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Abstract Heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimation, or HAC estimation in
short, is one of the most important techniques in time series
analysis and forecasting. It serves as a powerful analytical
tool for hypothesis testing and model verification. How-
ever, HAC estimation for long and high-dimensional time
series is computationally expensive. This paper describes
a pipeline-friendly HAC estimation algorithm derived from
a mathematical specification, by applying transformations
to eliminate conditionals, to parallelise arithmetic, and to
promote data reuse in computation. We discuss an ini-
tial hardware architecture for the proposed algorithm, and
propose two optimised architectures to improve the worst-
case performance. Experimental systems based on proposed
architectures demonstrate high performance especially for
long time series. One experimental system achieves up to
12 times speedup over an optimised software system on 12
CPU cores.

Keywords Time series · HAC estimation · Big data ·
Acceleration engine · FPGA

1 Introduction

The study of time series is attracting the attention of
researchers from various application areas such as financial
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risk management, statistical biology and seismology. One
of the most important techniques in the study of time
series is heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimation, or HAC estimation
in short. This technique produces an estimation of the
long-run covariance matrix for a multivariate time series,
which provides a way to describe and quantify the rela-
tionship among different data components. The long-run
covariance matrix plays a similar role as the ordinary
covariance matrix of non-temporal multivariate data. How-
ever, HAC estimation of a long-run covariance matrix is
different from the estimation of an ordinary covariance
matrix for non-temporal data since HAC estimation consid-
ers the unique features of time series data such as serial
correlation.

Today, HAC estimation becomes a standard method in
the study of time series to extract statistical patterns or to
verify the reliability of hypotheses. For instance, in research
about stock markets [1–3], HAC estimation is used to
quantify risks of trading strategies.

The computation of HAC estimation is time-consuming
for long or high-dimensional time series. This drawback
has become increasingly significant in recent years because
the lengths and dimensions of real-world time series have
been growing continuously. Data analysts take samples at
short time interval to capture microscopic patterns. They
also analyse multiple long time series simultaneously to
discover causal relationships. However, it is usually nec-
essary to compute HAC estimation as fast as possible in
order to seize trading opportunities or to improve medical
diagnosis. The conflict between data size and computational
efficiency is especially serious in time-critical problems
such as high-frequency trading and real-time electroen-
cephalography analysis.
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This paper introduces a novel reconfigurable engine
for speeding up HAC estimation. Our contributions
include:

• a pipeline-friendly HAC estimation algorithm derived
from a mathematical specification.

• the first pipelined accelerator for HAC estimation based
on the proposed algorithm.

• an implementation of this pipelined architecture on a
field-programmable gate array (FPGA) platform and an
analysis of the related performance results.

Some early results from this paper has been published
[4]. This paper reviews and extends this study, includ-
ing detailed descriptions and examples for the mathe-
matics and algorithms. There are two optimised hard-
ware designs improving the worst-case performance of
the architecture in [4]; the FPGA implementations of
these designs, and their performance results, are also
included.

The rest of the paper is organised as follows. Section 2
briefly describes the HAC estimation problem and review
reconfigurable computing solutions for statistical data anal-
ysis. Section 3 presents our proposed pipeline-friendly
HAC estimation algorithm and discusses its hardware-
oriented features. Section 4 describes an initial hard-
ware design that maps our algorithm to a fully-pipelined
architecture. Section 5 proposes two optimised hard-
ware architectures to improve the worst-cast performance.
Section 6 provides experimental results of implementa-
tions of our hardware architectures, and explains exper-
imental observations. Section 7 briefly concludes our
work.

2 Background

HAC estimation for long and high-dimensional time series
data is computationally demanding, and reconfigurable
computing is a promising solution. In this section, we first
provide a brief introduction to time series and HAC estima-
tion. Then we review reconfigurable computing solutions to
statistical data analysis and discuss how these studies inspire
our research.

2.1 Time Series

A time series is a sequence of data points sampled from
a data generation process at uniform time intervals. In
this study, we focus on multivariate time series which are
sequences in the form

y = 〈y1 , y2 , . . . , yT 〉 (1)

where T is the length of the time series; each data point yi
is a D-dimensional column vector in the form

yi = [yi,1 yi,2 . . . yi,D]′ (2)

where yi,1 . . . yi,D are components of the data point yi . Note
that a single-variable time series can be treated as a particu-
lar case of the multivariate time series where each data point
contains a single component.

Two main research topics about time series are pattern
analysis and forecasting. The former is a subject where
mathematical and algorithmic methods are applied to time
series data to extract patterns of interest; the latter is about
forecasting future values of a time series using histori-
cal values. The HAC estimation problem studied in this
research is important to both topics.

2.2 HAC Estimation

Consider a multivariate data generation process which the-
oretically satisfies

E[yt ] = μ (3)

E[(yt − μ)(yt−h − μ)′] = �h (4)

where �h is the autocovariance matrix of lag h. Suppose we
have a time series sample yT taken from this process. We
can then estimate μ by taking the sample mean over T time
steps

μ̂ = ȳT = 1

T

T∑

t=1

yt (5)

In addition to the mean vector, it is also useful to know
how data in different dimensions are correlated. Describing
such a correlation is not trivial for time series because a data
point may depend on historical states. As a consequence,
commonly used correlation measurements for non-temporal
data, like the ordinary covariance matrix, are not considered
informative [5].

One statistically feasible correlation measurement of
multivariate time series is the long-run covariance matrix
defined by

S = lim
T→∞{T · E[(ȳT − μ)(ȳT − μ)′]} =

∞∑

h=−∞
�h (6)

Unfortunately, it is impossible to compute the matrix S

using Eq. 6 because the length of the required time series is
infinite.

Heteroskedasticity and autocorrelation consistent (HAC)
estimation is a technique that approximates S using a finite-
length time series. This estimation can be achieved by
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computing the Newey-West estimator [6] which is defined
by

Ŝ = �̂0 +
H∑

h=1

k(
h

H + 1
)(�̂h + �̂′

h) (7)

where

• H is the lag truncation parameter which may be set
according to the length of the time series [7].

• k(·) is a real-valued kernel function. Following [7], we
use lag truncation parameters H in the form

H = �γ T 1
3 � (8)

where �x� is the smallest integer not larger than x; γ is
a data-dependent positive real number [7].

• �̂h is the estimate of the autocovariance matrix with lag
h which can be computed by

�̂h = 1

T

T∑

t=h+1

(yt − μ̂)(yt−h − μ̂)′ (9)

This estimator can be treated as a weighted sum over
a group of estimated autocovariance matrices, where the
weights are determined by a kernel function. Discussions
about kernel functions can be found in [6] and [8]. Variances
of the Newey-West estimator can be found in [5] and [8].

2.3 Hardware Acceleration for Statistical Data Analysis

Hardware acceleration for time series data processing is
not a well studied topic. It is only in recent papers where
acceleration systems based on graphics processing units
(GPUs) and field-programmable gate arrays (FPGAs) are
proposed to process time series data. Sart et al. [9] propose
both GPU-based and FPGA-based solutions to accelerate
dynamic time wrapping (DTW) for sequential data. Wang
et al. [10] develop a hardware engine for DTW-based
sequence searching in time series. However, the problem
investigated in these studies are matching and aligning prob-
lems. The underlying statistical patterns of time series data
are not examined.

Preis et al. [11] use GPUs to accelerate the quantifica-
tion of short-time correlations in a univariate time series.
The correlations between components of a multivariate time
series are not addressed by this work. Gembris et al. [12]
present a real-time system to detect correlations among mul-
tiple medical imaging signals using GPUs. Their system is
based on a simple correlation metric in which serial corre-
lations are not considered. Our work is different from these
two papers because both internal and mutual correlations in
a multivariate time series are considered in HAC estimation.

Although hardware acceleration of statistical time series
analysis has not been well studied, research on accelerating

non-temporal multivariate data analysis has been conducted.
Various data processing engines have been designed by
mapping existing algorithms into hardware architectures.
For example, Baker and Prasanna [13] mapped the Apri-
ori algorithm [14] into an FPGA-based acceleration device
for improved efficiency. Similar to the Apriori engine, hard-
ware acceleration solutions for k-means clustering [15] and
decision tree classification [16] are presented in [17] and
[18] respectively.

Sometimes it is impossible or inappropriate to map an
existing statistical analysis algorithm to hardware. This
is typically due to the operating principles and resource
limitations of the hardware platform. In this case, it is nec-
essary to adapt existing algorithms or design new ones.
Traditionally, hardware adaptations of data processing algo-
rithms achieve parallelism by committing the same oper-
ation on multiple different data instances simultaneously
– a form of single-instruction-multiple-data (SIMD) par-
allelism. For example, Moerland and Fiesler [19] analyse
various machine learning algorithms for artificial neural
networks. They simplify and parallelise the algorithmic
operations, and propose efficient hardware architectures
accordingly.

The flexibility of reconfigurable devices enables us to
design pipelined data flow engines where different cir-
cuits for different computational stages are deployed. In
other words, parallelism can also be achieved in a multiple-
instruction-multiple-data (MIMD) manner. Data instances
are streamed into the engine and processed in series by
the pipeline. There is recent research where algorithms are
designed or adapted for pipelined data flow engines. For
example, Guo et al. [20] propose an FPGA-based hardware
engine to accelerate the expectation-maximisation (EM)
algorithm for Gaussian mixture models. The authors adapt
the original EM algorithm such that it can be mapped
to fully-pipelined hardware. The hardware based on this
adapted algorithm is shown to be very efficient in their
experiments.

While real-time systems can often benefit from the
speed and simplicity of hardware implementations, hard-
ware acceleration of time series processing is not a well-
studied topic. To the best of our knowledge, although there
is recent research on accelerating pattern matching in time
series [9, 10], our work is the first to apply reconfigurable
computing to time series analysis.

3 Pipeline-Friendly HAC Estimation Algorithm

In this section, we provide a detailed description of the algo-
rithmic methods proposed in [4]. We first explain why we do
not map the existing algorithm to hardware. Then we show
how the expression of Ŝ (Eq. 7) can be rewritten to eliminate
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conditionals, to parallelise arithmetic, and to promote data
reuse. Finally, we present our new estimation algorithm.

Our discussion in this section is based on [4] with addi-
tional material including insights behind the equations and
an example execution of the pipeline-friendly HAC estima-
tion algorithm.

3.1 Analysis of the Straightforward Algorithm

It is not difficult to design an algorithm following Eq. 7 to
compute HAC estimation for a time series. This algorithm
is shown in Algorithm 1. The subroutine AUTOCOV(h), the
computational steps for a single autocovariance matrix, is
described in Algorithm 2 where μ̂m is the sample mean
of y1,m . . . yT ,m. We call this algorithm the straightforward
HAC estimation algorithm in [4] because it is straight-
forwardly derived from the definition of the Newey-West
estimator. This algorithm is implemented in many software
packages such as the ‘sandwich’ econometrics package
[21] and the GNU regression, econometrics and time-series
library [22].

Algorithm 1 Straightforward HAC Estimation Algorithm

1: Ŝ ← AUTOCOV(0)
2: for h ∈ [1..H ] do
3: �̂ ← AUTOCOV(h)

4: Ŝ ← Ŝ + k( h
H+1 )(�̂+ �̂′)

5: return Ŝ

Algorithm 2 AUTOCOV(h)

1: �̂ ← 0D×D

2: for t ∈ [(h+ 1)..T ]do
3: fori ∈ [1..D]do
4: forj ∈ [1..D]do
5: �̂i,j ← �̂i,j + (yt,i − μ̂i )(yt−h,j − μ̂j )

6: return �̂

Taking arithmetic operations as basic operations, the time
complexity of the algorithm is O(D2HT ), which means that
the execution time is likely to grow linearly with D2, H
and T . Moreover, the lag truncation parameter H should
grow with T in order to keep the results statistically feasible
[7]. As a consequence, the algorithm may become compu-
tational demanding with long and high-dimensional time
series.

The most time-consuming part of the algorithm is the
computation of the autocovariance matrix. This process is
shown in Algorithm 2. Technically, it is straightforward to
implement this part in a reconfigurable device. However,

memory efficiency is low because only one multiplication
and one addition are executed after two data access oper-
ations, and we may therefore suffer memory bottleneck
[23]. It is critical to find optimisations of the algorithm that
avoids such a bottleneck. To make a fundamental differ-
ence from CPUs in performance, it is unwise to merely map
the straightforward algorithm to a reconfigurable computing
platform.

3.2 A Novel Derivation for Ŝ

We build the mathematical foundation of our pipeline-
friendly algorithm by deriving a novel expression of Ŝ

(Eq. 7). We first simplify Ŝ by centralising the data and
merging �0 into the weighted sum. This simplification
eliminates redundant arithmetic operations and complex
conditional logic in the computation. Then we propose
an expression of Ŝ using vector algebra. This expression
exposes the parallelism in arithmetic operations and enables
considerable data reuse.

The computation of Ŝ only concerns centralised values
of data points. In other words, for all data points yt , only
the centralised value yt − μ̂ is used in the computation. As
the centralised value may be used multiple times, we pre-
compute and store them to avoid redundant subtractions.
More specifically, we precompute the centralised time series
u = 〈u1, u2, . . . , uT 〉 by

ut = yt − μ̂ (10)

Let ut be a zero vector if t �∈ [1..T ]. This is for simplicity in
the presentation and implementation of related algorithms,
which will be illustrated later. By our precomputing scheme,
Eq. 9 can be rewritten as

�̂h = 1

T

T∑

t=h+1

utu
′
t−h (11)

When h = 0, �h is degraded from an autocovariance
matrix to an ordinary covariance matrix which is always
symmetric. Therefore

�0 = �′
0 (12)

By Eq. 7, we merge �0 to the weighted sum by setting

wh =
1
2 if h = 0
k( h

H+1 ) if 0 < h ≤ H

0 otherwise
(13)
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By introducing the coefficient w0 = 1
2 , the expression of Ŝ

in Eq. 7 can be simplified as

Ŝ = w0(�̂0 + �̂′
0)+

H∑

h=1

wh(�̂h + �̂′
h)

=
H∑

h=0

wh(�̂h + �̂′
h) (14)

In other words, the term �̂0 is merged to the weighted
sum operation. The major consideration behind this merging
operation is that we hope to avoid spacial cases in hard-
ware computation. Without merging, �̂0 is not a part of
the weighted sum. As a result, when designing the hard-
ware, one needs to fork the main computational logic to
handle this particular case. By merging this computation in
the main computational logic, we keep the simplicity of the
hardware.

The autocovariance matrix �h can be expanded using
Eq. 11 and the expression of Ŝ can be rewritten as

Ŝ =
H∑

h=0

wh[( 1

T

T∑

t=h+1

utu
′
t−h)+ (

1

T

T∑

t=h+1

utu
′
t−h)

′]

= 1

T
(� +� ′) (15)

where

� =
H∑

h=0

wh

T∑

t=h+1

utu
′
t−h (16)

Therefore once � is obtained, Ŝ can be easily computed.
Now we introduce a parameter c, which is a positive integer
less than or equal to H + 1. We further define a quantity G

as

G = H + 1

c
� − 1 (17)

where x� is the smallest integer not less than x.

� =
G∑

g=0

gc+c−1∑

h=gc

wh

T∑

t=h+1

utu
′
t−h (18)

The function of the parameter c and the quantity G will
be illustrated later. If c is a factor of (H + 1) then Eq. 18
obversely holds. If not, some terms with h > H will be cal-
culated, but Eq. 18 still holds in this case because wh = 0
for all h > H . The value of a single entry of � can be
computed by

�i,j =
G∑

g=0

gc+c−1∑

h=gc

wh

T∑

t=h+1

ut,i · ut−h,j

=
G∑

g=0

w̃g,c r̃g,c,i,j (19)

where

w̃g,c =
[
wgc wgc+1 . . . wgc+c−1

]
(20)

r̃g,c,i,j =

⎡

⎢⎢⎢⎢⎣

∑T
t=gc+1 ut,j · ut−gc,i∑T

t=gc+2 ut,j · ut−(gc+1),i
...∑T

t=gc+c ut,j · ut−(gc+c−1),i

⎤

⎥⎥⎥⎥⎦
(21)

By Eq. 21, we decompose w̃g,c as a product of two vec-
tors. The aim this decomposition is to seek for data reuse
opportunities. The vector w̃g,c can be constructed using the
weights precomputed by Eq. 13. We only need to focus
on the computation of r̃g,c,i,j . It can be observed that the
structures of all entries in r̃g,c,i,j are similar. To promote
data reuse, we further simplify the expression of r̃g,c,i,j to
observe the data access pattern. Aligning the lower bounds
of the summation operators in Eq. 21, we have

r̃g,c,i,j =

⎡

⎢⎢⎢⎢⎣

∑T−gc

k=1 uk+gc,j · uk,i∑T−gc−1
k=1 uk+gc+1,j · uk,i

...∑T−gc−c+1
k=1 uk+gc+c−1,j · uk,i

⎤

⎥⎥⎥⎥⎦
(22)

We have defined that ut = 0 when t > T . Hence we can
set the upper bounds of all summation operations in Eq. 22
to (T − gc). Then the expression of r̃g,c,i,j can be further
simplified:

r̃g,c,i,j =

⎡

⎢⎢⎢⎢⎣

∑T−gc

k=1 uk+gc,j · uk,i∑T−gc

k=1 uk+gc+1,j · uk,i
...∑T−gc

k=1 uk+gc+c−1,j · uk,i

⎤

⎥⎥⎥⎥⎦

=
T−gc∑

k=1

uk,i

⎡

⎢⎢⎢⎣

uk+gc,j

uk+gc+1,j
...

uk+gc+c−1,j

⎤

⎥⎥⎥⎦ (23)

In Eqs. 22 and 23, we unify the lower bounds and upper
bounds of the summation operations respectively. The
expression of r̃g,c,i,j is converted into a scalar product of a
vector. Given any k ∈ [1..(T−gc)], the data entries involved
in Eq. 23 constitute a contiguous subsequence of the i-th
component of the centralised time series data.

In the mathematical reformulation discussed above, we
partition the information collection process of (H + 1)
different lags into G batches. In each batch, we collect sta-
tistical information from up to c lags. If the batch size c does
not exactly divide the number of lags (H+1), there must be
a batch where the number of lags is less than c. We may still
treat such a batch as a complete one by arranging redundant
computation.
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3.3 Pipeline-Friendly HAC Estimation Algorithm

We design a tangible algorithmic strategy to compute Ŝ

using the equations developed in the last subsection. Follow-
ing a top-down design approach, we first investigate how Ŝ

can be obtained assuming that all r̃g,c,i,j can be computed;
then we discuss the way to compute r̃g,c,i,j .

Suppose we are able to compute the value of r̃g,c,i,j for
all g, c, i and j . We can then compute all entries of � by
Eq. 19. Once all entries of � are obtained, Ŝ can be com-
puted by Eq. 14. More specially, the computational steps are
shown in Algorithm 3.

Algorithm 3 is an algorithmic framework which does not
access the data by itself. It queries the value of r̃g,c,i,j by
invoking the subroutine PASS(g, c, i, j) in which r̃g,c,i,j is
computed by passing through data. We design this subrou-
tine following Eq. 23 and the detailed computational steps
are shown in Algorithm 4. In Algorithm 3 and 4, the vari-
ables w̃ and r̃ correspond respectively to w̃g,c and r̃g,c,i,j in
Eq. 19.

Algorithm 3 Pipeline-Friendly HAC Estimation

1: for (i, j) ∈ [1..D] × [1..D]do
2: �i,j ← 0
3: for g ∈ [0..G]do
4: w̃ ← [

wgc wgc+1 . . . wgc+c−1
]

5: r̃ ← PASS(g, c, i, j)

6: �i,j ← �i,j + w̃ r̃

7: return 1
T
(� +� ′)

Algorithm 4 PASS(g, c, i, j)

1: r̃ ← 0D×1

2: for k ∈ [1..(T − gc)]do

3: r̃ ← r̃ + uk,i

⎡

⎢⎢⎢⎣

uk+gc,j

uk+gc+1,j
...

uk+gc+c−1,j

⎤

⎥⎥⎥⎦

4: return r̃

For example, for a HAC estimation task with T = 7,
c = 3, h = 4, the computational steps are presented in
Table 1.

We call Algorithm 3 the pipeline-friendly HAC esti-
mation algorithm because we consider its most time-
consuming subroutine, PASS(g, c, i, j), as an excellent can-
didate to be mapped to a pipelined hardware architecture.
The reasons are as follows.

Table 1 A Running Example: Computing �i,j .

g k operation

- - �i,j ← 0

0 - w̃ ← [w0 w1 w2]
0 - r̃ ← 0D×1

0 1 r̃ ← r̃ + u1,i [u1,j u2,j u3,j ]′
0 2 r̃ ← r̃ + u2,i [u2,j u3,j u4,j ]′
0 3 r̃ ← r̃ + u3,i [u3,j u4,j u5,j ]′
0 4 r̃ ← r̃ + u4,i [u4,j u5,j u6,j ]′
0 5 r̃ ← r̃ + u5,i [u5,j u6,j u7,j ]′
0 6 r̃ ← r̃ + u6,i [u6,j u7,j 0]′
0 7 r̃ ← r̃ + u7,i [u7,j 0 0]′
0 - �i,j ← �i,j + w̃ r̃

1 - w̃ ← [w3 w4 0]
1 - r̃ ← 0D×1

1 1 r̃ ← r̃ + u1,i [u4,j u5,j u6,j ]′
1 2 r̃ ← r̃ + u2,i [u5,j u6,j u7,j ]′
1 3 r̃ ← r̃ + u3,i [u6,j u7,j 0]′
1 4 r̃ ← r̃ + u4,i [u7,j 0 0]′
1 - �i,j ← �i,j + w̃ r̃

• This subroutine contains absolutely no conditional
statements. We consider it beneficial to avoid such
statements because they may fork the data path and lead
to redundant resource consumption on reconfigurable
hardware. The simplicity brought by the conditional-
free control logic may also reduce the workload of
implementation.

• Many arithmetic operations in the algorithm can be
executed in parallel. We can observe from Line 4 in
Algorithm 4 that r̂g,c,i,j is computed by taking the sum
of the results of vector scalar products. As the compo-
nents in the vector are independent, the addition and
multiplication operations on all the c components of the
vector can take place in parallel.

• There is a considerable data reuse pattern behind the
subroutine. In the computation of r̂g,c,i,j , when k =
k0, the accessed data elements are uk0,i and uk0+gc,j

. . .uk0+gc+c−1,j ; when k = k0 + 1, the accessed data
elements are uk0+1,i and uk0+gc+1,j . . .uk0+gc+c,j . All
data elements accessed when k = k0 + 1, except
uk0+1,i and uk0+gc+c,j , have been previously accessed
when k = k0. We shall design a caching scheme to
take advantage of this data reuse pattern. With a per-
fect caching scheme, only two data elements need to
be retrieved from the main memory, and the remaining
data elements can be accessed from the cache memory.
This is the essential idea to crack the memory band-
width bottleneck. We will discuss this issue in detail in
Section 4.
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Admittedly, the time complexity of the pipeline-friendly
algorithm is still O(D2HT ) which is not different from the
straightforward algorithm. Moreover, the pipeline-friendly
design may incur redundant computations when c is not
a factor of H + 1. However, the pipeline-friendly proper-
ties enable us to achieve significant acceleration in practice.
The underlying reasons and experimental results will be
discussed in Section 4 and in Section 6 respectively.

4 An Initial Hardware Architecture

In this section, we discuss an initial pipelined architec-
ture for the subroutine PASS(g, c, i, j). This architecture is
originally proposed in [4]. We first present the hardware
architecture and explain its interactions with the host com-
puter. Then we discuss a simple theoretical model for its
execution time.

4.1 Hardware Architecture

A simple elementary computational unit, which we call a
bead, is described in Fig. 1. A bead handles the computation
for one component of r̃ in Line 4 in Algorithm 4.

Our proposed architecture is constructed by linking up c

beads in a way shown in Fig. 2. More specifically, we use
a single buffer register to store a single data element from
its input stream. For ease of discussion, we call this buffer
register the broadcasting buffer hereafter. At the end of each
cycle, a data element from the input stream is loaded into
the buffer. This broadcasting buffer serves as one input to
all the c beads.

Although the broadcasting buffer has a high fan-out, such
fan-outs can often be removed automatically by hardware
compilers. In addition, techniques such as data pipelining
[24] can be used to eliminate fan-outs. The application of
such techniques to optimise our design will be reported in a
future publication.

We customise on-chip fast memory in the reconfigurable
hardware device, e.g. block RAMs, to become a first-in-
first-out (FIFO) buffer with c storage units. This buffer is

Figure 1 The structure of a bead: a bead takes two numbers as its
inputs. It multiplies the two inputs and accumulates the product.

Figure 2 The proposed architecture: each bead bi takes one input
from the broadcasting buffer and another input from the FIFO buffer.

used to store c consecutive data elements of its input stream.
At the end of each cycle, every element of the FIFO buffer
accepts data from its right neighbour. The previous leftmost
element is moved out of the buffer and discarded. The input
stream supplies data to the rightmost element in the FIFO
buffer. Each storage unit in the FIFO buffer contributes
another input to a bead.

Each time when Algorithm 4 is invoked, the data streams
u1,i . . . uT−gc,i and ugc+1,j . . . uT ,j are streamed into the
architecture for the computation of r̃ . This streaming pro-
cess can be divided into the following three stages.

1. Initialisation stage: all registers in all beads are reset
to zero. The broadcasting buffer is loaded with the
first element of the stream u1,i . . . uT−gc,i . The FIFO
buffer is filled with the first c elements of the stream
ugc+1,j . . . uT ,j . In other words, at the end of the initial-
isation stage, the broadcasting buffer contains u1,i and
the FIFO buffer contains ugc+1,j . . . ugc+c,j .

2. Pipeline processing stage: in every cycle, each bead
accumulates the product of its inputs. Then both the
broadcasting buffer and the FIFO buffer load the next
data element from their corresponding input stream.
This process runs for (T − gc) cycles before termina-
tion.

3. Result summation stage: each bead reports its accumu-
lation result to the host computer. The accumulation
result of the q-th bead is the q-th component of r̃ . The
host computer then revises �i,j according to r̃ .

To optimise the overall performance or energy efficiency,
one may replace the host computer by a hardware accelera-
tor for finite impulse response filter (FIR). We do not apply
this optimisation in this study because the host computer is
an indispensable part of our acceleration platform.

The hardware design for Algorithm 4 is similar to some
systolic implementations for matrix vector multiplication
with regular word-level and bit-level architectures [25].
While techniques such as polyhedral analysis, data pipelin-
ing and tiling have been used in deriving such implementa-
tions [24], the focus of this paper is to develop our designs
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based on mathematical treatment from first principles rather
than making use of derived results.

We can observe from the hardware design that the
pipeline-friendly features behind our algorithm are fully
exploited. The FIFO buffer provides a perfect caching
mechanism to take advantage of the data reuse pattern dis-
cussed in Section 3. In each cycle, only two data elements
are fetched from the input stream, and all the remaining ele-
ments are obtained from the FIFO buffer. In other words,
the memory bandwidth requirement is both small and con-
stant. When more beads are linked up in the system, the
bandwidth requirement remains unchanged, which suggests
that the performance may scale up well with the amount
of on-chip logical resources without being limited by the
memory bottleneck. Furthermore, the architecture is highly
modularised. The major business modules of the architec-
ture are the beads and the two buffers. These modules are
structurally uncomplicated and can be tested individually,
which reduces the potential effort in implementation and
debugging.

4.2 Performance Estimation

We are interested in processing long time series in this
study, hence the pipeline processing stage would be the
most time-consuming one. To compute each entry of �,
PASS(g, c, i, j) has to be invoked for (G + 1) times. The
number of cycles spent in the g-th invocation is (T − gc).
Let F be the clock frequency of the reconfigurable device.
The total execution time of this stage in all invocations is

TP = 1

F

G∑

g=0

(T − gc) = (G+ 1)(2T −Gc)

2F
(24)

For ease of discussion, we will call this time the theoretical
pipeline processing time hereafter. Let Tε be the total execu-
tion time that is not spent on the pipeline processing stage.
Then the total computation time is

T = TP + Tε (25)

We do not attempt to model Tε since we consider its value
both unpredictable and negligible. Tε is related to the con-
figuration and execution status of the acceleration platform,
and this quantity is unlikely to be significant compared to
the pipeline processing time, especially when the time series
is long.

5 Optimised Hardware Architectures

In this paper, we proposes two alternative hardware designs
in addition to the initial one described in the last section. The

major objective of the designs is to improve the worst-case
performance of the initial architecture.

5.1 Architecture with Multiple FIFO Buffers

The initial hardware architecture proposed in the previ-
ous section achieves its best performance when the beads
deployed along the pipeline can be fully used during the
execution. This requires that H + 1 can be exactly divided
by the number of beads c. If not, some beads will be idle
in certain iterations. We call the maximum number of idle
beads the maximum idleness. For an implementation of the
architecture with c beads, the maximum idleness is c − 1.

We reduce the maximum idleness of the engine so that
the worst-case performance can be improved. This is par-
ticularly beneficial for medium sized data. As we have
discussed in the background section, if the length of the data
is small, an appropriate lag truncation parameter H could
be far less than c. When c is large, the computation can be
done by streaming the data into the engine once but there
could be many idle beads in this case.

Our proposed architecture is constructed by linking up
c beads in a different way from the architecture discussed
in the previous section. More specifically, we use a single
buffer register to store a single data element from its input
stream. However, we use multiple FIFO buffers to collect
information about multiple entries of matrix �.

Similar to the initial architecture, a FIFO buffer that
caches c data elements is associated with c beads, and each
data cell offers an input to a bead. Therefore, if we deploy k

FIFO buffers in this architecture, the total number of beads
is kc. The broadcasting buffer provides another input to all
the kc beads.

This architecture works in a similar way to the one
we have discussed in the previous section. The streaming
process can still be divided into three stages.

1. Initialisation stage: all registers in all beads are reset to
zero. The broadcasting buffer is loaded with the first
element of its input stream. The k FIFO buffers are
filled with the first c elements of their corresponding
streams.

2. Pipeline processing stage: in every cycle, each bead
accumulates the product of its inputs. Then both the
broadcasting buffer and each FIFO buffer loads the next
data element from their corresponding input streams.
Suppose we build the architecture with k FIFO buffers,
a total number of (k+ 1) data elements are loaded from
the memory interface. This is different from the initial
architecture where only two data elements are loaded in
each cycle.

3. Result summation stage: similar to the initial architec-
ture, the vector r for each FIFO buffer can be collected
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Figure 3 The multi-FIFO architecture: each bead bi takes one input
from the broadcasting buffer and another input from the FIFO buffer.

from the accumulator in a bead. The host computer then
revises �i,j according to r̃ for each component j . In
each run of the system, k entries in � in the same row
can be revised.

After streaming the data into the engine for G+ 1 times,
a total number of k entries in the same row in � can be
obtained. For instance, Fig. 3 shows a configuration with
two FIFO buffers. Suppose that we estimate a 4 × 4 long-
run covariance matrix using this engine. We may link the
broadcasting buffer to component 1 of the time series and
the two FIFO buffers to component 3 and 4. Then after the
computation, we may obtain �1,3 and �1,4.

The broadcasting buffer in the multi-FIFO architecture
may still have a high fan-out like the initial architecture.
However, given a reconfigurable device, the fan-out of the
multi-FIFO architecture is unlikely to be larger than the fan-
out of the initial architecture. This is because the number of
outputs of the broadcasting buffer equals to the number of
beads, and the number of beads is decided by the amount of
hardware resources.

5.2 Architecture with Generalised Beads

Another way to improve the worst-case performance is
to use generalised beads. Similar to an ordinary bead, a
generalised bead computes one entry in r̃ in Line 4 in
Algorithm 4. However we allow the products of multiple
pairs of data elements to be accumulated simultaneously.
The structure of a generalised bead with two pairs of inputs
is shown in Fig. 4.

To compute an entry of �. Suppose we use generalised
beads with m pairs of inputs. To link a number of c gen-
eralised beads up, we use one broadcasting buffer and one
FIFO buffer. The broadcasting buffer is designed to store m
data elements. The FIFO buffer is divided into c segments,
each of which stores m data elements. The m data elements

Figure 4 The structure of a generalised bead with two pairs of inputs:
a bead takes the product of each pair of inputs. Then the bead sums up
the products and accumulates the results.

from the broadcasting buffer and the m values from a seg-
ment of the FIFO buffer serve as m pairs of inputs of a
generalised bead. For instance, the architecture with m = 2
is shown in Fig. 5.

The operating principle of this architecture is also similar
to the initial one. The streaming process can still be divided
into three stages. Suppose we build the architecture using
generalised beads with m pairs of inputs, the three stages
can be described as follows.

1. Initialisation stage: all registers in all beads are reset
to zero. The broadcasting buffer is loaded with the
first c element of its input stream. The FIFO buffer is
filled with the first mc elements of their correspond-
ing streams. These operations are different from those
of the multi-FIFO architecture where only one data ele-
ment is loaded for the broadcasting buffer and k for the
FIFO buffer.

2. Pipeline processing stage: in every cycle, each bead
accumulates the products of all pairs of its inputs. Then
both the broadcasting buffer and the FIFO buffer load
the next m data elements from their corresponding input
streams. A total number of 2m data elements are loaded
from the memory interface.

3. Result summation stage: each bead reports its accumu-
lation result to the host computer. The accumulation
result of the q-th bead is the q-th entry of r̃ . The host
computer then revises �i,j according to r̃ .

5.3 Performance Estimation and Discussion

We use the performance estimation method discussed in
the previous section to investigate the theoretical pipeline
processing times of the above two architectures.

• The architecture with k FIFO buffers: the performance
depends on which entries we need to estimate. The
architecture reaches its highest performance when the
number of entries we need in each row can be exactly
divided by the number FIFO buffers k. In this case, the
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Figure 5 The architecture
based on generalised beads:
each bead bi takes two inputs
from the broadcasting buffer and
the other two inputs from the
FIFO buffer.

theoretical pipeline processing time can be calculated
by

TP = (G+ 1)(2T −Gc)

2kF
(26)

The architecture demonstrates its worst performance
when only one entry is needed in each row. In this
case, (k − 1) out of k FIFO buffers do not work in
the computation. Therefore the theoretical pipeline pro-
cessing time is calculated in the same way as the initial
architecture.

• The architecture with generalised beads with m pairs of
inputs: the theoretical pipeline processing time depends
on the number of pairs of inputs of each bead m. Since
the engine processes m pairs of data elements, the time
can be calculated by

TP = (G+ 1)(2T −Gc)

2mF
(27)

The performance models are helpful in deciding a design
for a given problem. In particular, we list three considera-
tions when making the decision.

First, in general, the maximum performance of the multi-
FIFO design is better than that of the generalised-beads-
based one. The value k in Eq. 26 can usually be assigned
with a larger number than m in Eq. 27. This is because when
increasing m by one in the generalised-beads-based design,
a broadcasting buffer with the c outputs is created. It takes
additional hardware resources to resolve the high fan-out
of the newly created broadcasting buffer. In contrast, the
multi-FIFO design does not suffer this problem.

Second, in the case where only a small number of entries
in each row of the long-run covariance matrix are required,
the generalised-beads-based design is faster. This is because
if the number of required entries in a row, denoted by k′, is
fewer than k, then (k − k′) FIFO buffers are idle during the
computation. Therefore, the performance shown in Eq. 26
cannot be achieved. For example, given a 10-dimensional
time series representing 10 stocks, the size of the complete
long-run covariance matrix S is 10×10. If we are interested

in the role of the first stock in the market, we only need to
evaluate S1,i and Si,1 for all i ∈ [1..10]. In other words, from
the second row to the tenth row, we only need to calculate
one entry in each row. In this case, the generalised-beads-
based design is preferred.

Third, the initial design may be good enough for some
particular lag truncation parameters. All the three designs
process the lags in batches. Equations 17, 24, 26 and 27 sug-
gest that a design achieves its best performance if the lag
truncation parameter H is set to such a value that (H + 1)
can be exactly divided by the batch size. Therefore, when
(H + 1) can only be exactly divided by the batch size of the
initial design rather than the other two designs, the initial
design is very likely to be the best choice.

6 Experimental Evaluation

We run a series of experiments to evaluate the perfor-
mance of our proposed architectures. In this section, we first
present the general experimental settings, and then discuss
the results.

6.1 Experimental Settings

The experimental settings in this study are similar to the
one in [4]. All the hardware architectures in our experi-
ments are described in the MaxJ language and compiled
with Maxeler MaxCompiler. The acceleration system is a
Maxeler MAX3 acceleration card equipped with a Xilinx
Virtex-6 V6-SX475T FPGA. The acceleration card commu-
nicates with a host computer via a PCI Express interface.
We build the following three experimental implementation
using the platform (i) the initial architecture with 384 beads;
(ii) the multi-FIFO architecture with 5 FIFO buffers, each
of which is associated with 77 beads; (iii) the generalised-
beads-based design with 128 generalised beads, each of
which takes 3 pairs of inputs. We set the clock frequency to
100MHz for all the three systems.
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We also build a CPU-based system by implementing the
straightforward HAC estimation algorithm on the CPU plat-
form in a server with 12 Intel Xeon X5650 cores running
at 2.67GHz. The experimental code is written in the C pro-
gramming language with the OpenMP library, and compiled
with Intel C compiler with the highest compilation optimi-
sation. To make a fair comparison, the IEEE single precision
floating point numbers are used exclusively in both the
hardware and software implementations.

In order to simulate the computation of different types of
data, for each data set we select 12 different values of γ in
the range 0.25 ≤ γ ≤ 3.00 which is slightly wilder than the
range investigated in [7].

The computational efforts for all entries of the long-run
covariance matrix are identical. Therefore we describe the
performance in terms of the computation time of a sin-
gle entry. Following the experiment scheme in [4] and [7],
two time series are generated using a vector autoregression
(VAR) model [5]. The lengths of the two time series are
respectively 106 and 108.

6.2 Performance Results

Experimental results are shown in Fig. 6. It is clear that
the speedup of the FPGA-based system is significant, espe-
cially for long time series where T = 108. The best
speedup is obtained with the multi-FIFO architecture. When

T = 108 and H = 1045, it is 113 times faster than a
single CPU core, and 12 times faster than twelve cores.
The architecture based on generalised beads demonstrates
lower performance than the multi-FIFO architecture, but
this architecture delivers consistent performance regardless
which entries in the long-run covariance matrix are queried.

The execution times of all systems increase as the lag
truncation parameter grows. However, the growth patterns
of the FPGA based systems are significantly different from
those of the CPU-based systems. More specifically, the exe-
cution times of the two CPU-based systems grow linearly
with different slope. This linear growth can be explained
by the time complexity of the algorithm. The execution
times of the FPGA-based systems increase like stairs. This
is because the FPGA-based systems handle the computation
for different lags in batches.

Due to the difference in the growth pattern in execution
time, it is not surprising that the speedup of the FPGA-based
system over the CPU-based one appears a zig-zag pattern in
a periodical manner, as shown in Fig. 6. This is because the
speedup falls down due to the idleness of beads, which we
have discussed in the previous section.

We may also obtain two further observations from this
zig-zag pattern. One observation is that the amplitude of
the zig-zag pattern shrinks as the lag truncation parameter
grows, since the redundant computation times become less
significant compared to their corresponding total execution
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Figure 6 Results on performance: the first two columns of figures are
performance results from the CPU-based system and the FPGA-based
system respectively. The third column and the fourth columns record

the speedups of the FPGA-based systems over the CPU-based ones.
FPGA, MF, GB correspond respectively to the initial architecture, the
multi-FIFO architecture and the generalised-beads-based design.
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times. The other observation is that the shaking amplitudes
of the two optimised systems are significantly smaller than
the initial one because the maximum idleness is reduced. As
a result, the performance is less dependent on the lag trun-
cation parameter. In other words, the optimisations enhance
the reliability of the system by improving the worst-case
performance.

7 Conclusion

This paper presents a reconfigurable acceleration solution
to heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimation for multivariate time series.

Rather than providing a hardware design for an existing
HAC estimation algorithm, we use an algorithm designed
exclusively for hardware implementation. This algorithm
exploits the capabilities of a reconfigurable computing
platform and avoids limitations like the memory bottle-
neck. Based on our algorithm, we present three hardware
architectures namely the initial architecture, the multi-
FIFO architecture and the generalised-beads-based design.
We analyse their performance using both theoretical and
empirical approaches. An experimental implementation of
the multi-FIFO architecture using a Virtex-6 V6-SX475T
FPGA achieves up to 113 times speedup over a single-
core CPU, and up to 12 times speedup over an 12-core
CPU. The implementation of the generalised-beads-based
design shows slightly lower performance than the multi-
FIFO architecture, but its performance does not depend on
which long-run covariance matrix entries are queried by
the user. In general, the two optimised architectures effec-
tively improve the worst-case performance of the initial
architecture.

This work shows the potential of reconfigurable com-
puting for time series processing. Future work includes
developing hardware accelerators for other time series pro-
cessing techniques, such as regression analysis, forecasting
and knowledge discovery.
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