
Accelerating Transfer Entropy Computation

Shengjia Shao, Ce Guo and Wayne Luk

Department of Computing

Imperial College London

United Kingdom

E-mail: {shengjia.shao12, ce.guo10, w.luk}@imperial.ac.uk

Stephen Weston

Maxeler Technologies

London

United Kingdom

E-mail: weston@maxeler.com

Abstract—Transfer entropy is a measure of information trans-
fer between two time series. It is an asymmetric measure based
on entropy change which only takes into account the statistical
dependency originating in the source series, but excludes depen-
dency on a common external factor. Transfer entropy is able
to capture system dynamics that traditional measures cannot,
and has been successfully applied to various areas such as
neuroscience, bioinformatics, data mining and finance. When time
series becomes longer and resolution becomes higher, computing
transfer entropy is demanding. This paper presents the first
reconfigurable computing solution to accelerate transfer entropy
computation. The novel aspects of our approach include a new
technique based on Laplace’s Rule of Succession for probability
estimation; a novel architecture with optimised memory alloca-
tion, bit-width narrowing and mixed-precision optimisation; and
its implementation targeting a Xilinx Virtex-6 SX475T FPGA.
In our experiments, the proposed FPGA-based solution is up to
111.47 times faster than one Xeon CPU core, and 18.69 times
faster than a 6-core Xeon CPU.

I. INTRODUCTION

In many applications, one needs to detect causal directions
between different parts of the system in order to understand
system dynamics and make estimations on its actual physical
structure. This often involves observing the system, recording
system behaviour as time series of signals, and analysing the
time series.

The simplest statistical measure is correlation. However,
correlation does not necessarily imply causality. Information-
based measures have been proposed to deal with causality.
Transfer entropy is an asymmetric information theoretic mea-
sure designed to capture directed information flow between
variables [1]. Given two processes X and Y , the transfer
entropy from X to Y is the amount of uncertainty reduced
in Y ’s future values by knowing the past values of X given
past values of Y . Transfer entropy can be used in effectively
distinguishing between the driving and the responding vari-
ables, which makes it superior to traditional information-based
measures such as Time-Delayed Mutual Information, in the
sense of detecting causal relationships.

Since its introduction in 2000, transfer entropy has proven
to be a powerful tool for various applications. Honey et al.
uses transfer entropy to analyse the functional connectivity of
different areas in the cerebral cortex [2]. A transfer entropy
matrix is built with element (i, j) the transfer entropy from
Areai to Areaj . This matrix is then thresholded to derive
a binary matrix for functional connectivity (TE Network),

which is the estimation of how cortex areas are connected
based on transfer entropy analysis. It is found that when
using long data samples, TE Network and the actual structural
network show up to 80% overlap, whereas the overlap between
structural networks and functional networks extracted with
mutual information and wavelet-based tools is lower. Ver Steeg
and Calstyan use transfer entropy to measure the information
transfer in social media [3]. They calculate the transfer entropy
from user A to user B (TA→B) and that in the opposite
direction (TB→A). If TA→B is much larger than TB→A, then A
is said to have influence on B, but not vice versa. Real data sets
from Twitter are analysed and result in a network of influence.
This allows us to identify ‘influential users’ and the most
important links in a big network, which is beneficial to Data
Mining. In addition, transfer entropy is useful in finance. Li
et al. uses transfer entropy to analyse the interaction of banks
in the financial market [4]. The transfer entropies of several
banks’ stock prices are calculated, resulting in a matrix to
estimate the interbank exposure. The matrix is further refined
with disclosed information and some other adjustments. Finally
the interbank exposure matrix is used in simulation to analyse
what will happen to other banks if a major bank defaults. This
helps financial institutions to manage risk, and provides useful
information for regulators to prevent financial catastrophes,
such as the 2008 crisis, from happening again.

The interesting features of transfer entropy make it ideal
for analysing interactions between variables in a complex
system. However there are significant theoretical and practical
challenges. To compute transfer entropy we will need the
probability distribution of the values in the time series. In
theory, to calculate this distribution we must have the entire
time series. However, in most cases there are only limited
samples available, so there is a challenge of computing transfer
entropy based on incomplete time series data.

Besides, even if we have the exact probability distribution,
transfer entropy could be computationally intensive. The time
complexity of transfer entropy computation is O(R3), where
R stands for resolution. When resolution becomes higher,
granularity becomes smaller so that transfer entropy with
improved accuracy can be obtained. In reality, given the limited
computing resource, one often has to set a certain resolution
to balance accuracy and time complexity. In Li’s work, the
resolution is set to (N/4)1/3, where N is the number of
samples, the length of time series [4]. It is hard to say whether
R = (N/4)1/3 is good enough, but larger resolution will
definitely lead to more accurate results.

978-1-4799-6245-7/14/$31.00 ©2014 IEEE

Fortunately, transfer entropy computation is parallelisable,
so it has the potential to benefit from hardware acceleration.
However, the limited CPU-FPGA bandwidth and limited logic
resource create challenges for implementation.

In this paper, we develop a novel method to estimate the
probability distributions used in transfer entropy computation.
Also, we present a reconfigurable architecture for computing
transfer entropy and implement it on a commercial FPGA.
We optimise memory allocation to effectively reduce I/O
bandwidth requirement. In addition, bit-width narrowing is
used to cut down BRAM usage, and to further reduce I/O
overhead. To control resource usage, we apply mixed-precision
optimisation to gain double precision accuracy without sacri-
ficing parallelism. To the best of our knowledge, we are the
first to apply reconfigurable computing techniques to transfer
entropy computation.

The contributions of this paper are as follows:

• A new method based on Laplace’s rule of succession
to estimate probabilities used for computing transfer
entropy. This method targets common cases in which
the complete knowledge of time series is unavailable.

• A novel hardware architecture for computing transfer
entropy. Optimised memory allocation and bit-width
narrowing are used to effectively reduce I/O overhead
and BRAM usage in FPGA. Mixed-precision optimi-
sation is used to gain double precision accuracy with
a modest amount of hardware resources.

• Implementation on a Xilinx Virtex-6 FPGA and exper-
imental evaluation using random numbers and histor-
ical Forex data. The proposed system is up to 111.47
times faster than a single Xeon CPU core, and 18.69
times faster than a 6-core Xeon CPU.

The rest of this paper is organised as follows. Section II
covers basic background material for transfer entropy.
Section III presents our novel method for probability esti-
mation. Section IV describes the proposed hardware archi-
tecture. Section V presents FPGA implementation details.
Section VI provides experimental evaluation and discussion.
Finally, Section VII concludes this paper and presents proba-
bilities for future work.

II. BACKGROUND

In this section, we make a brief introduction to the concept
of transfer entropy and how it is computed. Also, we will
review existing work on hardware acceleration of time series
analysis.

A. Introduction to Transfer Entropy

Transfer entropy is a measure of directed information
transfer between two time series. A time series, e.g., stock
prices at different times, can be expressed as:

X = {x1, x2, · · · , xT } (1)

Here, T is the time series’ length, which is given by the number
of observations. So x1 is the stock price at the first observation,
x2 is the price at the second observation, etc.

Given two time series X and Y , we define an entropy
rate which is the amount of additional information required to
represent the value of the next observation of X:

h1 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2 p(xn+1|xn, yn) (2)

Also, we define another entropy rate assuming that xn+1 is
independent of yn:

h2 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2 p(xn+1|xn) (3)

Then the Transfer Entropy from Y to X can be given by
h2 − h1, which corresponds to the information transferred
from Y to X:

TY→X = h2 − h1

=
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2

(

p(xn+1|xn, yn)

p(xn+1|xn)

)

(4)

Similarly, we can define the transfer entropy from X to Y :

TX→Y =
∑

yn+1,xn,yn

p(yn+1, xn, yn) log2

(

p(yn+1|xn, yn)

p(yn+1|yn)

)

(5)

B. Computing Transfer Entropy

Using the definition of conditional probabilities, (4) and
(5) can be rewritten as:

TY→X

=
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2

(

p(xn+1, xn, yn)p(xn)

p(xn, yn)p(xn+1, xn)

)

(6)

TX→Y

=
∑

yn+1,xn,yn

p(yn+1, xn, yn) log2

(

p(yn+1, xn, yn)p(yn)

p(xn, yn)p(yn+1, yn)

)

(7)

Given T observations of the time series X and Y , prepro-
cessing is needed to calculate the (joint) probability distri-
butions p(xn), p(yn), p(xn+1, xn), p(yn+1, yn), p(xn, yn),
p(xn+1, xn, yn) and p(yn+1, xn, yn). Then transfer entropy
can be calculated by (6) and (7).

In preprocessing, we first go through the time series,
counting the number of occurrences for each (joint) value
of xn, yn, (xn+1, xn), (yn+1, yn), (xn, yn), (xn+1, xn, yn)
and (yn+1, xn, yn). Then the probability distribution can be
obtained by normalising - dividing the number of occurrences
by the number of data elements, which is T for xn, yn,
(xn, yn) and T−1 for (xn+1, xn), (yn+1, yn), (xn+1, xn, yn),
(yn+1, xn, yn).

When computing transfer entropy, quantisation must be
taken into consideration. When X has P values and Y has
Q values, their joint probability distribution p(xn+1, xn, yn)
will have P ×P ×Q elements. This can lead to a table which
is too big to fit into computer memory.

In practice, quantisation is used to trade off between
accuracy and memory resource usage. One can set a Resolution
(R), which corresponds to the number of values allowed. Then
granularity (∆) is given by:

∆ =
MAX −MIN

R− 1
(8)

Here, MAX and MIN stand for the maximum and min-
imum values of the time series, respectively. For example,
if R = 100, time series X and Y are quantised into 100
levels. Then the quantised X and Y are used in preprocessing.
As a result, the joint probability distribution p(xn+1, xn, yn)
will have 106 elements. Larger resolution will lead to more
quantisation levels, which uses more memory resources to
achieve better accuracy.

Besides, the time complexity of transfer entropy com-
putation is determined by the resolution rather than by the
length of time series. This is because the computation is
based on (joint) probability distributions, and the number of
iterations is the number of elements in the joint probability
distributions p(xn+1, xn, yn) and p(yn+1, xn, yn), as shown
in (6) and (7). If R = 100, there will be 106 elements to be
accumulated to derive TX→Y . Therefore, the time complexity
of transfer entropy computation is O(R3). As time complexity
grows rapidly with R, computing transfer entropy would be
demanding for CPU.

C. Accelerating Time Series Analysis

Time series analysis methods analyse time series data so as
to find patterns, make predictions or calculate various statistical
metrics. There are many types of time series analysis methods,
but only a few of them have hardware acceleration solutions.
In short, the hardware acceleration of time series analysis is
still a new topic.

Gembris et al. uses NVIDIA’s GPU to accelerate correla-
tion analysis [5]. They also compare CPU, GPU and FPGA
for the performance of doing correlation calculation. Lin and
Medioni compute mutual information using GPU [6]. Castro-
Pareja, Jagadeesh, and Shekhar present the FPGA implemen-
tation for mutual information computation [7]. Guo and Luk
design a FPGA accelerator for ordinal pattern encoding, and
apply it to the computation of permutation entropy [8]. For
transfer entropy, as it is a new statistical metric, we are not
aware of any published work on its hardware acceleration.

III. PROBABILITY ESTIMATION

This section presents a new method, based on Laplace’s
rule of succession, for estimating probabilities used in transfer
entropy computation.

The transfer entropy defined in (6) and (7) depends on the
(joint) probabilities, such as p(xn+1, xn, yn). The exact values
of these probabilities are unknown, but it is possible to estimate
them from data. Assume that each of these probabilities
follows a multinomial distribution. From the perspective of
frequentist statistics, a reasonable set of estimates is

p̂(xn+1, xn, yn) =
N(xn+1, xn, yn)

T − 1
(9)

p̂(yn+1, xn, yn) =
N(yn+1, xn, yn)

T − 1
(10)

p̂(xn+1, xn) =
N(xn+1, xn)

T − 1
(11)

p̂(yn+1, yn) =
N(yn+1, yn)

T − 1
(12)

p̂(xn, yn) =
N(xn, yn)

T
(13)

p̂(xn) =
N(xn)

T
(14)

p̂(yn) =
N(yn)

T
(15)

where N(X) is the number of occurrences of pattern X in the
data, and T is the length of the time series.

One can calculate the transfer entropy by replacing the
probabilities in (6) and (7) with their corresponding estimates.
Note that a hidden assumption in (6) and (7) is that all the prob-
abilities must be non-zero. Nevertheless, an estimate produced
using the above equations is zero if the corresponding pattern
never appears in the observations. However, N(X) = 0 does
not necessarily imply p(X) = 0, since it may happen because
our observations are incomplete.

To solve this problem, we associate each possible pattern
with an imaginary count to obtain the following estimates. We
add one to the observed number of occurrences, and modify the
denominator accordingly to make sure the modified probability
still sums to one:

p̂(xn+1, xn, yn) =
N(xn+1, xn, yn) + 1

T − 1 + R3
(16)

p̂(yn+1, xn, yn) =
N(yn+1, xn, yn) + 1

T − 1 + R3
(17)

p̂(xn+1, xn) =
N(xn+1, xn) + 1

T − 1 + R2
(18)

p̂(yn+1, yn) =
N(yn+1, yn) + 1

T − 1 + R2
(19)

p̂(xn, yn) =
N(xn, yn) + 1

T + R2
(20)

p̂(xn) =
N(xn) + 1

T + R
(21)

p̂(yn) =
N(yn) + 1

T + R
(22)

An intuitive interpretation of our treatment is that we set a
lower bound of probability to each legitimate pattern disregard-
ing the pattern appears in the data. This lower bound decreases
as the length of the data grows. From the view of frequentist
statistics, our treatment is an application of Laplace’s rule of
succession. From the view of Bayesian statistics, the treatment
corresponds to mixing likelihood values with a Dirichlet prior
with parameter one [9]. Similar treatments have been applied
to probability inference problems to eliminate side effects of
zero probabilities [10].

TABLE I. DATA ACCESS PATTERNS

Table Name Number of Elements Data Request Access Times Storage

N(xn+1, xn, yn) R3 K elements per inner loop iteration Read Once DRAM in host CPU

N(yn+1, xn, yn) R3 K elements per inner loop iteration Read Once DRAM in host CPU

N(xn+1, xn) R2 K elements per inner loop iteration Read R times BRAM on FPGA

N(yn+1, yn) R2 K elements per inner loop iteration Read R times BRAM on FPGA

N(xn, yn) R2 one element per middle loop iteration Read Once DRAM in host CPU

N(xn) R one element per middle loop iteration Read R times BRAM on FPGA

N(yn) R one element per outer loop iteration Read Once BRAM on FPGA

When applying Laplace’s rule of succession, we essentially
add an ‘imaginary count’ to each case of the multinomial distri-
bution. For example, consider a dice with 6 faces. If we throw
a loaded dice for 10 times, we may get the following histogram
over the 6 faces: (1, 4, 0, 2, 1, 2). Following the manner in (9)
- (15), it is possible to estimate the probability of each face
as (0.1, 0.4, 0, 0.2, 0.1, 0.2). However this straightforward
estimation is obviously problematic. Even though Face 3 has
never appeared in the 10 attempts, it would be wrong to rule
out its possibility - it will probably be observed if we throw the
dice for a few more times. In this case, we can apply Laplace’s
rule of succession to the observed data by adding each count
by one - an imaginary count. So the observations become (2, 5,
1, 3, 2, 3); the total number of attempts becomes 10+6 = 16.
We add 6 to the total count because we add the count of each
of the 6 cases by one. This is why R, R2 or R3 appear in the
denominator in (16) - (22).

With this in mind, transfer entropy can be computed using
the following two equations. Note that we do not need to
calculate p̂ specifically. Since to add or to divide by a constant
can be implemented in the program (and in hardware) straight-
forwardly, we would use the observed numbers of occurrences
(N) as inputs.

TY→X

≈
∑

xn+1,xn,yn

p̂(xn+1, xn, yn) log2

(

p̂(xn+1, xn, yn)p̂(xn)

p̂(xn, yn)p̂(xn+1, xn)

)

(23)

TX→Y

≈
∑

yn+1,xn,yn

p̂(yn+1, xn, yn) log2

(

p̂(yn+1, xn, yn)p̂(yn)

p̂(xn, yn)p̂(yn+1, yn)

)

(24)

IV. HARDWARE DESIGN

In this section, we present our FPGA system architecture
for computing transfer entropy. Our system is designed to
reduce CPU-FPGA I/O overhead and FPGA logic usage,
which is achieved by optimised memory allocation, bit-width
narrowing and mixed-precision optimisation.

A. Optimised Memory Allocation

The core computation is equation (23) and (24). From a
computing perspective, (23) and (24) are 3-level nested loops,
as there are R × R × R elements in N(xn+1, xn, yn) and
N(yn+1, xn, yn). Since we are computing TY→X and TX→Y

at the same time, we let the iteration of xn+1 and yn+1 be the
inner loop, xn the middle loop and yn the outer loop.

 FPGA

 Kernel
N(xn+1, xn)

N(yn+1, yn)

N(xn)

N(yn)

CPU

N(xn+1, xn, yn)

N(yn+1, xn, yn)

N(xn, yn)

TYX, TXY

Fig. 1. System Architecture. Number of occurrence tables N(xn+1, xn) ,
N(yn+1, yn), N(xn) and N(yn) are mapped to the BRAM inside FPGA
when initialising. Other tables (N(xn+1, xn, yn), N(yn+1, xn, yn) and
N(xn, yn)) are sent to FPGA at run-time. Transfer entropy results TY →X

and TX→Y are sent back to CPU.

The first optimisation is allocating number of occurrences
tables. Since PCI-E bandwidth is limited, we map some small
and medium-sized tables to BRAM during initialisation while
sending large ones at run-time. In this way, we pipeline
data transfer and computing. With bit-width narrowing, the
bandwidth required is slightly larger than PCI-E bandwidth.
Although there will still be some overhead due to bandwidth
limitation, its impact on overall performance is insignificant.
On the other hand, if we send all tables to DRAM via
PCI-E during initialisation, this data transfer time cannot be
overlapped with computing, so the overall time will be longer.

The data access patterns of number of occurrence tables are
summarised in Table I. We map N(xn+1, xn), N(yn+1, yn),
N(xn) and N(yn) to BRAM, which are small tables or
frequently-accessed medium-sized tables. When resolution (R)
is about 1000, the total size of the 4 tables are just several MBs,
which would fit in the on-chip BRAM. Meanwhile, as three
dimensional tables N(xn+1, xn, yn) and N(yn+1, xn, yn) are
very large tables (109 elements in each table if R = 1000, so
the two tables are in GBs) only used once during the com-
putation, we stream the two tables to FPGA at runtime. Table
N(xn, yn) is also streamed to FPGA at runtime due to BRAM
resource limitation. Note that in every middle loop FPGA only
reads one element from N(xn, yn), so streaming this table to
FPGA only has marginal influence on I/O bandwidth usage.

B. Bit-width Narrowing

As mentioned above, we optimise memory allocation to
reduce I/O overhead. N(xn+1, xn, yn), N(yn+1, xn, yn) and
N(xn, yn) are sent to FPGA at run-time while other tables
are mapped to BRAM during initialisation. While this memory
allocation is effective, it requires a large amount of BRAM.
Therefore, the resolution supported will be limited by the
BRAM resource available.

TABLE II. BIT-WIDTH NARROWING FOR N(xn+1, xn) AND N(yn+1, yn)

Resolution 200 300 400 500 600 700 800 900 1000 1100 1200

Largest Element 26182 11959 7049 4331 3037 2286 1768 1415 1161 971 837

Format uint16 uint16 uint16 uint16 uint12 uint12 uint12 uint12 uint12 uint10 uint10

Size (Two Tables in Total) 0.15MB 0.34MB 0.61MB 0.95MB 1.03MB 1.40MB 1.83MB 2.32MB 2.86MB 2.88MB 3.43MB

TABLE III. BIT-WIDTH NARROWING FOR N(xn+1, xn, yn) AND N(yn+1, xn, yn)

Resolution 200 300 400 500 600 700 800 900 1000 1100 1200

Largest Element 194 80 46 28 22 17 15 14 11 11 10

Format uint8 uint8 uint6 uint5 uint5 uint5 uint4 uint4 uint4 uint4 uint4

Size (Two Tables in Total) 15.26MB 51.50MB 91.55MB 149.01MB 257.49MB 408.89MB 488.28MB 695.22MB 953.67MB 1.269GB 1.648GB

To address this problem, a technique known as bit-width
narrowing is used. In our tests, we use random numbers and
historical foreign exchange data. As resolution becomes larger,
number of occurrences tables become larger but the elements
in the table are smaller. Table II shows bit-width narrowing
for N(xn+1, xn) and N(yn+1, yn), with bit-width selected to
represent the largest element in the table. By using custom
unsigned integers ranging from 10-bit to 16-bit instead of the
standard 32-bit int, we only use 31%-50% of the original
memory space, which enables mapping the data tables to
FPGA BRAM. As for N(xn) and N(yn), the largest number
is in millions, so standard 32-bit int is used. Note there are
only 2R elements in total in N(xn) and N(yn), they only take
several KBs of BRAM.

Besides, bit-width narrowing is also used to reduce
I/O overhead. Since we stream N(xn+1, xn, yn) and
N(yn+1, xn, yn) from CPU to FPGA at run-time, using fewer
bits to represent N(xn+1, xn, yn) and N(yn+1, xn, yn) will
effectively cut down bandwidth usage. Instead of sending 32-
bit int to FPGA, we use unsigned integers with various bit
widths ranging from 4 bits to 8 bits, depending on the largest
number in the table. As a result, 75% to 87.5% bandwidth
resources are saved. The details of bit-width narrowing for
N(xn+1, xn, yn) and N(yn+1, xn, yn) are shown in Table III.

It is worth pointing out that bit-width narrowing depends on
the input data. When using the hardware system to compute
the transfer entropy of a particular kind of time series, it is
useful to find the range of the elements in the tables in order
to determine the optimal bit-width.

C. Mixed-Precision Optimisation

In the C program for computing transfer entropy, log2()
and the accumulator is implemented using IEEE 754 double
precision, which is the default standard for scientific com-
puting. However, in FPGA a floating point accumulator will
result in excessive hardware resource usage. As the dynamic
range of input data is small, it is possible to use fixed-point
number representation for the accumulator to reduce resource
usage without sacrificing accuracy. In the kernel, there are R3

numbers to be accumulated. Larger resolution will lead to a
larger sum in the accumulator so more integer bits are needed.
The accumulator in our system supports 64-bit fixed-point data
representation with 28 integer bits and 36 fractional bits. This
setting works well in our experiments.

TXY

 Pipe #1

XXY

K

TYX

 Pipe #1

N(xn+1,xn)

N(xn)
Part #1

�

TYX[1]

�

TYX[K]

TYX

 Pipe #K

N(xn+1,xn)

N(xn)
Part #K

��

YXY

K

� �

TXY

 Pipe #K

N(yn+1,yn)

N(yn)
Part #K

��

XY

N(yn+1,yn)

N(yn)
Part #1

TXY[K]TXY[1]�� ��

Fig. 2. Kernel Architecture. This figure shows the datapath of the kernel with
control logic omitted. Here XXY, YXY and XY stands for N(xn+1, xn, yn),
N(yn+1, xn, yn) and N(xn, yn), respectively. On each cycle, K elements
from N(xn+1, xn, yn) and N(yn+1, xn, yn) are sent from CPU to FPGA,
feeding the corresponding K pipes. A new value of N(xn, yn) is sent to
FPGA each middle loop (R/K cycles), and is shared by all pipes.

Inside the kernel, the most resource consuming part is
the logic for log2(). Unlike the accumulator, log2() uses
much more resources when it is done in fixed-point rather
than in floating-point. Consequently, we use floating point for
representing log2(). The resource usage of log2() is closely
related to the number of mantissa bits. In our system, we
adopt the format of log2() to be 40-bit floating point arithmetic
with 8 exponent bits and 32 mantissa bits. We will explore the
relationship between the number of mantissa bits and accuracy
as well as parallelism in section VI.

D. Kernel Architecture

The kernel architecture is shown in Figure 2. Since there
is no data dependency between different iterations except for
the accumulator, the loop can be effectively strip-mined in
hardware to deliver high performance.

We build 2K computing pipes for calculating transfer
entropy: K pipes for TY→X and the other K pipes for TX→Y .
K is a parameter to be specified at compile-time. The 2K

TABLE IV. FPGA RESOURCE USAGE (RESOLUTION = 1200)

LUT Primary FF Secondary FF DSP BRAM18

Total Available 297600 297600 297600 2016 2128

Total Used 201697 215724 42555 1014 2011

Usage (%) 67.77% 72.49% 14.30% 40.77% 94.50%

pipes correspond to K iterations in the inner loop, so the
loop is strip-mined by K. Since the 2K pipes read different
parts of the table N(xn+1, xn) and N(yn+1, yn) with no
overlap, we separate each of the tables into K parts and
distribute them to the corresponding K pipes. The 2K pipes
generate K partial sums of transfer entropy TY→X and TX→Y ,
respectively. These partial sums are sent back to CPU, summed
and normalised to derive the final result.

The original loop has R3 iterations. In our kernel, there are
K pipes running concurrently, so the kernel needs to run for
R3/K cycles. Therefore, the kernel computing time is given
by:

TComp =
1

Freq
×

R3

K
(25)

Here, Freq is FPGA frequency. Since the FPGA kernel
needs data from CPU, we also need to consider the I/O time,
which is the data size over bandwidth:

TI/O =
DATA SIZE

BW
(26)

When running the system, the FPGA can read data and do
computation in a pipelined manner. So the total time is the
maximum of the computing time and I/O time.

TTotal = max{TComp, TI/O} (27)

When TComp > TI/O, the kernel is bounded by computing.
In this case, performance can be improved by increasing
parallelism (K) or incresing FPGA frequency. In contrast,
when TI/O > TComp, the kernel is bounded by I/O, so
reducing I/O overhead is essential.

V. FPGA IMPLEMENTATION

The target hardware of our system is a Xilinx Virtex-6
FPGA. We deploy 48 transfer entropy computing pipes
(K = 24). Table IV shows the hardware resource usage of
Xilinx Virtex-6 SX475T FPGA when R = 1200. The LUT
and FF usages are generally determined by the number of
computing pipes (K). BRAM usage depends on resolution (R),
because most of the BRAM is devoted to the number of occur-
rences tables N(xn+1, xn) and N(yn+1, yn). As a result, the
resolution supported is limited by BRAM resource available.
In the target platform, the largest resolution achievable in one
Virtex-6 FPGA is 1200, using 94.50% BRAM.

When resolution is larger than 1200, we can use more
FPGAs and distribute the pipes for TX→Y and TX→Y among
them. As shown in Figure 2, the BRAM for N(xn+1, xn)

12 14 16 18 20 22 24 26 28 30 32
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Mantissa Bits in log
2
()

P
e
rc

e
n
ta

g
e
 E

rr
o
r

(%
)

12 14 16 18 20 22 24 26 28 30 32
20

25

30

35

40

45

50

M
a
x
im

u
m

 P
a
ra

lle
lis

m
 (

K
)

Percentage Error (%)

Maximum Parallelism (K)

Fig. 3. Percentage Error (%) and Maximum Parallelism (K) vs. Number of
Mantissa Bits in log2(). Test time series are 109 random numbers. Resolution
is fixed at 1000. Percentage error is measured against CPU result. Parallelism
is measured by the number of computing pipes (K) for TX→Y and TY →X ,
e.g., if K = 24, then there are 48 pipes in total, 24 for TX→Y and 24 for
TY →X .

and N(yn+1, yn) is distributed among multiple pipes. Con-
sequently, by distributing the computing pipes, BRAM usage
is also distributed. In this way, an arbitrary resolution can be
supported, providing that there are enough FPGAs.

VI. EXPERIMENTAL EVALUATION

The proposed system is built on a Maxeler MAX3 FPGA
card with one Xilinx Virtex-6 SX475T FPGA running at
80MHz. The FPGA card is integrated with the host computer
via the PCI-E Gen2 x8 interface. The host computer has
one Intel Xeon X5650 CPU (6-cores running at 2.66GHz)
and 48GB DDR3 1600MHz memory. The hardware design
is described in the Maxeler MaxJ language and compiled to
VHDL using Maxeler MaxCompiler. The VHDL description
is then synthesised and mapped to FPGA with the Xilinx tool
chain.

To evaluate the performance and accuracy of the hardware
solution, we build a reference C program in double precision
for transfer entropy to be run exclusively on the Intel Xeon
CPU in the host computer. The C program is optimised for
memory efficiency. To make performance comparison with
1 CPU core and 6 CPU cores, the C program has 1-thread
and 6-thread versions. Multi-threading is done using OpenMP
library. The FPGA host code and the reference C program are
compiled with the Intel C Compiler with the highest compiler
optimisation.

A. Accuracy versus Parallelism

Figure 3 shows the percentage error of transfer entropy
and maximum parallelism can be achieved on one Virtex-6
FPGA as a function of the number of mantissa bits used in
log2(). The percentage error is measured against the reference
C program running on CPU. Naturally, as the number of
mantissa bits increases, hardware result becomes more accurate

200 300 400 500 600 700 800 900 1000 1100 1200
0

20

40

60

80

100

120

140

Resolution (R)

C
o
m

p
u
ti
n
g
 T

im
e
 (

s
)

1 Xeon X5650 Core

6 Xeon X5650 Cores

Virtex−6 SX475T FPGA

Fig. 4. Performance vs. Resolution using random numbers. Test time series
are 109 random numbers. The Virtex-6 FPGA has 48 computing pipes (K =
24) running at 80MHz. log2() is done in 40-bit floating point with 8 exponent
bits and 32 mantissa bits. Accumulator is set to 64-bit fixed point with 28
integer bits and 36 fractional bits.

while parallelism decreases due to more hardware resources
required by logarithm. As shown in the figure, 28 or 32
mantissa bits will lead to the same parallelism, but the latter is
more accurate. Therefore, our precision setting for log2() has
32 mantissa bits. In this case, the percentage error is about
0.000000001%, which is sufficiently accurate. We also need
to point out that the maximum parallelism will utilise almost
all FPGA resource, creating a demanding task for placement
and routing tools. In some cases, kernel frequency has to be
reduced in order to cut down flip-flop usage so that mapping,
placement and routing could be successfully done. In the
following performance tests, we set K = 24 although the
maximum possible value is 28.

B. Performance versus Resolution - Random Numbers

For performance comparison, we measure the execution
time of transfer entropy computation, which corresponds to the
computing time of (23) and (24). We run a series of tests using
different resolutions ranging from 200 to 1200. The FPGA
has 48 computing pipes (K = 24), 24 for TX→Y and 24 for
TY→X . The precision of log2() is 40-bit floating point with 8
exponent bits and 32 mantissa bits. The accumulator is 64-bit
fixed-point with 28 integer bits and 36 fractional bits. Time
series X and Y used in the experiments contain 109 random
numbers. The FPGA runs at 80MHz. The performance results
of single Xeon CPU core, 6 Xeon CPU cores and one Virtex-6
FPGA is shown in Figure 4.

From the figure, FPGA demonstrates high performance
for transfer entropy computation. The maximum speedup is
achieved when R = 1000. In this case, the proposed FPGA
implementation is respectively 111.47 times and 18.69 times
faster than a single CPU core and a 6-core CPU. This high
performance is achieved by the massive amount of parallelism
available in hardware. In CPU, 6-cores are used for TX→Y

and TY→X , so there are actually 3 pipes for both TX→Y and
TY→X . In comparison, our hardware solution could deploy 24

200 300 400 500 600 700 800 900 1000 1100 1200
0

20

40

60

80

100

120

140

Resolution (R)

C
o
m

p
u
ti
n
g
 T

im
e
 (

s
)

1 Xeon X5650 Core

6 Xeon X5650 Cores

Virtex−6 SX475T FPGA

Fig. 5. Performance vs. Resolution using historical foreign exchange data.
Test time series are EUR-JPY and GBP-USD rates on 30 Apr 2014. There are
75000 records in each of the time series. The Virtex-6 FPGA has 48 computing
pipes (K = 24) running at 80MHz. log2() is done in 40-bit floating point
with 8 exponent bits and 32 mantissa bits. Accumulator is set to 64-bit fixed
point with 28 integer bits and 36 fractional bits.

pipes for TX→Y and 24 for TY→X , which can deliver higher
performance than that for CPU.

In addition, FPGA has great energy efficiency compared
with CPU. We measured the run-time power of the host
computer using a power meter, and compared the energy
consumption of CPU-only implementation and that of FPGA
implementation for computing transfer entropy. It is discovered
that on average, the FPGA implementation consumes 3.80%
of the energy consumed by the CPU-only implementation. In
other words, the FPGA is about 26.31 times energy efficient
than the CPU when computing transfer entropy.

C. Performance versus Resolution - Forex Data

As a case study, we use real time series in our performance
test - historical foreign exchange data. The test time series are
EUR-JPY and GBP-USD rates on 30 Apr 2014. There are
75000 records in each time series.

We run the performance test using the same settings as the
previous test for random numbers. The performance results
are shown in Figure 5. The highest speed-up is achieved when
resolution is 800: the FPGA is 111.29 times faster than one
Xeon CPU core, and 18.74 times faster than a 6-core Xeon
CPU. As seen from Figure 4 and Figure 5, performance is
unrelated with the test time series used. This is because the
transfer entropy computation takes (joint) probability distribu-
tion tables as inputs, not the original time series. We can see
the proposed FPGA system is able to deliver high performance
for real applications.

D. Bottleneck

Although the FPGA has already shown impressive speed-
up against many-core CPU, it still has the potential to be even
faster. We discover that the bottleneck of our system is CPU-
FPGA bandwidth.

In our tests, there are 48 computing pipes (K = 24) in
the system running at 80MHz. When resolution = 1200, the
computing time should be 0.9s, according to (25). However,
the actual time measured in the experiments is 1.41s. There-
fore, the kernel is clearly bounded by I/O bandwidth. When
resolution = 1200, the elements in tables N(yn+1, xn, yn)
and N(xn+1, xn, yn) could be represented using 4-bit un-
signed integer. So the total data size for the two tables are
2 × 12003 ∗ 4/8 ≈ 1.61GB. Using (26), we can estimate the
actual bandwidth to be around 1.14GB/s. This is the same in
other experiments using different resolutions, where the actual
bandwidth is about 1.1-1.3GB/s.

Since there are 48 computing pipes, on each cycle the
FPGA kernel needs 24 bytes of data from CPU. The kernel
runs at 80MHz, so the I/O bandwidth requirement is 1.92GB/s.
In our hardware platform, the FPGA card is connected to a
CPU via the PCI-E 2.0 x8 interface with a theoretical speed
of 4GB/s in each direction. However, as there are various
overheads in the PCI-E channel, the actual bandwidth of PCI-E
2.0 x8 is about 3GB/s. Futhermore, due to the limitation of the
PCI-E interface chip on the FPGA card, the actual bandwidth
in the experiments is about 1.3GB/s. As a result, the FPGA is
actually waiting for data.

Here we offer a theoretical prediction. If the interface chip
on an FPGA board could fully support PCI-E interface, we
will have about 3GB/s bandwidth available, so the system is
no longer bounded by I/O bandwidth. In this case, the FPGA
could be about 1.92

1.3 ≈ 1.37 times faster than now, which means
25.61 times faster than the 6-core Xeon CPU.

A better interface chip could be available in the future.
Besides, for the current hardware platform, one possibility
would be exploring more advanced data compression tech-
niques than bit-width narrowing to further reduce bandwidth
requirement. In this case, the CPU could send compressed
tables N(yn+1, xn, yn) and N(xn+1, xn, yn) to FPGA in order
to save bandwidth. As shown in Table IV, there are still
plenty of logic resources available, so it is possible to build a
decompressor in FPGA.

VII. CONCLUSION AND FUTURE WORK

This paper features the first reconfigurable computing so-
lution to transfer entropy computation. A novel probability
estimation technique based on Laplace’s rule of succession
is used to estimate the probability distributions used for
computing transfer entropy. The CPU-FPGA I/O overhead is
reduced by exploiting on-chip BRAM to store the data tables
which are frequently read. Bit-width narrowing is also used
to further reduce bandwidth requirement and save BRAM
resources. In addition, we use mixed-precision optimisation to
find the best trade-off between accuracy and hardware resource
usage, achieving double precision at a moderate logic cost.

We implement the kernel on Maxeler MAX3 platform with
a Xilinx Virtex-6 SX475T FPGA. The proposed system is
evaluated using random numbers and historical Forex data. The
experimental results show that the hardware solution achieves
up to 111.47 times speedup over a single Xeon CPU core
and 18.69 times speedup over a 6-core Xeon CPU. The work
shows the potential of reconfigurable computing for calculating
transfer entropy.

Future work includes using advanced data compression
techniques to further reduce I/O overhead, introducing run-
time reconfiguration to further optimise efficiency, customising
the hardware architecture for various applications such as
bioinformatics and data mining, and exploring methods for
automating such customisation.

ACKNOWLEDGMENTS

This work is supported in part by the Lee Family
Scholarship, by the United Kingdom Engineering and
Physical Sciences Research Council, by the European Union
Seventh Framework Programme under grant agreement
number 257906, 287804 and 318521, by the Maxeler
University Programme, and by Xilinx.

REFERENCES

[1] T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett., vol. 85,
pp. 461–464, Jul 2000.

[2] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns, “Network
structure of cerebral cortex shapes functional connectivity on multiple
time scales,” Proceedings of the National Academy of Sciences, vol.
104, no. 24, pp. 10 240–10 245, 2007.

[3] G. Ver Steeg and A. Galstyan, “Information transfer in social media,” in
Proceedings of the 21st International Conference on World Wide Web,
ser. WWW ’12. ACM, 2012, pp. 509–518.

[4] J. Li, C. Liang, X. Zhu, X. Sun, and D. Wu, “Risk contagion in Chinese
banking industry: A transfer entropy-based analysis,” Entropy, vol. 15,
no. 12, pp. 5549–5564, 2013.

[5] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer, “Correlation
analysis on GPU systems using NVIDIA’s CUDA,” J. Real-Time Image

Process., vol. 6, no. 4, pp. 275–280, Dec. 2011.

[6] Y. Lin and G. Medioni, “Mutual information computation and max-
imization using GPU,” in Computer Vision and Pattern Recognition

Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference on,
June 2008, pp. 1–6.

[7] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FPGA-based
acceleration of mutual information calculation for real-time 3D image
registration,” in Electronic Imaging 2004. International Society for
Optics and Photonics, 2004, pp. 212–219.

[8] C. Guo, W. Luk, and S. Weston, “Pipelined reconfigurable accelerator
for ordinal pattern encoding,” IEEE 25th International Conference on

Application-Specific Systems, Architectures and Processors, 2014.

[9] K. P. Murphy, Machine learning: a probabilistic perspective, 2012.

[10] C. D. Manning and P. Raghavan, Introduction to information retrieval,
2012, vol. 1.

