Ordinal Pattern Encoding

In a typical ordinal patterns analysis problem, encoding is
only the first step. The encoding results need to be further
processed in a general-purpose computer or another hardware
engine. Hence, it is needed to transmit the encoding result from
the reconfigurable accelerator to a different device. To avoid
potential data bandwidth bottleneck, the representation of an
ordinal pattern should be as compact as possible to allow more
data to be transferred per unit time.

We compress the Lehmer code into an unsigned integer
using the factorial number system [10], [11]. Let L(x) =
(l1, . . . , ln) be a Lehmer code of order n. We know that each
entry li must be a non-negative integer no larger than (n− i).
This is because there are no more than (n − i) data entries
appearing after xi. This property implies that a Lehmer code
can be treated as a number in the factorial number system.

C(x) = lnln−1 . . . l2l1! =

n∑
i=1

li · (i− 1)! (3)

For example, the Lehmer code (2, 3, 1, 0, 0) can be treated as
23100! in the factorial number system, which equals to 2 ×
4!+3×3!+1×2!+0×1!+0×0! = 68 in decimal or 1000100
in binary. In other words, we can use an unsigned integer to
represent an ordinal pattern.

To analysis the code compactness problem with a quan-
titative approach, we measure the minimum number of bits
required to store or transmit a single encoding result for
different encoding schemes.

• The compactness of the permutation representation is
not satisfactory. To store a permutation of order n, one
needs to store n unsigned integers, each of which is
in the range [1..n]. Each integer requires dlog2 ne to
store. As a result, the number of required bits is

bP (n) = ndlog2 ne (4)

• The compactness of the Lehmer code representation is
better than the permutation representation. As we have
discussed, each entry li of a Lehmer code L(x) must
be in the range [0..(n− i)]. It is unnecessary to record
the n-th entry because it is is always zero. Aside from
the n-th entry, the i-th entry takes dlog2(n−i+1)e bits
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Fig. 1: Number of bits required by each encoding scheme

to represent. As a result, the number of bits required
by Lehmer code is

bL(n) =

n−1∑
i=1

dlog2(n− i+ 1)e (5)

• The integer representation of the Lehmer code is more
compact than the other two methods. For any given
positive query order n, the code must be an non-
negative integer less than n!. Therefore, the number
of bits required to represent an ordinal pattern is

bC(n) = dlog2(n!)e (6)

We plot bP (n), bL(n) and bC(n) against the query or-
der n in Fig. 1. It can be observed form the figure that
bC(n) ≤ bL(n) ≤ bP (n) for all 1 ≤ n ≤ 20. In fact, we can
mathematically prove that this inequality holds for all query
orders. Moreover, we have proved that the number of bits
taken by a code in the unsigned integer representation is the
theoretical lower bound. In other words, the encoding results
from any other encoding scheme cannot be more compact than
the results from the proposed encoding scheme. Therefore, by
translating a Lehmer code to an unsigned integer using the
factorial number system, we actually compress the code with
the best possible compression ratio. This compactness of the
compressed code guarantees the lowest possible bandwidth
consumption from the reconfigurable accelerator to another
device.

The aim of encoding is to model the distribution of ordinal
patterns. Therefore, a necessary post-processing procedure is
to build histograms from the encoding results. The design of
an efficient histogram algorithm relies on the knowledge of
the set of all distinct encoding results. A designer may take
advantage of this set to simplify the design of the histogram.

The integer representation of Lehmer code ensures that
the permutation pattern of a sequence uniquely maps to an
unsigned integer in the range [0..(n! − 1)]. In particular,
sequences in ascending order correspond to 0; sequences with
length n in descending order correspond to (n! − 1). To
build a histogram, one only needs to maintain the counts of
ordinal patterns in a zero-based array of size n! indexed by
the encoding result.

In contrast to the integer representation, it is difficult to
build histograms for the other two representations. While it
is still possible to maintain the counts using an array indexed
by the encoding result, the array would be significantly longer
than that of the integer representation, because the maximum
encoding result is larger. In this case, one has to carefully
design a hash table for the histogram to reduce memory
consumption [12]. The hash table operations take more time
than the array operations of the integer representation.

IV. PIPELINED RECONFIGURABLE ACCELERATOR
FOR ORDINAL PATTERN ENCODING

We develop a hardware mapping method for the ordinal
pattern encoding scheme discussed in the previous section
taking advantage of the hardware-friendly properties. In this
section, we first illustrate the structure of the architecture and
explain the functions of the components. We then describe an
experimental implementation based on a commercial FPGA
acceleration platform.

A. Pipelined Datapath

We map the proposed two-level encoding scheme to a
pipelined datapath. The structure of the datapath is shown in
Fig. 2. The design parameter ℵ is the maximum query order
allowed. The time series data flows form the data source to a
first-in-first-out (FIFO) buffer for reuse. The data in the FIFO
buffer is then encoded as an unsigned integer.

The major part of the architecture consists of four com-
ponents namely the data buffer, the increment decider, the
Lehmer code reviser and the compressor. The first three
components correspond to the first level of encoding where
the time series subsequence in the data buffer is encoded
as a Lehmer code. The fourth component corresponds to the
second level of encoding where the Lehmer code is compressed
to an unsigned integer. Structures and functions of the four
components are as follows:

1) The data buffer is a first-in-first-out buffer that caches
a sequence of ℵ consecutive data elements of the
time series data. One may customise on-chip block
RAMs in the reconfigurable hardware to implement
this buffer. At the end of each cycle, the content of the
leftmost unit is discarded. Each storage unit except
the rightmost one in the FIFO buffer takes the data
from its right neighbour. The rightmost unit reads one
entry from the data stream.

2) The increment decider is a group of (ℵ−1) compara-
tors. These comparators correspond to the comparing
operation in Equation 2. Each comparator takes two
inputs. Every unit of the data buffer except the right-
most one contributes one input of the comparator. The
rightmost unit in the data buffer serves as the other
input of each comparator. A comparator is expected
to produce 1 if the input from the rightmost buffer is
smaller than the other input.

3) The Lehmer code reviser consists of (ℵ − 1) adders
and (ℵ − 1) buffer units. The buffer units caches a
Lehmer code of the latest encoded sequence. Each
unit of the buffer is an input of an adder, while
the output of the increment decider provides another
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input. This component is in charge of updating the
Lehmer code using Equation 2.

4) The compressor is composed of (ℵ − 1) multipliers
and a single adder. This structure corresponds to the
compressing operation in Equation 3. Each multiplier
multiplies its input by the factorial of a constant
integer n in [1..ℵ]. The adder then sums up the
products of all constant integers.

Before using the pipeline to encode sequences, we allow
the user to disable multipliers in the compressor by forcing
their output to be zero. When the query order n is less than
ℵ, one needs to disable the first (ℵ − n) constant multipliers
before streaming data into the pipeline.

Suppose the Lehmer code cache is storing the Lehmer code
of the current sequence in the data cache. When the data source
feeds a new data entry to the data cache, the encoding process
for the sequence in the data cache begins. The Lehmer code
reviser obtains the sequence from the data cache and revise
the code using Equation 2. Then the compressor fetches the
code from the Lehmer code buffer and compress it to an
unsigned integer using the factorial number system. Finally
the reconfigurable accelerator sends the compressed code to
the host computer.

When implementing the proposed architecture, an engineer
may conduct a series of optimisations to maximise the perfor-
mance. For instance, the engineer may enable fully pipelined
hardware execution by inserting buffers along the datapaths
and by rescheduling the data stream. In addition, we note that it
is unnecessary to use standard multipliers in the datapath. One
input of each adder is the output of a comparator. This signal
must be either zero or one. Therefore, an adder is satisfactory
as long as it can add an integer by one. Furthermore, one input
of the multiplier must be the factorial of a constant integer. As
a result, a constant integer multiplier [13], [14], an input of
whom must be a predefined constant, is competent for the
multiplication operation. These constant multipliers consume
less hardware resources than fully functional ones.

B. An Experimental Implementation

We build an FPGA implementation of the proposed ac-
celerator. The hardware platform we use is a Maxeler MAX3
acceleration card. This card is equipped with a Xilinx Virtex-6

SX475T FPGA and 48GB of DRAM. The card is installed in
a host computer with four Intel i7-870 CPU cores running at
2.93GHz and 16GB DDR3 memory. Each CPU core contains
two logical cores with Intel hyper-threading technology. The
acceleration card communicates with the host computer via an
8-lane PCI Express 2.0 interface. The clock frequency of the
FPGA is set to 100MHz. The hardware design is described
in the MaxJ language and compiled to VHDL with Maxeler
MaxCompiler. The CPU code in the host computer is written
in the C programming language with the OpenMP library.

The maximum query order for our implementation is ℵ =
12. One consideration behind this setting is that appropriate
query orders for real-world problems are typically small. The
order 7 is sufficiently high for many real-world problems [4],
[15]. Moreover, we are unable to find any problem that requires
a query order larger than 12 in terms of statistics. The other
consideration is that 12 is the highest order such that an
encoding result fits a 64-bit unsigned integer. Therefore, with
this setting, we may keep the simplicity and efficiency of the
implementation by avoiding arbitrary-precision arithmetic.

It is possible to promote data parallelism by running mul-
tiple datapaths in parallel. A designer may use fewer datapaths
to fit a smaller FPGA, or more datapaths to exploit available
resources. In our experimental implementation, we deploy 6
datapaths in the FPGA chip to use up the I/O bandwidth.

The time series data are recorded in the IEEE single
precision floating point number format. In real-world appli-
cations, the ordinal encoder receives the data stream from a
data source. To simulate this situation, we load the data to
the DRAM of the acceleration card and treat the DRAM as
the data source. The encoding results are transmitted from the
acceleration card to the main memory of the host computer.
The data bandwidth consumption from the on-board DRAM to
the FPGA chip is around 2.24GB/s. The encoding results are
represented in 32-bit unsigned integers. They are transmitted to
the host computer via the PCI Express interface. The memory
bandwidth consumption for result transmission is also around
2.24GB/s. The whole design only consumes 20.36% of fine-
grained logic, 4.17% of DSPs and 10.01% of block RAM in
the FPGA chip.

V. EXPERIMENTAL EVALUATION

We conduct an experimental evaluation to test the perfor-
mance of the proposed architecture. In this section, we first
describe the experimental configuration, and then discuss the
performance results.

A. Experimental Configuration

To make a fair comparison, we only evaluate the systems
with identical post-processing efforts. Therefore, we do not
compare the proposed architecture with those based on the
permutation representation or the Lehmer code representation.
In particular, we focus on the hardware implementation de-
scribed in section IV-B and a software implantation on a CPU
platform. To make a fair comparison, we implement the CPU
version on the host computer of the FPGA accelerator. We
manually optimise the code and compile it using the Intel
C/C++ compiler with the highest compilation optimisation.
Since the performance of an encoding engine is not related to



the distribution of the data, we use randomly generated time
series data to test our proposed architecture.

We validate the correctness of our implementation using
the same data for performance evaluation. We compare the
histogram generated by our system with the one produced by
the MATLAB implementation described in [16]. We observed
no difference between the two histograms in all tests.

B. Performance of Acceleration

The performance results are shown in Fig. 3. The first two
plots record the execution times in ordinal pattern encoding
for query orders n = 6, 12. To observe the performance for
different data size scales, we generate data with lengths from
105 to 109. Lengths of time series and the execution times
are plotted in log scale with base 10 in these figures. A small
difference along the vertical axis means a huge difference in
execution time. The time of loading data to the DRAM is
not considered because in real-world problems, the encoding
system may obtain data directly from a data source without
loading the data into memory.

The last two plots in Fig. 3 show the speedups of the FPGA
system over the CPU system with one thread to eight threads.
The speedup of the FPGA system is higher for larger time
series data because the execution time of the FPGA system
includes an initialisation time. This time becomes insignificant
when the data set is large. It is expected that a speedup reaches
its maximum value when the data is sufficiently large and the
initialisation time becomes negligible.

For the same data size, the speedups with n = 12 are higher
than those with n = 6. We set ℵ = 12 for each datapath.
Therefore, when n = ℵ = 12, all computational resources
in the architecture participate in the computation. In contrast,
when n = 6, the system does not work at its full capacity
because ℵ − n = 6 multipliers are disabled in each datapath.

The maximum speedup is observed when the query order
n is 12 and the data size reaches 109. In this case, the FPGA
implementation is respectively 62 times, 33 times, 19 times
and 12 times faster than the CPU implementation running
on one thread, two threads, four threads, and eight threads.
We estimate the energy consumption of the workstation using
an external energy meter, the FPGA implementation is also
22 times and 4 times more energy-efficient than the CPU
implementation with one thread and eight threads.

VI. CASE STUDY: CALCULATING PERMUTATION
ENTROPY

Permutation entropy [15] is a real number that measures the
statistical complexity for a time series. This quantity is similar
to the Shannon entropy [17] for non-temporal data. However,
they are very different in a statistical sense since the permuta-
tion entropy contains information about unique features of time
series data such as self-coherence. The permutation entropy is
widely used to detect dynamic changes [18] and to estimate
the predictability [19] for time series. However, due to the lack
of efficient ordinal pattern encoders, the calculation of this
entropy, particularly for high-order queries, is computationally
demanding.

A. Definition and Applications

One may estimate the probability distribution of all ordinal
patterns in a time series using their relative frequencies. For
each unique ordinal pattern πm, the relative frequency is

p(πm) =
#{t : F(xt+1, . . . , xt+n) = πm}

T − n+ 1
(7)

where F(b1, . . . , bn) is the encoding result of the ordinal
pattern of (b1, . . . , bn). The permutation entropy of query
order n, denoted by H(n), is the information entropy of the
distribution of ordinal patterns expressed by

H(n) = −
M∑

m=1

p(πm) log2 p(πm) (8)

For instance, the time series x = (6, 8, 2, 4, 7, 3) contains
four contiguous sequences with length 3, namely (6, 8, 2),
(8, 2, 4), (2, 4, 7) and (4, 7, 3). The ordinal patterns for the
four sequence are respectively (3, 1, 2), (2, 3, 1), (1, 2, 3)
and (3, 1, 2). There are three unique ordinal patterns namely
π1 = (3, 1, 2), π2 = (2, 3, 1) and π3 = (1, 2, 3). The ordinal
pattern π1 appears twice while each of π2 and π3 appears only
once. Therefore, the relative frequencies for the three unique
patterns are p(π1) = 0.5, p(π2) = 0.25 and p(π3) = 0.25.
The permutation entropy with query order 3 is H(3) =
−(0.5 log2 0.5 + 0.25 log2 0.25 + 0.25 log2 0.25) = 1.5.

Permutation entropy is a widely used complexity measure
for time series. A major application area of this measure is
bioscience signal processing. For instance, Olofsen et al. [20]
calculate the permutation entropy of the electroencephalogram
(EEG) in order to quantify the effect of anaesthetic drug.
Frank et al. [21] use permutation entropy to analyse heartbeat
sequences. They conclude that permutation entropy signifi-
cantly improves the classification accuracy of fatal behavioural
states. Nicolaou et al. [22] use permutation entropy of the
EEG as a feature to characterise different stages of sleeping.
Another application area of permutation entropy is financial
computing. For instance, Zunino et al. [23] propose to use this
measure to describe the degree of stock market inefficiency.
They also successfully use this measure to predict the stage
of stock market development. Ruiz et al. [24] suggest the
use of a modified version of permutation entropy to estimate
uncertainty and volatility in markets. Ortiz-Cruz et al. [25]
use permutation entropy along with other entropy measures
to analyse the dynamics of crude oil market and discuss the
relationship between such measures and economic conditions.

B. System Design

We divide the calculation of permutation entropy into
three major operations: (i) ordinal pattern encoding where
ordinal patterns of all sequences are encoded; (ii) histogram
construction where a histogram is built to store the count
of all unique ordinal patterns following Equation 7; and (iii)
entropy computation where the distribution of ordinal patterns
is extracted from the histogram and the permutation entropy
is calculated by Equation 8.

The ordinal pattern encoding is the most time-consuming
procedure. We accelerate this part using the architecture pro-
posed in Section IV. The other two operations are unsuitable
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Fig. 3: Performance results

for reconfigurable architectures. Both calculations rely on a
histogram, the maintenance of which needs random memory
access. It is impossible to avoid the randomness because one
may never predict the encoding result of the next ordinal
pattern.

Fast memory resources such as on-chip block RAM in
FPGAs are able to support efficient random memory access.
However, the storage capacity of the fast memory resources
in a commercial reconfigurable device is usually far too small
even for a moderate-sized histogram. The number of entries
in the histogram H is no more than the number of distinct
ordinal patterns of order n in the time series. Specifically, the
number of entries must be fewer than the minimum of (i) the
number of subsequences in the time series and (ii) the number
of permutations of order n. In other words, if we denote the
maximum number of entries in the histogram by |h|, then we
have

|h| ≤ min{(T − n+ 1), n!} (9)

For instance, assume that a histogram entry only stores the
count of the corresponding ordinal pattern, and each count fits
a 32-bit unsigned integer. To evaluate a permutation entropy
with query order 5, the fast memory resources required by
the histogram far exceed the available resources in a Xilinx
V6-SX475T FPGA device.

To avoid random memory access to off-chip memory from
the reconfigurable device, we propose to encode ordinal pat-
terns in the reconfigurable accelerator but finalise the remain-
ing two calculations in the general-purpose host computer. The
accelerator receives the time series data stream and encodes the
ordinal pattern for each sequence. Once the accelerator finishes
producing the encoding result for a subsequence, it transmits
the resulting code to the host computer. The computer updates
the histogram when it receives a code from the reconfigurable
accelerator. At all times, the histogram maintains the counts
for each possible code. Once the host computer receives a code
from the accelerator, it increases the count of this code by one.

When the host computer has received and stored the codes
of all sequences in the time series data, it is then possible to
calculate the permutation entropy. We extract the distribution
of ordinal patterns by calculating the relative frequency for

each unique code in the histogram. We then compute the per-
mutation entropy by taking the standard information entropy
following Equation 8.

C. Evaluation with Real-World Data

We use two large data sets to test the performance of the
proposed hybrid permutation entropy calculator. One data set
is an EEG data set with 3750 records, each containing two
time series. Each time series has 10240 entries. Another data
set is a single time series taken from the foreign exchange
market. This time series records the exchange rate between
the United States dollar and British pound sterling in January
2014 with 100Hz sample rate. The length of this time series
is 267840000.

We calculate the permutation entropy for all the time series
in each data set. We then record the total execution time for the
two experimental systems. All operations in the CPU platform
are executed on a single core. The performance results are
shown in Table I. The execution times for the CPU-only system
and the CPU+FPGA system are respectively recorded in the
third and fourth column in the table. The fifth column, titled
‘Speedup(L)’ shows the limited speedups of the CPU+FPGA
system over the CPU-only system considering both the his-
togram construction time and the entropy calculation time.
These speedups are limited by the memory bandwidth of
our experimental device. The sixth column with the title
‘Speedup(I)’ records the ideal speedups by assuming that
the encoding operation takes negligible time. A value in this
column is the theoretical upper bounds of the corresponding
experimental configuration if the performance of the CPU
remains unchanged. The last column records the gaps between
the limited speedups to the ideal speedups in percentage.

The CPU+FPGA system achieves 5-11 times speedup over
the CPU-only system in the tests. We observe lower speedups
in permutation entropy calculation than ordinal pattern encod-
ing. This is because the histogram update procedure in the
host computer takes a considerable amount of time. We also
observe that the best speedup is not obtained with the highest
query order. This is different from the observation concerning
ordinal pattern encoding. This is because, when the query
order is higher, the construction of histogram takes longer



TABLE I: Performance for permutation entropy calculation

Data Order CPU C+F Speedup(L) Speedup(I) Gap
EEG 3 1.5405 0.2591s 5.9 times 13.5 times 56%
EEG 6 2.8846 0.2594s 11.1 times 24.8 times 55%
EEG 9 4.2769 0.3902s 10.9 times 17.3 times 36%
EEG 12 6.1952 1.1484s 5.3 times 6.1 times 12%
$/£ 3 5.3878s 0.8904s 6.0 times 13.5 times 55%
$/£ 6 10.0763s 0.9029s 11.1 times 24.9 times 55%
$/£ 9 15.0903s 1.3626s 11.0 times 17.2 times 36%
$/£ 12 21.4257s 3.9963s 5.3 times 6.1 times 12%

time than small query orders. Therefore, the overall speedup
is negatively affected even if we have high speedup in ordinal
pattern encoding.

Although the performance of the experimental system is
limited by the host computer, it is still significantly faster
than existing open-source software solutions. For example,
Unakafova et al. [4] discuss an acceleration solution for
permutation entropy using MATLAB. This software is the only
implementation we can find that addresses the computational
efficiency problem. In the experiment with EEG data set, the
solution in [4] fails to finish running in 4 hours when the query
order reaches 12. In this case, our system terminates in 1.1484
seconds. In other words, our solution is conservatively 12539
times faster than the one proposed in [4].

VII. CONCLUSION AND FUTURE WORK

This paper presents the first reconfigurable acceleration
solution for ordinal pattern encoding. We begin by proposing
a two-level permutation encoding scheme to avoid sequence
sorting operations in the accelerator, and to reduce the amount
of data transmission. We then develop a hardware mapping
method by promoting data reuse, by parallelising arithmetic
operations, and by pipelining the data path. We also build an
experimental system and conduct an evaluation to compare its
performance with software solutions. In addition, we conduct
a case study applying our proposed architecture to the calcu-
lation of permutation entropy.

Future work includes extending the architecture to cover
other ordinal analysis applications besides permutation entropy
calculation. One may further customise the architecture when
integrating it with particular applications.
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