
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014 631

Mapping Loop Structures onto Parametrized
Hardware Pipelines

Adrien Le Masle and Wayne Luk, Fellow, IEEE

Abstract— This paper shows how a general form of algorithms
consisting of a loop with loop dependencies carried from one
iteration to the next can automatically be mapped to a para-
metric hardware design with pipelining and replication features.
A technology-independent parametric model of the proposed
design is developed to capture the variations of area and
throughput with the number of pipeline stages and replications.
Our model allows rapid optimization of design parameters by a
few pre-synthesis operations. We present an optimization method
based on the model. Our method is evaluated using three different
applications implemented on a Xilinx Spartan 6 XC6SLX45T
FPGA: a carry-save adder-based Montgomery multiplier, a
modular exponentiation module, and an integer square root
module. Our model facilitates design space exploration; it can
quickly predict the area taken by our designs with less than 5%
of error, and their maximum frequencies and throughputs with
less than 22% of error. Our optimization method is up to 96
times faster than a full search through the design space.

Index Terms— Design space exploration, field-programmable
gate array (FPGA), hardware mapping, loop-carried dependen-
cies, resource estimation.

I. INTRODUCTION

F IELD-programmable gate arrays (FPGAs) are quickly
increasing in capability and in size, and it becomes a

growing challenge to fully cover the design space available for
a given budget. This introduces the need for parametric designs
capable of covering a large design space, especially in terms
of the speed–area tradeoff. Recent papers have explored the
benefit of parametric designs in different applications. In [1],
a parametric approach is developed for software-defined radio
modules. In [2], we present parametric Montgomery multi-
plier, Montgomery exponentiator, and Miller–Rabin primality
tester designs. These three functions are the core of many
public-key crypto-systems.

The main advantages of parametric designs are their scal-
ability and their reusability. They can be reused as IP cores
in many projects with different speed–area tradeoffs. How-
ever, finding the optimal values for the parameters to meet
a given design goal can be difficult and time-consuming.

Manuscript received December 20, 2011; revised January 22, 2013; accepted
February 11, 2013. Date of publication March 28, 2013; date of current
version February 20, 2014. This work was supported in part by BlueRISC,
Xilinx, U.K. EPSRC, the European Union Seventh Framework Programme
under Grant Agreement 248976, Grant Agreement 257906, Grant Agreement
287804, and Grant Agreement 318521, and the HiPEAC NoE.

The authors are with the Department of Computing, Imperial
College London, London SW7 2BZ, U.K. (e-mail: al1108@doc.ic.ac.uk;
wl@doc.ic.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2251430

An exhaustive approach implementing designs for all the
values of the parameters in a given search interval cannot
be achieved in most projects where the time-to-market is an
issue. Therefore, we need a model of the design that facilitates
estimating its parameters under speed and area constraints.
Such area and speed estimation models are often application-
dependent [1], [3] or technology-dependent [4], [5].

In this paper, we present a general parametric hardware
design method using pipelining and replication. We show how
algorithms in a particular form, namely, those containing one
loop with loop dependencies carried from one iteration to
the next, are automatically mapped to appropriate hardware
designs. Then we develop a model of the area and throughput
of the design. Our main contributions include:

1) a coarse-grained method for mapping an algorithm con-
taining one loop with loop dependencies carried from
one iteration to the next to a parametric design using
pipelining and replication;

2) a model of our design that allows predicting the varia-
tions of its throughput and its area with the number of
pipeline stages and replications;

3) a general optimization process integrating our model;
4) a practical analysis of the accuracy and prediction capa-

bilities of our optimization method on three applications
implemented on a Xilinx Spartan 6 XC6SLX45T FPGA.

Our model is technology-independent. It allows rapid opti-
mization of the design by only running a few pre-synthesis
operations. It facilitates design space exploration; it can
quickly predict the area taken by the three evaluated designs
with less than 5% of error, and their maximum frequencies
and throughputs with less than 22% of error. As a matter of
fact, our optimization method is up to 96 times faster than a
full search through the design space.

The rest of this paper is organized as follows. Section III
presents the general algorithm and its hardware mapping.
Section IV develops an area, frequency, and throughput model
of our hardware mapping. Section V shows how this model is
integrated into a throughput optimization process. Section VI
evaluates the accuracy and prediction capabilities of our opti-
mization method and shows that it greatly speeds up design
space exploration. Finally, Section VII concludes this paper.

II. RELATED WORK

A. Resource and Performance Estimations

Previous work on resource and performance estimations for
reconfigurable devices has mainly been focused on high-level

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

632 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

register-transfer level (RTL) estimation. The common method
used for resource estimation consists of identifying the basic
operations in the algorithm, which can be represented as a data
flow graph [4] or an RTL netlist [5]. A library of operators
characterizing the device is then used to estimate the resources
needed by the algorithm. This process usually requires approx-
imations to fit the parameters of identified operations (bitwidth,
number of inputs, etc.) to operators in the library [6]. Such
estimation tools are readily available in commercial software,
such as Xilinx system generator [7] and PlanAhead [5]. The
RTL resource estimation tool used by Xilinx is claimed to be
60 times faster than synthesis [5], which allows fast design
space exploration. Similar methods can be used to estimate
the performance of the design by using a device-dependent
library of delays for the estimated resources.

These methods are general and inherently fine-grained.
A coarse-grained approach focused on energy-consumption
has been proposed [1], [8], which targets runtime recon-
figurable software-defined radio applications. This approach
needs a priori information about the implementation, usually
obtained by a few synthesis operations.

B. Algorithm Mapping onto Reconfigurable Hardware

The literature on algorithm mapping onto reconfigurable
hardware and associated design space exploration is vast. For
instance, in [9], a mixed compiler/synthesis tools approach
is presented. Compiler optimizations are performed on the
algorithm before translation to RTL. The design space is then
searched using RTL estimations as described earlier.

The mapping of an unrolled loop onto pipelines has
also been extensively studied [10]–[12]. The reconfigurable
dataflow approach [12], in particular, maps loops with loop-
carried dependencies onto efficient pipelines. This method is
more fine-grained and general than our approach, since it
supports loop-carried dependencies of various sizes and loop
indices determined at runtime. However, resource and perfor-
mance models are not covered for the mapped implementation,
which makes design space exploration difficult.

Unlike other more fine-grained loop pipelining and resource
estimation methods, the method presented in this paper is
restrained to a particular application domain and uses a coarse-
grained model of the corresponding hardware mapping. As
a matter of fact, our base module is a coarse-grained cell,
which already consists of many fine-grained operators. Similar
to other methods [1], [8], our approach is particularly useful
for quick optimization of design parameters through design
space exploration. However, we focus on algorithms that
cannot be parallelized due to loop-carried dependencies, while
other methods focus on tradeoffs related to parallelization
[1], [8]. The restrained application domain of our model
makes the resource and performance estimations as well as the
design space exploration more accurate than general estimation
methods.

Our coarse-grained estimations and mapping are performed
before synthesis. Other fine-grained pipelining techniques,
such as post-placement C-slow retiming [13] can be performed
after synthesis if the throughput of the design needs to be

Algorithm 1 CSA Montgomery
Input: A = (an−1...a0)2, B = (bn−1...b0)2,

M = (mn−1...m0)2
Output: P = A.B.2−n mod M

1 S = 0, C = 0, D = B + M
2 for i = 0 to n − 1 do
3 I = select (s0, c0, ai , B, M, D)
4 S, C = S + C + I
5 S = S div 2, C = C div 2
6 end
7 P = S + C
8 if P ≥ M then P = P − M

increased further. However, such techniques can have
non-negligible overheads that should be taken into account.

III. HARDWARE DESIGN WITH PIPELINING

AND REPLICATION

We develop a hardware design using pipelining and repli-
cation for a general form of algorithms, which can be found
at the core of many applications.

A. Main Idea

This paper focuses on a class of algorithms with loop
dependencies carried from one iteration to the next. Common
applications falling into this category are bitwise algorithms
for which the result is updated at each iteration based on
the corresponding bit of one or several inputs. In cryptog-
raphy, this is for instance the case of the Montgomery mul-
tiplication algorithm [14], the square-multiply exponentiation
algorithm [2], and the Lucas primality test [15], [16]. Some
important arithmetic algorithms, such as the integer square
root [17] and the restoring division algorithms also follow this
pattern. Algorithms performing a reduce operation also exhibit
such loop dependencies. This is the case of several algebraic
algorithms, such as matrix-vector and matrix multiplications,
for which products of row and column elements are iteratively
accumulated. Finally, loop dependencies carried from one iter-
ation to the next are also common in approximation algorithms
for which a solution is refined at each iteration based on the
result from the previous one. The Newton–Raphson method is
one of the best known algorithms of this type.

Usually algorithms with loop-carried dependencies cannot
be easily parallelized. However, several techniques can be
used for efficient hardware implementation. As an example,
let us consider carry-save adder (CSA)-based Montgomery
multiplication shown in Algorithm 1. After initialization, the
algorithm iterates on the bits of the input A. At each iteration,
the new sum S and carry C are computed using the current
sum, the current carry and a number I . The value of I depends
on the LSB of the current sum, the current carry and the
input B , as well as bit i of A. S and C are then shifted right.
After the loop terminates, the result is converted from carry-
save to normal representation and reduced modulo M .

For computing a 32-bit (n = 32) Montgomery multipli-
cation, a simple hardware architecture for the loop would

MASLE AND LUK: MAPPING LOOP STRUCTURES ONTO PARAMETRIZED HARDWARE PIPELINES 633

C
S
A

reg C

reg S

shift
right

shift
right

c b0
C
S
A

shift
right

shift
right

I-select I-select
I0 I1

0
0

s00ai ai+1

b0 c01

s01

Fig. 1. Focus on a Montgomery block for r = 2.

Montgomery
block 1

Montgomery
block 2

Montgomery
block 3

Montgomery
block 4

regreg
reg

reg
reg
reg

reg reg reg
M
B

S=0
C=0

A[0:7] A[8:15] A[16:23] A[24:31]

D
M
B
S=0
C=0

D

Fig. 2. Structure of a 32-bit pipelined Montgomery multiplier with four
pipeline stages.

reuse the same processing logic (called Montgomery cell)
32 times, storing the intermediate values of S and C in
registers. This architecture is compact but slow as the latency
of one multiplication is 32 clock cycles. If we are willing
to trade area for performance, the Montgomery cell can be
replicated. For example if we replicate the Montgomery cell
once, we obtain r = 2 copies of the cell in series in a
Montgomery block, as shown in Fig. 1. Hence, the latency
of one multiplication is now 32/2 = 16 clock cycles. The
area is slightly less than doubled as some control logic can
be shared. However by replicating the cell, we increase the
delay through the block and hence the critical path delay. In
practice, replication is only useful if the minimum period that
we want to achieve is higher than the critical path delay. Now
let us assume that we want to perform several multiplications.
In our replicated design, we would have to wait for the first
multiplication to terminate before starting a new one, leading
to a throughput of one multiplication every 16 clock cycles.
To increase the throughput of the design, we can pipeline
the Montgomery block as shown in Fig. 2. As opposed to
replication, pipelining buffers the output of each duplicated
block. Here, the entire block is duplicated, and therefore
doubling the number of pipeline stages doubles the logic area.
For p = 4 pipeline stages, each block is assigned 32/4 = 8
iterations. Each block contains r = 2 cells. Hence, it takes
8/2 = 4 clock cycles for each block to compute its part of
the iterations. The latency of the architecture is still 16 clock
cycles but a new multiplication can now be started every four
clock cycles, leading to a throughput of one multiplication
every four clock cycles. The following sections formalize these
ideas.

Algorithm 2 General Bit by Bit Processing Algorithm
Input:
A0 = ∑n−1

i=0 a(0,i)2i , . . . ,

Ak−1 = ∑n−1
i=0 a(k−1,i)2i ,

B0 = ∑β0−1
i=0 b(0,i)2i , . . . ,

Bl−1 = ∑βl−1−1
i=0 b(l−1,i)2i

Output:
R0 = ∑ρ0−1

i=0 r(0,i)2i , . . . ,

Rm−1 = ∑ρm−1−1
i=0 r(m−1,i)2i

1 (R0, . . . , Rm−1) = pre(A0, . . . , Ak−1, B0, . . . , Bl−1)
2 for i = 0 to n − 1 do
3 (R0, . . . , Rm−1) =

main(a(0,i), . . . , a(k−1,i), B0, . . . , Bl−1, R0, . . . , Rm−1)
4 end
5 (R0, . . . , Rm−1) =

post (A0, . . . , Ak−1, B0, . . . , Bl−1, R0, . . . , Rm−1)

B. General Algorithm

In this analysis, we consider algorithms that can be
described in the general form presented in Algorithm 2.

This algorithm has an optional pre-computation stage
(line 1). This stage can consist of initialization of variables,
initial shifts, etc. Then, the algorithm iterates on the number
of bits of the A inputs (A0 to Ak−1). At each iteration of the
loop, the result variables R0, . . . , Rm−1 are updated through
the main() function (line 3). At iteration i , this function takes
the previous values of R0, . . . , Rm−1, the entire B inputs
(B0 to Bl−1), and the i -th bits of the A inputs. A possible
post-computation stage terminates the algorithm (line 5).

In practice, every algorithm with one loop that has loop
dependencies carried from one iteration to the next, and for
which some inputs are processed bit-by-bit, can be repre-
sented in this general form. Table I shows how we can map
the Montgomery multiplication algorithm, the exponentiation
algorithm, and the integer square root algorithm to our gen-
eral algorithm. For each algorithm, the inputs, the outputs,
the number of iterations (n), and the three functions pre(),
main() (at iteration i) and post() are identified. Note that for
the integer square root algorithm to conform to our general
algorithm, its input bits have to come from two A-type inputs.
In fact, the bit-by-bit processing of the A-type inputs does not
limit the generality of our approach as k n-bit physical A-type
inputs can be zipped together to form n k-bit logical inputs
if required. In Section VI, we choose these three reference
designs to evaluate the accuracy of our model.

C. Design

We focus on the main loop of Algorithm 2 and map it to
the general hardware design described in Figs. 3 and 4.

The n iterations are divided between p blocks organized in a
pipeline fashion as shown in Fig. 3. Pipeline block number i
performs iter(i) successive iterations of the loop where for

634 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

TABLE I

SPECIALIZATION OF THE GENERAL ALGORITHM FOR THREE APPLICATIONS

CSA Montgomery Exponentiation Integer Square Root

Inputs
A0 = A = (as−1...a0)2
B0 = B = (bs−1...b0)2
B1 = M = (ms−1...m0)2

A0 = E = (es−1...e0)2,
B0 = X , B1 = M

A = (as−1...a1a0)
2

input integer
A0 = (a1a3...as−1)

2
A1 = (a0a2...as−2)

2

Outputs R0 = S = A.B.2−n mod M, R1 = C , R2 = D R0 = Z = X E mod M, R1 = P R0 = Rem, R1 = Root

n s s s/2

pre() S = 0, C = 0, D = B + M Z = 1, P = X Rem = 0, Root = 0

main()

I = select(s0, c0, ai , B, M, D)
S, C = S + C + I
S = S div 2
C = C div 2

if ei = 1 then
Z = Z .P mod M

P = P2 mod M

Root = (Root << 1)
a = (a(0,i)a(1,i))2
Rem = (Rem << 2) + a
Div = (Root << 1) + 1
if Div ≤ Rem then

Rem = Rem − Div
Root = Root + 1

post() S = S + C
if S ≥ M then S = S − M

- -

Block 1

B0

Bl-1
R0

Rm-1

.

. reg

reg
.
.

reg

reg

reg reg

A0[0:It(1)-1] Ak-1[0:It(1)-1]

. . .

Block 2

reg reg

A0[It(1):It(2)-1] Ak-1[It(1):It(2)-1]

. . .reg reg

Block p

reg reg

A0[It(p-1):It(p)-1] Ak-1[It(p-1):It(p)-1]

. . .
reg reg

B0

Bl-1
R0

Rm-1

.

.

.

.

p

Fig. 3. Pipeline of the parametric hardware description.

Cell 1 Cell 2 Cell r

reg

reg

reg reg

A0[It(i-1):It(i)-1] Ak-1[It(i-1):It(i)-1]

. . .
reg reg

i

B0

Bl-1
R0

Rm-1

.

.

.

.

B0

Bl-1
R0

Rm-1

.

.

.

.

Fig. 4. Inside pipeline block i .

all i ∈ [1, p]

iter(i) =
⌊

n

p

⌋

+ extra(i) (1)

extra(i) =
{

1, if n mod p > i
0, if n mod p ≤ i.

(2)

The number of iterations is evenly distributed between
pipeline blocks. If p does not divide n, the first n mod p
blocks perform an extra iteration. So block number i processes

the bits I t (i − 1) to (I t (i) − 1) of inputs A0 to Ak−1 where

I t (0) = 0

I t (i) =
i∑

k=1

iter(k) ∀i ∈ [1, p]. (3)

The other inputs to block number i are:

1) the current values of R0, . . . , Rm−1, calculated by block
number (i −1) if i ≥ 2 or given by the pre-computation
stage if i = 1;

2) the values of B0, . . . , Bl−1.

Each pipeline block consists of a processing cell performing
the actual computation, some registers, and extra logic needed
for the control. As well as organizing the basic blocks in a
pipeline fashion, we allow the processing cell of each block
to be replicated in series without buffering as shown in Fig. 4.
This feature is relevant if the processing cell consists of only
combinational logic. If the operations performed by a cell take
several clock cycles, replication will not reduce the number of
clock cycles spent in each pipeline block. For instance, given
that the operations of a cell take ten clock cycles and we need
to perform two iterations in each pipeline block. With one cell,
the unique cell performs both iterations one after the other for
a total of 20 clock cycles. If we replicate the cell once, the
first cell performs the first iteration. The second cell waits for
the first to finish then it performs the second iteration. Hence,
the total time through the block is still 20 clock cycles.

If each pipeline block has r main processing elements,
r iterations are processed in series during one clock cycle.
Hence, the number of clock cycles spent in pipeline block i
per operation is

lat(i) =
⌈

iter(i)

r

⌉

. (4)

We call this number the latency of pipeline block i · lat(i) is
expressed in clock cycles and is therefore independent of the
frequency of the design. This equation shows that an extra
clock cycle is needed if r does not divide iter(i). In this case,

MASLE AND LUK: MAPPING LOOP STRUCTURES ONTO PARAMETRIZED HARDWARE PIPELINES 635

the results of block i need to be extracted from cell number
iter(i) mod r during this extra clock cycle.

Between each pair of blocks, register banks save the differ-
ent values of R0, . . . , Rm−1 and B0, . . . , Bl−1 to be given as
inputs to the next block. The register bank for R0, . . . , Rm−1 is
updated at each clock cycle with the results of cell number r or
cell number iter(i) mod r . The register bank for B0, . . . , Bl−1
is only updated each time the operation of the preceding block
is done. Finally, a triangle of registers at the top ensures that
the pipeline blocks are always given the correct values for
their corresponding A inputs. In the triangle of registers, the
bottom registers connecting to each pipeline block are shift
registers. They provide the cells in the pipeline block with the
inputs corresponding to the current iteration.

Mapping our general algorithm to this particular hardware
structure has three main advantages. First, the parametric
nature of this structure (through the two parameters r and p)
allows the designer to explore a large design space and
therefore to consider different speed/area tradeoffs. Second,
the throughput of the design can be improved by increasing
the values of r and p. The only limitation is the area available.
This is particularly interesting for applications targeting high-
speed performance. Finally, our structure is regular and the
generation of the pipeline and replication logic is automated.

IV. MODELING OF THE DESIGN

We develop a model of our parametric design presented in
the previous section enabling rapid optimization for throughput
under area and speed constraints. This model is a refinement of
our previous work presented in [18]. The use of such a model
reduces development time as fewer synthesis operations are
needed to obtain satisfactory values for r and p.

A. Latency and Throughput

Our module needs to perform n iterations to complete the
main computation if no replication is introduced. Let tp,e be
the time to perform such an iteration, corresponding to c clock
cycles at a frequency f

tp,e = c

f
. (5)

If c = 1, the main processing element of a block can be
replicated. If c > 1, as we cannot replicate the main processing
element it takes n.c clock cycles to perform the n iterations.
Therefore, the total time to perform the main operation is

tp =
{ ∑p

i=1 lat(i) · tp,e, if c = 1
n · tp,e, if c > 1.

(6)

This corresponds to the time taken by the system to compute
the first result, that is, the latency of the hardware module in
seconds. In practice, replication increases the delay through a
pipeline block and therefore reduces the maximum frequency
f of the clock as cells are put in series without buffering. This
is considered in Section IV-B.

To simplify the equations, we assume that the latency
of the pre-computation and post-computation operations is
shorter than the latency of a pipeline block. If not the

case, the throughput bottleneck is in the slower of the two
stages, not in the main computation. The throughput φ of
the design (number of operations per unit of time when the
pipeline is full) depends on both the pipeline length p and
the number of replications r . It is inversely proportional to
the maximum number of clock cycles spent in a pipeline
block

φ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
⌈⌈

n
p

⌉

r

⌉

tp,e

= f
⌈⌈

n
p

⌉

r

⌉ , if c = 1

1
⌈

n

p

⌉

tp,e

= f
⌈

n

p

⌉

c
, if c > 1.

(7)

Replicating and pipelining a design reduce the effective
number of iterations needed to be computed in each block,
leading to the following constraint:

p · r ≤ n. (8)

B. Frequency

To simplify, we assume that the pre-processing and post-
processing modules are not a frequency bottleneck. Hence,
the critical path is in a pipeline block and the minimum
period is equal to the delay through a block. In our parametric
description, the size of the main processing element in each
block is about the same for all p. Even if the size of the control
hardware managing the iterations in a block decreases with p,
the delay through a block is not likely to decrease significantly.
Therefore, we assume that the minimum period of the design
does not depend on p. On the contrary, replication has a
negative effect on the critical path as the replicated cells
are connected together in series. The minimum period can,
therefore, be approximated by

Tp(r) ≈ dl + rdc (9)

where dc is the delay through a cell, r is the number of cells
in a block, and dl is the sum of the delays through the logic
located before and after the cells (mostly multiplexers). Hence,
the frequency of the design is

f (r) = 1

Tp(r)
= 1

dl + rdc
. (10)

Let us define

f0 = 1/Tp(1) (11)

as the frequency of the design for r = 1 and

λ = dc/Tp(1) (12)

as the ratio of the delay through the basic cell to the minimum
period for r = 1. We can rewrite the frequency as

f (r) = 1/Tp(1)

1 + dc/Tp(1)(r − 1)
= f0

1 + λ(r − 1)
. (13)

636 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

C. Area

We decompose the area taken by our design into two parts.

1) Al the area taken by logic.
2) Ar the area taken by registers.

Let us first consider the area taken by the logic Al . Let
Acell be the logic area of a cell for r = 1, Amux,2 and Amux,3
be the area taken, respectively, by a 2-to-1 and a 3-to-1 bit
multiplexer. We recall that ρi is the bitwidth of the output
Ri and m is the number of such outputs. As shown in Fig. 4,
the multiplexers required at the inputs of the R register bank
are either two-input or three-input multiplexers, depending on
the need for an extra clock cycle in pipeline block i . Hence,
the logic area of pipeline block i is

Ablock(i) = r.Acell +
m−1∑

k=0

ρk .Amux,2+extra(i). (14)

Each register of the top register triangle needs either a two-
input or a three-input multiplexer depending on whether they
are shift registers. The part of the register triangle supplying
inputs to pipeline block number i is of size iter(i). We recall
that k is the number of A inputs. Hence, the logic area of the
register triangle is

Atriangle = k
p∑

i=1

iter(i).
(
(i − 1).Amux,2 + Amux,3

)
. (15)

Let Apre and Apost be the fixed logic area taken, respectively,
by the pre-computation and post-computation modules. We
can deduce the total logic area

Al = Apre + Atriangle +
p∑

i=1

Ablock(i) + Apost. (16)

To calculate Ar , we need to derive the total register size S. The
total size of the register banks between two pipeline blocks is

Sd =
l−1∑

i=0

βi +
m−1∑

i=0

ρi . (17)

The size of a register in the top triangle of registers is for
pipeline block i

Sp(i) = k.iter(i). (18)

Let Scell be the total size of the registers internal to a cell,
Spre and Spost be, respectively, the total size of the registers of
the pre-computation and post-computation modules. The total
register size is

S = Spre + p.(Sd + r.Scell) +
p∑

i=1

i.Sp(i) + Spost. (19)

Finally, we have

Ar = S.Ar,e (20)

where Ar,e is the area taken by a one-bit register.

TABLE II

DETERMINATION OF THE DESIGN PARAMETERS

Parameters Determination

A inputs number (k), bitwidth (n) Application-dependent

B inputs number (l), bitwidths (β0, . . . , βl−1) Application-dependent

R outputs number (m), bitwidths (ρ0, . . . , ρm−1) Application-dependent

Iteration clock cycles (c) Application-dependent

Minimum frequency fmin Design choice

Maximum logic area (Al,max) Device-dependent

Maximum register area (Ar,max) Device-dependent

Basic cell area (Acell) Pre-synthesis

Basic cell registers (Scell) Pre-synthesis

Pre/post-computation area (Apre, Apost) Pre-synthesis

Pre/post-computation registers (Spre, Spost) Pre-synthesis

Area of a 1-bit register (Ar,e) Pre-synthesis

Multiplexers area (Amux,2 and Amux,3) Pre-syntheses

Frequency parameters (f0, λ) Interpolation or direct

D. Constraints

The following constraints are used:
1) maximum area available for logic Al,max;
2) maximum area available for registers Ar,max;
3) minimum frequency fmin at which we want the design

to run.

E. Throughput Optimization

The problem of optimizing the throughput of the design can
be formulated as follows:

max

φ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
⌈⌈

n
p

⌉

r

⌉

tp,e

= f
⌈⌈

n
p

⌉

r

⌉ , if c = 1

1
⌈

n

p

⌉

tp,e

= f
⌈

n

p

⌉

c
, if c > 1

s.t. (21)

Al ≤ Al,max Ar ≤ Ar,max

f ≥ fmin p.r ≤ n.

Given a search interval for r and p, this problem is solved
easily by exhaustive search.

V. OPTIMIZING THE DESIGN

We show how the parameters of our model can be deter-
mined, and an optimization process based on our model.

A. Determining the Values of the Parameters

Our model contains many parameters which affect the
values of r and p maximizing the throughput. Table II
summarizes how each parameter is determined. The number
of A inputs (k), the number of B inputs (l), the number of

MASLE AND LUK: MAPPING LOOP STRUCTURES ONTO PARAMETRIZED HARDWARE PIPELINES 637

outputs (m), and their respective bitwidths (n, β0, . . . , βl−1,
ρ0, . . . , ρm−1), and the number of clock cycles c needed to
complete an iteration, depend on the application. Hence, we
can obtain them easily once the design of the hardware module
is fixed. The minimum frequency fmin at which our module
runs is a design choice. The maximum area available for
registers Ar,max and for logic Al,max are device-dependent.
For an FPGA, Ar,max is the maximum number of registers
and Al,max is the maximum number of look-up tables (LUTs)
available. For an ASIC, Ar,max and Al,max can be grouped
together to provide the maximum area available given in μm2,
in number of cells or in the technology-independent notion of
a register bit equivalent [19].

The area of a basic cell Acell, of the pre-computation and
post-computation modules (Apre and Apost) can be approxi-
mated by using a priori knowledge of the design or found by
running a single synthesis operation for r = 1 and p = 1.
This is also the case for the registers internal to a cell Scell
and the registers of the pre-computation and post-computation
modules (Spre and Spost). The area of a one-bit register (Ar,e),
2-to-1 and 3-to-1 multiplexers (Amux,2 and Amux,3) are easily
determined by running short synthesis operations.

The frequency parameters f0 and λ can be obtained by two
different means. The first solution is to run some synthesis
operations in order to get the values of f for a small set
of chosen r and find f0 and λ by interpolation. The second
solution is to run a single synthesis operation to find the value
of f0 and compute λ directly using 12, provided that we can
estimate the delays through a pipeline block and a replicated
cell. In our current implementation of the optimization process,
the different parameters need to be extracted by the designer.

If the search intervals for r and p are large enough, the
time taken by the extra synthesis operations (we call them
pre-synthesis operations) is negligible compared to the time it
would take to synthesize the design for every possible value
of the tuple (r, p) in the search intervals. More precisely,
running three or four pre-synthesis operations for uniformly
distributed values of r in the search interval is usually enough
to get a good approximation of λ by interpolation. The pre-
synthesis time needed to determine the multiplexers area
is negligible. Moreover, one of the pre-synthesis operations
used to determine the frequency parameters also gives us
the basic cell area Acell. Hence for r · p > 4, using our
model should be faster than a complete search through the
design space. Results demonstrating this claim are shown
in Section VI.

B. Design Generation and Optimization Process

Given the different application-dependent parameters of the
design and the number of pipeline stages p and replications r ,
a script automatically generates RTL code for our general
pipelined and replicated hardware mapping as well as the
corresponding control logic, which greatly simplifies the work
of the designer. Only the basic cell, the pre-computation
and post-computation logic are defined by the designer for
each application. In the examples presented in Section VI,
these modules are coded in Verilog. A higher level hardware

Pre-
synthesesModel f0, λ,

Acell, Amux,2,
Amux,1,

Ar,max, Al,max k, l, m, n, β0, …, βl-1,
ρ0, …, ρm-1

fmin, rmin,
rmax, pmin,
pmax

Refinement

rmodel, pmodel

Device

Designer

Application

RTL
Design

Δr, Δp

rs, ps

Optimisation f, Ar, Al

Fig. 5. Optimization process.

language, such as Handel-C or Xilinx HLS could be used to
reduce the design time further.

The complete optimization process of our parametric design
is depicted in Fig. 5. The aim of this process is to find
satisfactory values for the parameters r and p, that is values
that are close to the real optima, in a short amount of time.
First, the different parameters of the model are determined
using the methods described in Table II. Given a search
interval for r and p, respectively, [rmin, rmax] and [pmin, pmax],
the throughput optimization of 21 gives us the optimal values
of r and p according to the model. We call them rmodel and
pmodel. The values rmodel and pmodel are then given to the
refinement process. This optional process performs a small
number of synthesis operations around rmodel and pmodel to
refine the solution by giving the real post-synthesis values
of f , Ar and A p to the model. The refinement intervals
for r and p are, respectively, [rmodel − �r, rmodel + �r] and
[pmodel − �p, pmodel + �p]. The outputs of this process are
rs and ps . The pre-synthesis, optimization, and refinement
processes are implemented as a Python software tool, which
interfaces with Xilinx synthesis tools.

VI. RESULTS

In this section, we evaluate the accuracy and the benefits of
our model against a complete search through the design space.

A. Accuracy of the Model

We consider three applications presented in Table I.

1) 512-bit CSA-based Montgomery multiplication.
2) 128-bit modular exponentiation.
3) 512-bit integer square root.

The hardware mappings of these designs are synthesized for
a Xilinx Spartan 6 XC6SLX45T-FGG484-3 with XST 13.2
optimizing for area, without resource sharing and equivalent
register removal. All the synthesis operations are run on an
Intel Core i7 950 CPU at 3.07-GHz machine with 6 GB of
DDR3 memory.

The basic cells of the Montgomery multiplier and the
integer square root modules only consist of combinational

638 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

TABLE III

ACCURACY OF OUR MODEL

LUTs Registers Frequency Throughput Corrected Throughput
Error (%) Error (%) Error (%) Error (%) Error (%)

Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std

Montgomery 1.18 0.32 0.20 0.42 0.26 0.09 21.03 1.87 2.87 128.85 17.38 26.03 21.03 2.33 3.43

Exponentiation 4.43 3.32 0.68 1.23 1.19 0.02 15.73 14.75 2.96 15.73 14.75 2.96 15.73 14.75 2.96

Square root 3.41 0.60 0.66 1.24 0.97 0.12 0.68 0.34 0.14 0.68 0.34 0.14 0.68 0.34 0.14

logic (c = 1). Hence, replication can be introduced. We
synthesize these two designs for all the 256 combinations of
the number of replications (r) and pipeline stages (p) in the
respective intervals [1, 16] and [1, 16]. The basic cell of the
modular exponentiation module, which is basically a modular
multiplier, is sequential (c > 1). Therefore, replicating this
cell is irrelevant. We synthesize this design for r = 1 and
p in [1, 32]. For the multiplier and the square root modules,
we determine the frequency parameters by interpolation using
three points: (p, r) = (1, 1), (p, r) = (1, 8), and (p, r) =
(1, 16). The frequency of the exponentiation module is fixed
to its value for p = 1.

For our three applications, Table III reports the maximum,
average, and standard deviation of the relative prediction
errors1 of our model across all the combinations of the
parameters p and r for the number of LUTs, the number
of registers, the maximum frequency, and the throughput.
The maximum errors for the number of LUTs and registers
are very low over the three applications (1.18%–4.43%, and
0.42%–1.24%, respectively). The maximum frequency error
is more substantial for the Montgomery multiplication and
the exponentiation module. We suspect that this error is due
to uncontrollable optimizations performed by the synthesis
tool on routing delays that sometimes make the frequency
depend on the number of pipeline stages p. This dependency
on p does not follow a general trend and therefore cannot
be modeled effectively. As shown in Fig. 6, for the Mont-
gomery multiplier, high frequency errors are localized to a
few (r, p) tuples.2 This is not the case for the exponentiation
module whose average frequency error is high and close
to the maximum frequency error. Here, the reference point
chosen to determine f0 ((r, p) = (1, 1)) has a maximum
frequency, which is around 15% lower than for the other
values of p, leading to a constant error. The error could be
improved by picking a different reference point (r, p) = (1, 2)
for example.

The throughput error of the Montgomery multiplier is
very high. Our model supposes that the latency of the pre-
computation stage is shorter than the latency of any pipeline
block. However, in this application, the pre-computation stage
performs a pipelined addition, which takes eight clock cycles.
For r and p such that ��n/p� /r� < 8, the latencies of the
pipeline blocks are less than eight and the throughput of the
module is fixed and only determined by the latency of the
pre-computation stage. This invalidates 7. These values of

1Computed as |v − vmodel|/v where v is the value considered.
2Here, the errors are computed as (fmodel − f)/ f to show their directions.

-15

-10

-5

 0

 5

 10

 15

 20

 0 50 100 150 200 250

F
re

qu
en

cy
 e

rr
or

s
(f

m
od

el
-f

)/
f (

%
)

Design version (ordered by increasing (p,r))

Montgomery (p and r from 1 to 16)
Exponentiation (p from 1 to 32 and r=1)

Square (p and r from 1 to 16)

Fig. 6. Distribution of the frequency errors for the different designs.

r and p should be avoided as they lead to pointless area-
consuming designs. The last column of Table III shows the
corrected throughput errors, that is, when not taking into
account these designs. After such corrections, the throughput
errors are similar to the frequency errors.

B. Design Space Exploration

We evaluate the prediction capabilities of our model. The
Spartan 6 used has Al,s6 = 27 288 LUTs and Ar,s6 = 54 576
flip-flops (FFs). For each of our three applications, we use
our model to find the design with maximum throughput for
all the combinations of fmin (in MHz) in [0, 25, 50, 100]
and (Al,max, Ar,max) (respectively, in LUTs and FFs) in
[(Al,s6/4, Ar,s6/4), (Al,s6/2, Ar,s6/2), (Al,s6, Ar,s6), (∞,∞)].
Hence, for each application, we perform 16 different
optimizations. Note that setting fmin = 0 MHz corresponds
to not putting any constraint on the frequency. Setting
(Al,max, Ar,max) = (∞,∞) corresponds to assuming that the
FPGA has unlimited area.

Table IV presents our results. The design space size corre-
sponds to the number of synthesis operations needed for a full
search through the design space without using our method.
The total synthesis time is the time taken to perform this
search. The two other synthesis times reported are the average
total synthesis time over the 16 optimizations performed
using our model, respectively, before and after refinement.
Without refinement, our method can speed up the design
space exploration by an average of 419 times for the CSA
Montgomery application and 200 times for the integer square

MASLE AND LUK: MAPPING LOOP STRUCTURES ONTO PARAMETRIZED HARDWARE PIPELINES 639

TABLE IV

EVALUATION OF PREDICTION CAPABILITIES OF THE MODEL

Design Space
Size

Total
Synthesis

Time (min)

Before Refinement After Refinement
Max Average Average

�r �p
Average Average

Throughput Synthesis Synthesis Synthesis Synthesis
Error (%) Time (min) Speedup (x) Time (min) Speedup (x)

Montgomery 256 2489 25.48 7 419 2 2 33 96

Exponentiation 32 49 37.88 2 34 0 1 5 13

Square root 256 698 9.09 4 200 0 1 8 91

root. The lower average synthesis speedup of 34 times for the
exponentiation application is directly linked to the smaller size
of the design space explored.

Without refinement, the optimum design is not always found
by our model. For the Montgomery multiplier module, our
worst estimation is two pipeline stages and two replications
off the optimum design. For the exponentiation and the inte-
ger square root modules, it is only one pipeline stage off.
This leads to a throughput error (error between the optimum
throughput and the throughput of the design given by the
model) between 9% and 25%. In order to find the optimum
design, extra syntheses need to be performed. This reduces the
average synthesis speedups by a factor of 2 to 4. However,
even with this reduction in speedup, our method can still
save hours of synthesis time. In particular, the design space
exploration time for the CSA Montgomery application is
reduced from almost 2 days to only half an hour.

Note that our results assume serial execution of the syn-
theses on the same machine. Synthesis jobs can also be run
on different machines in parallel. However, a parallel version
of our method should also be faster than a parallel search
through the design space, since the synthesis time of each
pre-synthesis operation is shorter than the synthesis time of
most other points in the design space.

VII. CONCLUSION

In this paper, we showed how we automatically map a gen-
eral type of algorithms to a parametric hardware design using
pipelining and replication. A technology-independent model
of our general design was developed. It allows rapid hardware
mapping and optimization of the algorithm by running only a
few numbers of pre-synthesis operations and therefore reduces
time-to-market. We presented an optimization method based
on the model and evaluated on three different applications
implemented on a Xilinx Spartan 6 XC6SLX45T FPGA: a
CSA-based Montgomery multiplier, a modular exponentiation
module, and an integer square root module. Our model facili-
tates design space exploration; it can quickly predict the area
taken by our designs with less than 5% of error, and their
maximum frequencies and throughputs with less than 22% of
error. Our optimization method is up to 96 times faster than
a full search through the design space.

Current and future work includes extending our model to
optimize for area, area-time, and taking into account power
consumption; applying our optimization method to other
designs and to other technologies such as ASICs; synthesizing
our reference designs optimizing for speed instead of area; and

automating our optimization process further so that the general
algorithm pattern can be detected and the parameters extracted
automatically from a high-level description.

REFERENCES

[1] T. Becker, W. Luk, and P. Y. Cheung, “Parametric design for recon-
figurable software-defined radio,” in Proc. 5th Int. Workshop Reconfig.
Comput. Archit. Tools Appl., Mar. 2009, pp. 15–26.

[2] A. Le Masle, W. Luk, J. Eldredge, and K. Carver, “Parametric encryption
hardware design,” in Proc. Reconfig. Comput. Archit. Tools Appl.,
Jul. 2010, pp. 68–79.

[3] S. Yusuf, W. Luk, M. Sloman, N. Dulay, E. Lupu, and G. Brown,
“Reconfigurable architecture for network flow analysis,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 1, pp. 57–65,
Jan. 2008.

[4] R. Enzler, T. Jeger, D. Cottet, and G. Tröster, “High-level area and
performance estimation of hardware building blocks on FPGAs,” in
Proc. 10th Int. Workshop Field Program. Logic Appl. Roadmap Reconfig.
Comput., Aug. 2000, pp. 525–534.

[5] P. Schumacher and P. Jha, “Fast and accurate resource estimation of
RTL-based designs targeting FPGAs,” in Proc. Int. Conf. Field Program.
Logic Appl., Sep. 2008, pp. 59–64.

[6] D. Kulkarni, W. A. Najjar, R. Rinker, and F. J. Kurdahi,
“Compile-time area estimation for LUT based FPGAs,” ACM Trans.
Design Autom. Electron. Syst., vol. 11, no. 1, pp. 104–122,
Jan. 2006.

[7] C. Shi, J. Hwang, S. McMillan, A. Root, and V. Singh, “A system level
resource estimation tool for FPGAs,” in Proc. Int. Conf. Field Program.
Logic Appl., Jun. 2004, pp. 424–433.

[8] T. Becker, W. Luk, and P. Y. K. Cheung, “Energy-aware opti-
misation for run-time reconfiguration,” in Proc. 18th IEEE Annu.
Int. Symp. Field Program. Custom Comput. Mach., May 2010,
pp. 55–62.

[9] B. So, M. W. Hall, and P. C. Diniz, “A compiler approach to fast
hardware design space exploration in FPGA based systems,” ACM
SIGPLAN Not., vol. 37, no. 5, pp. 165–176, Jun. 2002.

[10] M. Weinhardt, “Compilation and pipeline synthesis for reconfigurable
architectures,” in Proc. Reconfig. Archit. Workshop, 1997, pp. 1–8.

[11] K. Bondalapati and V. K. Prasanna, “Mapping loops onto reconfigurable
architectures,” in Proc. 8th Int. Workshop Field Program. Logic Appl.,
1998, pp. 268–277.

[12] H. Styles, D. Thomas, and W. Luk, “Pipelining designs with loop-
carried dependencies,” in Proc. IEEE Int. Conf. Field Program. Technol.,
Dec. 2004, pp. 255–262.

[13] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-placement
C-slow retiming for the Xilinx Virtex FPGA,” in Proc. 11th ACM Int.
Symp. Field Program Gate Arrays, Feb. 2003, pp. 185–194.

[14] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[15] Digital Signature Standard, FIPS PUB Standard 186-3, 2009.
[16] A. Le Masle, W. Luk, and C. A. Moritz, “Parametrized hardware

architectures for the Lucas primality test,” in Proc. Int. Conf. Embedded
Comput. Syst., Jul. 2011, pp. 124–131.

[17] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
1st ed. New York, USA: Oxford Univ. Press, 2000, pp. 345–352.

[18] A. Le Masle and W. Luk, “Design space exploration of parametric
pipelined designs,” in Proc. 21st IEEE Int. Conf. Appl. Specific Syst.
Archit. Process., Jul. 2010, pp. 47–54.

[19] J. Mulder, N. Quach, and M. Flynn, “An area model for on-chip
memories and its application,” IEEE J. Solid-State Circuits, vol. 26,
no. 2, pp. 98–106, Feb. 1991.

640 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

Adrien Le Masle received the M.Sc. degree in
advanced computing from the Department of Com-
puting, Imperial College London, London, U.K.,
where he is currently pursuing the Ph.D. degree from
the Department of Computing.

His current research interests include reconfig-
urable computing, high performance computing,
design space exploration, cryptography, and side-
channel attacks.

Wayne Luk (F’09) received the M.A., M.Sc., and
D.Phil. degrees in engineering and computing sci-
ence from the University of Oxford, Oxford, U.K.

He is a Professor of computer engineering with
Imperial College London, London, U.K. He was a
Visiting Professor with Stanford University, Stan-
ford, CA, USA. His current research interests
include theory and practice of customizing hardware
and software for specific application domains, such
as multimedia, networking, and finance.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

