
Accelerating Parameter Estimation for Multivariate
Self-Exciting Point Processes

Ce Guo
Department of Computing
Imperial College London

United Kingdom
ce.guo10@imperial.ac.uk

Wayne Luk
Department of Computing
Imperial College London

United Kingdom
w.luk@imperial.ac.uk

ABSTRACT
Self-exciting point processes are stochastic processes captur-
ing occurrence patterns of random events. They offer pow-
erful tools to describe and predict temporal distributions
of random events like stock trading and neurone spiking.
A critical calculation in self-exciting point process models is
parameter estimation, which fits a model to a data set. This
calculation is computationally demanding when the number
of data points is large and when the data dimension is high.
This paper proposes the first reconfigurable computing so-
lution to accelerate this calculation. We derive an accelera-
tion strategy in a mathematical specification by eliminating
complex data dependency, by cutting hardware resource re-
quirement, and by parallelising arithmetic operations. In
our experimental evaluation, an FPGA-based implementa-
tion of the proposed solution is up to 79 times faster than
one CPU core, and 13 times faster than the same CPU with
eight cores.

1. INTRODUCTION
The study of random processes is attracting attention

from researchers and practitioners in various areas. These
processes serve as powerful tools to analyse stochastic mech-
anisms. A self-exciting point process is a random process
that describes the occurrences of repeatable momentary ran-
dom events. This point process is particularly useful in
modelling random events whose occurrence patterns do not
follow obvious temporal distributions. Applications of self-
exciting point process models include crime detection [6],
high-frequency trading [1], earthquake analysis [4] and neu-
rone spiking analysis [2].

We focus on self-exciting point process models for multi-
variate data. To build such a model, one needs to estimate
an appropriate parameter set from data. This calculation is
computationally expensive for a data set with a long occur-
rence sequence or high dimensionality. On the other hand, to
adapt a model to a rapidly changing environment, one needs
to repeat the estimation frequently to incorporate newly ar-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’14, February 26–28, 2014, Monterey, CA, USA.
Copyright 2014 ACM 978-1-4503-2671-1/14/02 ...$15.00.
http://dx.doi.org/10.1145/2554688.2554765.

rived data. As a result, an acceleration solution for this
parameter estimation problem is in great demand.

Reconfigurable computing is a promising acceleration tech-
nology for this problem, but the best acceleration solution
we know in existing work [3] can only handle univariate data.
It is challenging to design a solution for the multivariate
case. The most time-consuming calculation in parameter
estimation, log-likelihood estimation, involves complex data
dependency. It is necessary and challenging to develop novel
and hardware-specific mathematical methods to eliminate
this data dependency.

In this paper, we address this challenge and propose the
first acceleration solution to the parameter estimation prob-
lem. The major contributions of this paper are as follows.

• An acceleration strategy for log-likelihood evaluation
which eliminates complex data dependency.

• A pipelined hardware accelerator for maximum likeli-
hood estimation based on the proposed strategy.

• An implementation of the proposed architecture on a
commercial FPGA acceleration card.

2. SELF-EXCITING POINT PROCESSES
In this section we provide a short introduction to multi-

variate self-exciting point processes and the parameter esti-
mation problem.

A sequence of random variables, {ti} = (t1, t2, t3, . . .), is
a univariate point process if and only if ti > 0 and ti < ti+1

for all i ∈ N+. The intensity of a point process {ti} at a
time point t is mathematically defined by

λ(t) = lim
h→0−

E
(C(t+ h)− C(t)

h

)
(1)

where

C(t) =
∑
ti≤t

1i∈N+ (2)

A multivariate point process with M dimensions is a col-
lection of M univariant point processes. In this research we
focus on the multivariate self-exciting point process whose
intensity functions satisfy

λm(t) = λ⊥m +

M∑
m′=1

∫ t

0

αm,m′e
−βm,m′ (t−w)dCm′(w) (3)

The property of such a point process is uniquely given by
a parameter set θ = 〈Λ⊥, A,B〉 where Λ⊥ = {λ⊥m : m ∈
[1..M]}, A = {αm,m′ : (m,m′) ∈ [1..M] × [1..M]} and B =
{βm,m′ : (m,m′) ∈ [1..M]× [1..M]}.

Parameter estimation for self-exciting point process mod-
els is the computation of a reasonable parameter set that
fits a model to a data set. This calculation is the critical
part in various applications related to point processes.

Parameter estimation can be achieved by maximum likeli-
hood estimation [7] where we compute at least one member
of the following set:

ΘMLE =
{
θ : (∀θ′)[L(θ,D(T)) ≥ L(θ′, D(T))]

}
(4)

where L(θ,D(T)) is the log-likelihood value calculated given
a parameter set θ and a data set D(T). The log-likelihood of
a multivariate self-exciting point process can be computed
by

L(θ,D(t)) =

M∑
m=1

Lm = Q+R+ S (5)

where

Q =

M∑
m=1

Cm(T)∑
k=1

log λm(tm,k) (6)

R = T

M∑
m=1

λ⊥m (7)

S =

M∑
m=1

hm(T) (8)

The search of parameters can be conducted by any general-
purpose optimisation algorithm. However, no matter what
algorithm is used, it needs to evaluate log-likelihood fre-
quently. This evaluation process can be computationally
expensive if the number of data points is large or the data
dimension is high [3]. Hardware acceleration solution to the
parameter estimation problem for multivariate self-exciting
point processes has not been developed. There are only par-
tial solutions [3, 5] based on simplified problem settings.

3. STRATEGY OF ACCELERATION
Log-likelihood evaluation is the most computationally ex-

pensive subroutine in parameter estimation. In this section,
we describe an acceleration strategy for log-likelihood eval-
uation.

3.1 Log-Likelihood Evaluation
Each observation in the data set is recorded in the form

oi = (ti,mi) where ti is the occurrence time and mi is the
corresponding dimension label.

For ease of discussion, we denote the number of data
points in the data set asN . If oi corresponds to tm,k, then we
let λ(oi) = λm(tm,k). As we have discussed, a log-likelihood
value can be computed by adding up three components by
Equation (5). By Equation (7), we know that it is easy to
compute R directly in O(M) time. (S+Q) can be computed
by

S +Q =

N∑
i=1

(si + qi) (9)

where

si =

M∑
m=1

αm,mi
βm,mi

(e−βm,mi (T−ti) − 1) (10)

qi = log λ(ok) (11)

(a) Straightforward evaluation (b) Hyper-recursive evaluation

Figure 1: Data dependency pattern in different in-
tensity evaluation methods

In other words, one may obtain (S + Q) by adding up
(si + qi) for all i ∈ [1..N]. The effort to compute (S + Q)
depends on the efficiency of intensity evaluation. We need
to evaluate λ(oi) for all observations oi for all i ∈ [1..N].
Moreover, to evaluate λ(oi), one needs to collect a piece of
statistical information from o1 to oi. The data dependency
pattern of this method is shown in Figure 1(a).

3.2 Hyper-Recursive Intensity Evaluation
We propose hyper-recursive intensity evaluation which en-

ables the log-likelihood to be computed without complex
data dependency. The key insight of this method is that
we introduce a group of intermediate variables that (i) con-
tain all necessary statistical information of all past points
for intensity computation and (ii) can be computed with a
hardware resource requirement that does not scale up with
data size N .

Finding such a group of intermediate variables is a very
difficult task from the perspective of statistics, information
theory and algorithm design, because this variable set needs
to be compact, informative and easy to compute. In this
study, we manage to find a set of variables that meet all these
requirements. We propose to use the following equations to
calculate intensities in a hardware-friendly manner:

λ(oi) = λ⊥mi +

M∑
m′=1

αmi,m′ri,m′ (12)

where

ri,m′ = ui,m′ + vi,m′ (13)

ui,m′ = e−βm∗,m′ (xi−xι(i,m∗))ωi,m′,mi (14)

vi,m′ = e
−βmi,m′ (xi−xι(i,mi))ψi,m′,mi (15)

ι(i,m∗) = sup{i′ : mi′ = m∗ and i′ < i} (16)

ωi,m′,m∗ =

{
ri−1,m′ if mi−1 = m∗

ωi−1,m′,m∗ if mi−1 6= m∗
(17)

ψi,m′,m∗ =

{
0 if mi−1 = m∗

ψi−1,m′,m∗ + φ̃i−1,m′,m∗ if mi−1 6= m∗

(18)

φ̃i−1,m′,m∗ =

{
e−βm∗,m′ (xι(i,m∗)−xi−1) if mi−1 = m′

0 if mi−1 6= m′

(19)

Equation (14) to (19) suggest that the variables ωi,m′,m∗
and φi,m′,m∗ for all (m′,m∗) ∈ [1..M]× [1..M] provide suffi-
cient information for intensity computation without involv-
ing complex data dependency.

We name this method hyper-recursive intensity evaluation
because the intensity is obtained from a two-layer recursive
computation. The mathematical derivation of this method
will be provided in a future publication.

This method is an excellent candidate for hardware im-
plementation. One reason is that the requirement for arith-
metic resources scales linearly with the dimensionality of the
problem M . Another reason is that the data dependency,
shown in Figure 1(b), is not related to the size of the data set
N . Moreover, updating operations for ωi,m′,m∗ and ψi,m′,m∗
can easily be parallelised.

Hyper-recursive intensity evaluation is arguably the most
general hardware-oriented algorithmic optimisation for pa-
rameter estimation, as there is no theoretical constraint in
the number of data dimensions. An existing work about
hardware-oriented adoption of univariate log-likelihood eval-
uation for self-exciting point process described in [3] is merely
a special case of hyper-recursive intensity evaluation when
M = 1. A detailed discussion of how our proposed method
relates to existing work will be provided in a future publi-
cation.

Moreover, hyper-recursive intensity evaluation can be used
with any likelihood-based parameter searching algorithm,
because it produces the same results as the straightforward
intensity evaluation.

4. PIPELINED ACCELERATOR FOR LOG-
LIKELIHOOD EVALUATION

In this section, we develop a pipelined architecture for the
hyper-recursive log-likelihood evaluation strategy described
in the previous section.

4.1 Hardware Design
We propose a basic hardware module called the intensity

evaluation cell to compute ri,m′ , ψi,m′,m∗ and ωi,m′,m∗ for
a data point oi and a dimension m′ following the hyper-
recursive intensity evaluation strategy discussed in the pre-
vious section. In other words, an intensity evaluation cell
does not provide the intensity value directly, but it collects
statistical information from data so that the intensity value
can easily be computed.

ψ
i-1,m',m*

ψ
i,m',m*

ω
i-1,m',m*

r
i-1,m'

ω
i,m',m*

ψ
i,m',m*

v
i,m'

ω
i,m',m* u

i,m'

u
i,m'

v
i,m' r

i,m'

r
i-1,m'

ω
i-1,m',m*

ψ
i-1,m',m*

r
i,m'

ω
i,m',m*

ψ
i,m',m*

ω module

ψ module
v module

u module
r module

Figure 2: Intensity evaluation cell

The structure of the intensity evaluation cell is shown in
Figure 2. The data input and the parameter set are omitted
for brevity. As shown in the figure, an intensity evaluation
cell contains five modules. The ω module and ψ module
compute Equation (17) and (18) respectively for ωi,m′,m∗
and ψi,m′,m∗. The u module and v module take the outputs
of the ωi,m′,m∗ and ψi,m′,m∗ respectively, and then evaluate
Equation (14) and (15) to produce ui,m′ and vi,m′ . The r
module calculates ri,m′ by adding up ui,m′ and vi,m′ .

We design a pipelined accelerator to finalise the log-likeli-
hood evaluation by combining multiple intensity evaluation
cells. The structure of the accelerator is shown in Figure 3.

r
i,1

r
i-1,1

ω
i-1,1,m*

ψ
i-1,1,m*

r
i,1

ω
i,1,m*

ψ
i,1,m*

IEC 1
r

i,1

λ
r

i,2

⋮
r

i,M

λ(o
i
) log

Σ

+

s s
i

r
i-1,2

ω
i-1,2,m*

ψ
i-1,2,m*

r
i,2

ω
i,2,m*

ψ
i,2,m*

IEC 2

r
i-1,1

ω
i-1,M,m*

ψ
i-1,M,m*

ω
i,M,m*

ψ
i,M,m*

IEC M

⋮

Figure 3: Log-likelihood evaluation accelerator

Each block marked with ‘IEC’ represents an intensity evalu-
ation cell. In this architecture, we deploy M intensity evalu-
ation cells to compute ri,1, ri,2, . . . , ri,M for each data point
oi. These results are passed to a λ module which computes
the intensity λ(oi) by Equation (12). In addition, we de-
sign the s module which computes si according to Equa-
tion (10). By accumulating the sum of log(oi) and si in an
accumulator, we can finally harvest the value of (S +Q) by
Equation (9).

4.2 An FPGA Implementation
We build an FPGA implementation of the proposed ac-

celerator. The hardware platform we use is a Maxeler MAX3
acceleration card. This card is equipped with a Xilinx Virtex-
6 V6-SX475T FPGA. The card is installed in a host com-
puter with eight Intel i7-870 CPU cores running at 2.93GHz
and 16GB DDR3 memory. The acceleration card commu-
nicates with the host computer via an 8-lane PCI Express
2.0 interface. The hardware design is described in the MaxJ
language and compiled to VHDL with Maxeler MaxCom-
piler.

The occurrence times of data points are represented in
IEEE single precision floating point numbers. The dimen-
sion labels are represented in 8-bit unsigned integers. We
validate the correctness and precision of the system by com-
paring its results with a MATLAB implementation using
simulated data sets with known parameters. The maximum
relevant error is less than 1.1 percent.

We deploy 14 intensity evaluation cells in the FPGA to
maximise resource usage. This implementation takes around
71 percent fine-grained logic, 38 percent of DSPs and 45
percent of block memory on the FPGA. Although the fine-
grained logic is the resource usage bottleneck in this par-
ticular implementation, we believe that the block memory
consumption will become the bottleneck when the number
of intensity evaluation cells increases. This is because such
resource consumption theoretically grows quadratically with
the number of intensity evaluation cells while the consump-
tion of other resources grows linearly.

The clock frequency of the FPGA is set to 120MHz. The
memory bandwidth of our acceleration platform is around
4GB/s. The actual consumption of our accelerator is only
around 0.56GB/s. This bandwidth consumption only de-
pends on the clock frequency and the number representation
scheme. If these two factors do not change, the memory con-
sumption will not change even if we deploy more intensity
evaluation cells in the system.

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
4

10
6

Data Size, N

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

FPGA−CPU

1 Core

8 Cores

(a) Rainfall, M=3

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
4

10
6

Data Size, N
E

x
e
c
u
ti
o
n
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

FPGA−CPU

1 Core

8 Cores

(b) Earthquake, M=8

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
4

10
6

Data Size, N

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

FPGA−CPU

1 Core

8 Cores

(c) Neuron, M=10

10
3

10
4

10
5

10
6

10
7

10
8

10
3

10
4

10
5

10
6

10
7

Data Size, N

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

FPGA−CPU

1 Core

8 Cores

(d) HighFreq, M=14

Figure 4: Experimental Results

5. EXPERIMENTAL EVALUATION
We use four data sets in the experiments, namely ‘Rain-

fall’, ‘Earthquake’ , ‘Neuron’ and ‘HighFreq’. These data
sets are sampled from four different real-world problems:
‘Rainfall’ is collected from three rainfall monitors; ‘Earth-
quake’ is based on the log of a micro-earthquake detector;
‘Neuron’ is extracted from a neuron spiking train data; and
‘HighFreq’ is adapted from a high-frequency currency trad-
ing log. The numbers of dimensions of these four data set
are 3, 8, 10, and 14 respectively.

We build a CPU-only implementation that runs exclu-
sively on the host computer of the acceleration card. This
implementation is programmed with the OpenMP library.
To make a fair comparison, we apply a series of optimi-
sations to this implementation, including avoiding redun-
dant memory access and selecting appropriate parallelisa-
tion scheme. Both the host code for the FPGA accelerator
and the CPU-only implementation are written in the C pro-
gramming language and compiled with the Intel C compiler
with the highest compiling optimisation.

The performance measure of the experiments is the exe-
cution time of log-likelihood evaluation. This performance
measure is independent of the selection of searching algo-
rithm. Experimental results for log-likelihood evaluation are
shown in Figure 4. We record the data size in log scale with
base 10 in these figures. To reflect the trend of the increment
of the execution time, we also record the execution time in
log scale. Note that a small difference along the vertical axis
in each figure means a huge difference in execution time due
to the properties of the logarithm function.

The FPGA-CPU system demonstrates higher speedup for
large data in general. The maximum speedup is achieved

when M = 14 and the data size reaches 107. In this case, the
FPGA implementation is respectively 79 times and 13 times
faster than a single-core CPU and an eight-core CPU for log-
likelihood evaluation. Moreover, we find that the FPGA-
CPU implementation consumes 31 times less energy than
the CPU-only implementation during the computation. A
detailed analysis of the experimental results will be provided
in a future publication.

6. CONCLUSION AND FUTURE WORK
This paper presents the first hardware acceleration so-

lution to the parameter estimation problem of multivari-
ate self-exciting point processes. We first develop an ac-
celeration strategy for log-likelihood evaluation. The core
method of the strategy is the hyper-recursive intensity eval-
uation which eliminates complex data dependency. This
strategy enables log-likelihood values to be computed in a
pipelined manner. By mapping the proposed strategy into
reconfigurable hardware, we design an accelerator for log-
likelihood evaluation which works for all likelihood-based
parameter searching algorithms. This accelerator evaluates
log-likelihood values efficiently, and its resource requirement
does not grow with the data size. One possible direction of
future work is to further improve the performance by ap-
plying application-specified optimisations. Another possible
direction is to develop point process models which natively
support hardware acceleration.

7. ACKNOWLEDGEMENT
This work is supported in part by the China Scholarship

Council, by Maxeler University Programme, by the Euro-
pean Union Seventh Framework Programme under grant
agreement number 257906, 287804 and 318521, by UK EP-
SRC, and by Xilinx.

8. REFERENCES
[1] C. G. Bowsher. Modelling security market events in

continuous time: Intensity based, multivariate point process
models. Journal of Econometrics, 141(2):876–912, 2007.

[2] R. Dahlhaus, M. Eichler, and J. Sandkühler. Identification of
synaptic connections in neural ensembles by graphical
models. Journal of neuroscience methods, 77(1):93–107,
1997.

[3] C. Guo and W. Luk. Accelerating maximum likelihood
estimation for Hawkes point processes. In International
Conference on Field Programmable Logic and Applications,
2013.

[4] Y. Y. Kagan. Statistical distributions of earthquake
numbers: consequence of branching process. Geophysical
Journal International, 180(3):1313–1328, 2010.

[5] S. W. Linderman and R. P. Adams. Discovering structure in
spiking data. In New England Machine Learning Day,
Cambridge, MA USA, 2013.

[6] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P.
Schoenberg, and G. E. Tita. Self-exciting point process
modeling of crime. Journal of the American Statistical
Association, 106(493):100–108, 2011.

[7] Y. Ogata. On Lewis’ simulation method for point processes.
IEEE Transactions on Information Theory, 27(1):23–31,
1981.

