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Abstract—One of the key challenges facing genomics today is
efficiently storing the massive amounts of data generated by next-
generation sequencing platforms. Reference-based compression is
a popular strategy for reducing the size of genomic data, whereby
sequence information is encoded as a mapping to a known
reference sequence. Determining the mapping is a computation-
ally intensive problem, and is the bottleneck of most reference-
based compression tools currently available. This paper presents
the first FPGA acceleration of reference-based compression for
genomic data. We develop a new mapping algorithm based
on the FM-index search operation which includes optimisations
targeting the compression ratio and speed. Our hardware design
is implemented on a Maxeler MPC-X2000 node comprising 8
Altera Stratix V FPGAs. When evaluated against compression
tools currently available, our tool achieves a superior compression
ratio, compression time, and energy consumption for both FASTA
and FASTQ formats. For example, our tool achieves a 30% higher
compression ratio and is 71.9 times faster than the fastqz tool.

I. INTRODUCTION

The exponential growth in data generated by next-
generation sequencing (NGS) platforms poses a big challenge
for data storage infrastructures [10]. Indeed, the latest se-
quencing platforms generate Terabytes of genomic data in
a single run, and their throughput is expected to increase
3-5 times each year. An effective solution to this challenge
is data compression, which has consequently become a major
area of interest in genomics research.

FASTA and FASTQ are two popular formats for storing ge-
nomic data. These formats are based on a plain text represen-
tation of the genomic data components, namely the sequences
of DNA letters, quality scores, and meta data, as shown in
Figure 1. These components are typically compressed indepen-
dently using strategies which best suit the data characteristics.
For compressing the sequence component, a reference-based
strategy is often adopted, whereby the sequences are encoded
as a mapping to a known reference sequence. Given the high
similarity of inter-species DNA (over 99.9% for Human DNA),
this strategy typically achieves higher compression ratios than
non-reference-based strategies.

Several reference-based compression tools have been im-
plemented in software, including fastqz [2], fqzcomp [2], lw-
fqzip [16], and gdc2 [5]. These tools achieve higher compres-
sion ratios than general purpose compression algorithms such
as gzip and bzip2, however the improvement in compression
ratio comes at the cost of the compression speed. For exam-
ple, most of the tools listed would require several hours to
compress the data generated by a single NGS platform run.

1 >chr22
2 TAGAAGTTCTCTGAGACCTAGGCTTTGTGAATCCAA
3 AGGGATCTTTTTAACGAATAAAATGAATCAGGGCCC
4 AATGGGACGTGAGGGTTCCTCAGGCCAGTAGTATGG

(a) FASTA format. Lines with the symbol > in the first position
contain meta data, the remaining lines contain sequences. No quality
scores are stored.

1 @HWI-EAS209:5:58:5894:21141#ATCACG/1
2 GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
3 +HWI-EAS209:5:58:5894:21141#ATCACG/1
4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC

(b) FASTQ format. Each record is stored over 4 lines. Lines 1 and 4
contain meta-data, line 2 contains the sequence, and line 4 contains
the quality scores.

Fig. 1: Genomic data formats.

Determining the mapping to the reference sequence is typically
the bottleneck: accounting for over 70% of the compression
time. Given the projected growth of data generated by NGS
platforms, these tools will be unable to cope with the massive
amounts of genomic data available in the future.

Field Programmable Gate Arrays (FPGAs) are a promising
candidate for accelerating reference-based compression: first,
there are several successful works on accelerating sequence
alignment [1], [7], [14], which comprises a similar mapping
problem; and second, the low operational clock frequencies of
FPGAs allow compact and energy efficient solutions appro-
priate for data centres and clinical settings. Building upon our
previous work on accelerating sequence alignment: we present
the first FPGA acceleration of reference-based compression for
genomic data. When evaluated against compression tools cur-
rently available, our tool achieves a superior compression ratio,
compression time, and energy consumption for both FASTA
and FASTQ formats. Indeed, our tool is easily able to cope
with the rate at which data is generated by NGS platforms,
creating exciting opportunities for commercial integration. The
contributions of this work include:

• A new mapping algorithm based on the FM-index search
operation with algorithmic optimisations targeting com-
pression ratio and speed.

• A hardware design for the proposed mapping algorithm.
Equations are derived for modelling the performance for
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different data sets and hardware platforms.
• Performance evaluation of our reference-based com-

pression tool implemented on a Maxeler MPC-X2000
dataflow node. Comparisons are made to other compres-
sion tools currently available.

II. BACKGROUND

In this section we provide background information on
reference-based compression and the FM-index search opera-
tion.

A. Referential compression

The basis of reference-based compression is encoding se-
quences of DNA letters as a mapping to a known reference
sequence. There exist several options of how to represent the
mapping. One option is as a triple 〈pos, len, sym〉, composed
of the position where the match occurs (pos), the length of
the match (len), and the first character following the match
(sym). This option yields good compression ratios when the
to-be-compressed sequences and reference sequence are highly
similar and only differ by single nucleotide polymorphisms
(SNPs) [15]. Figure 2 shows the mapping of two sequences
using a triple representation.

To achieve high compression ratios, a widely identical
reference sequence, and a good mapping onto it have to
be found. To find the best mapping, the reference can be
represented as a suffix tree or index structure from which
the longest matching parts can be derived. In addition to
considering only exact matches, there have been approaches
to map reverse substrings, complements or palindromes [12].

B. FM-index

The FM-index is a full-text compressed index which sup-
ports substring searching in linear time (with respect to the
substring length). The FM-index is based on the Burrows-
Wheeler transform (BWT) [3], a permutation of a text gener-
ated from its Suffix Array (SA) [11].

The SA of a text R is the lexicographically sorted array
of the suffixes of R, where each suffix is represented by its
position in R. The SA interval (low, high) covers a range
of indices in the SA where the suffixes have the same prefix.
The pointer low gives the index in the SA where the pattern
is first found as a prefix, and the pointer high gives the
index after the one where the pattern is last found. Figure 3a
illustrates the construction of the SA for a text. In this example

Reference: AATGGGACGTGAGGGTTCCTCAGGCC

Sequence Mapping triples 〈pos, len, sym〉

AATGGA 〈0, 5, A〉

TTCCACA 〈15, 4, A〉 〈20, 2, _〉

Fig. 2: Triple mapping representation. Note that _ encodes a
null value.

the SA interval for the substring A is (1, 4). The result of
searching for a substring can be represented as an SA interval.
If low < high, the substring occurs in the text. Conversely, if
low ≥ high, the substring does not occur.

The FM-index is built from the BWT, a transformation
which generates a permutation of the symbols in a text. Each
position in the BWT is computed using the relationship:
BWTi = R[(SAi − 1) mod |R|]. Figure 3a illustrates the
construction of the BWT from the SA of a text. The FM-index
supports substring searching through two functions performed
on the BWT. Count(s) returns the number of symbols in the
BWT which are lexicographically smaller than the symbol s.
Occ(s, i) returns the number of occurrences of the symbol s
in the BWT from positions 0 to i − 1. The values of these
functions are precomputed and stored as arrays, as shown in
Figure 3b. To compress the size of the FM-index, the Occ
array is sampled into buckets of size d. In this procedure the
Occ values are stored every d positions as markers, reducing
the array size by a factor of d. The Occ values omitted
are reconstructed by summing the previous marker and the
result of counting the occurrence of the remaining positions
directly from the BWT. In addition, the search operation can
be simplified by adding the corresponding Count value to each
Occ marker. The Occ markers and the corresponding section
of the BWT are then interleaved to form the FM-index, as
shown in Figure 3c. This work uses the n-step FM-index [4],

(a) R = BANANA$

i SA suffix

0 6 $

1 5 A$

2 3 ANA$

3 1 ANANA$

4 0 BANANA$

5 4 NA$

6 2 NANA$

BWT = ANNB$AA

(b) Occ(s, i)

i A B N

0 0 0 0

1 1 0 0

2 1 0 1

3 1 0 2

4 1 1 2

5 1 1 2

6 2 1 2

7 3 1 2

Count(s)

A B N

1 4 5

(c) FM-index (d = 4)

0 1

Markers

A B N

1 4 5

Markers

A B N

2 5 7

BWT

A N N B

BWT

$ A A -

Fig. 3: Generating the FM-index. Note that $ is the terminal
symbol, the smallest symbol lexicographically.



Algorithm 1 FM-index search operation.
Input: substring Q, FM-index F with bucket size d, and the suffix
array SA of the text R
Output: positions in R where Q occurs
Procedure: Φ(F, s, i) – returns Occ(s, i) from FM-index bucket F

1: low ← 0 . initialise suffix array interval
2: high← max(Occi)

3: for i← |Q| − 1 to 0 do . update suffix array interval
4: low ← Φ(F [low/d], Qi, low)
5: high← Φ(F [high/d], Qi, high)
6: if low ≥ high then . terminate if symbol not matched
7: end
8: end for

9: for i← low to high− 1 do . get reference positions
10: Pos ← SAi

11: end for

12: procedure Φ(F, s, i) . get Occ(s, i) from F bucket
13: marker ← (F → Markers[s]) . get marker value
14: count← 0
15: for j ← 0 to j < i mod d do . count from BWT
16: if s = (F → BWTj) then
17: cnt← cnt + 1
18: return marker + count
19: end procedure

an algorithmic modification which allows the SA interval to be
updated for n symbols in each iteration of the search operation;
consequently, the total number of memory accesses to the FM-
index is reduced by a factor of n.

The FM-index search operation is described in Algorithm 1.
Concisely written, the SA interval (low, high) is first ini-
tialised to the minimum and maximum indices of the Occ
array. low and high are then updated for each symbol in the
substring (from the last to the first) using the equations in lines
4 and 5. After the final iteration, the SA interval gives the range
of indices in the suffix array in which the suffixes have the
substring as prefix. These indices are subsequently converted
into positions in the text. Figure 4 illustrates an example of
the FM-index search operation.

Substring: ANA

Text: BANANA

Iteration 1 Iteration 2

symbol = A symbol = N

(0, 7)→ (1, 4) (1, 4)→ (5, 7)

Iteration 3 Convert

symbol = A SA Interval → Pos

(5, 7)→ (2, 4) (2, 4) = 3, 1

Fig. 4: FM-index search operation example.

III. RELATED WORK

The popularity of reference-based compression has steadily
increased since more complete genomes have become avail-
able and can be used as reference sequences. Several
reference-based compression tools have been implemented
in software, including gdc2 [5] for the FASTA format, and
fastqz [2], fqzcomp [2], and lw-fqzip [16] for the FASTQ for-
mat. These tools work on similar principles: first the sequences
are encoded as a mapping to a reference sequence (first order
compression), then the mapping representation is compressed
further using a general purpose compression tool (second order
compression). The mapping is typically performed using a
hash table, whereby the sequence is split into seeds which are
used as keys to a hash table of the reference sequence. For
most of the reference-based tools listed, the mapping process is
the bottleneck. This is especially the case when large reference
sequences are used due to the initialisation costs associated
with hash table construction and collision handling.

To our knowledge there are no previous works on accel-
erating reference-based compression using FPGAs. However,
there are several works on accelerating sequence alignment,
which comprises a similar mapping problem. The main differ-
ence is that for reference-based compression, the sequences
can be split into variable-length substrings to find the best
mappings, whereas for sequence alignment the best mapping
is found for the entire read. Notable works on accelerating
sequence alignment using FPGAs include [1] and [7], which
accelerate the FM-index search operation, and [14], which
accelerates the Smith-Waterman algorithm.

IV. MAPPING ALGORITHM

In this section we present a new mapping algorithm based
on the FM-index search operation which includes algorithmic
optimisations targeting compression ratio and speed.

A. Algorithm overview

In the proposed algorithm, each sequence mapping is rep-
resented by a set of triples 〈pos, len, sym〉, composed of the
position where the match occurs (pos), the length of the match
(len), and the first character following the match (sym). pos
is stored using 4 bytes, allowing the whole Human genome to
be used as a reference sequence; len is stored using 1 byte;
and sym is stored using 1 byte.

The to-be-compressed sequence is mapped to the reference
sequence using the FM-index search operation, as shown in
Algorithm 2. Concisely written, each symbol in the sequence is
matched to the reference sequence using a backward search.
If a mismatch is found (low ≥ high), or all symbols have
been matched, a triple is added to the set. If any symbols
remain unmatched after a triple is added, the search operation
is restarted from the next symbol, where the values of low
and high are reset to the minimum and maximum indices
of the Occ array. To decompress the sequence, the set of
triples is traversed from right to left and each triple is replaced
by the corresponding section of the reference sequence. The



advantages of the FM-index search operation over hash table-
based approaches are:

1) The mapping performance is independent of the ref-
erence sequence length; consequently, the compression
speed is not reduced when the full Human genome (3
billion symbols) is used as a reference sequence.

2) Given that genomes are rarely updated, the FM-index
would only need to be computed once for use in a
large number of compression jobs. This is in contrast
to hash table-based approaches where there are large
initialisation costs associated with table construction and
collision handling.

B. Compression speed optimisation

In the FM-index search operation, two memory accesses
(F [low/d] and F [high/d]) are required to update the SA
interval for each symbol; consequently, 2L memory accesses
are required to map a sequence of L symbols. Due to its large
size, the FM-index is stored in off-chip DRAM. Given that the
access latency to off-chip DRAM is in the order of hundreds
of cycles, and the access pattern is random, the performance
of the search operation is memory-bound.

To reduce the number of memory accesses, we utilise the
n-step FM-index [4]. This is an algorithmic modification
to the FM-index structure which allows the SA interval to
be updated for n symbols in each iteration of the search
operation; consequently, the number of memory accesses is
reduced from 2L to 2L/n. In this work we further reduce the
number of memory accesses by developing a new algorithmic
optimisation which we refer to as index oversampling.

Algorithm 2 Mapping algorithm.
Input: sequence Q, n-step FM-index F with bucket size d and step
size n, and the suffix array SA of the text R
Output: Set of triples trip
Procedure: appendTriple(pos, len, sym) appends a triple to the set
Procedure: merge(s1, ..., sn) merge symbols from left to right

1: low ← 0 . initialise suffix array interval
2: high← max(Occi)
3: len← 0

4: for i← |Q| − 1 to 0 step −n do . update suffix array interval
5: s← merge(Qi−n+1, ..., Qi)
6: lowt ← Φ(F [low/d], s, low)
7: hight ← Φ(F [high/d], s, high)
8: if lowt ≥ hight then . mismatch found: add triple
9: trip.appendTriple(SA[low], len, s)

10: len← 0 . reset mapping state
11: low ← 0
12: high← max(Occi)
13: else
14: low ← lowt

15: high← hight

16: len← len + n
17: if i = 0 then . if all symbols matched: add triple
18: trip.appendTriple(SA[low], len, )

19: end for

Algorithm 3 SA interval update for the oversampled n-step
FM-index.
Input: substring Q, oversampled n-step FM-index F with bucket
size d, step size n, and oversampling factor f

1: for i← |Q| − 1 to 0 step -n do . update suffix array interval
2: s← merge(Qi−n+1, ..., Qi)
3: low ← Φ(F [low/d], s, low)
4: if high− low ≥ d/f then . point to different buckets
5: high← Φ(F [high/d], s, high)
6: else . point to same bucket
7: high← Φ(F [low/d], s, high)

8: end for

With each update of the SA interval, the values of low
and high converge. After several iterations it is often the
case that low and high are sufficiently close that F [low/d]
and F [high/d] point to the same index bucket. In this case
only one memory access is required to update both low and
high. If F [low/d] and F [high/d] always point to the same
index bucket after X symbols have been aligned, then the
total number of memory accesses is reduced from 2L to
2X + (L −X). The value of X is dependent on the size of
the reference sequence. Tests using the full Human-genome as
a reference sequence indicate that the average value for X is
13, therefore for a sequence of 100 symbols, the number of
memory accesses is reduced by 1.8 times.

To eliminate cases where the values of low and high
are sufficiently close, but F [low/d] and F [high/d] point to
adjacent buckets, the index is oversampled by a factor of f . In
this procedure, the Occ values are stored every d/f symbols,
however the BWT size remains d symbols. The trade-off is that
the index size increases by a factor of f , however this can be
mitigated by increasing the bucket size. If high− low < d/f ,
then F [low/d] and F [high/d] will point to the same index
bucket; consequently, only one memory access is required
to update the suffix array interval for each of the remaining
symbols. The SA interval update is modified according to
Algorithm 3.

C. Compression ratio optimisation

To improve the achievable compression ratio, optimisations
are developed which exploit the sequence characteristics of
the FASTA and FASTQ formats.

FASTA format.
The FASTA format is typically used to store pre-assembled

genomes such as chromosomes and proteins. The sequences
are therefore in order relative to where they appear in the
genome. In our compression algorithm each line in the input
file is treated as a separate sequence, therefore the highest
achievable compression ratio is L/6, where each sequence of
L symbols is encoded using a single triple of 6 bytes. To
improve the compression ratio we introduce a new merging
step where triples referring to adjacent sections of the refer-
ence sequence are merged together, as shown in Figure 5. This



merging can only occur for triples with no sym field (a null
symbol), otherwise this information would be lost.

Variable length integers are used to encode the pos and len
fields, whereby only the necessary amount of bytes needed to
encode a value are used. The most significant bit in each byte
is used as an end-of-integer flag, therefore a byte can encode
7 bits of the value. This optimisation is especially effective
for the len field as the range of values can be very wide after
merging.

Reference: AATGGGACGTGAGGGTTCCTCAGGCC

Sequence Mapping triples 〈pos, len, sym〉

AATGGG 〈0, 6, 〉

ACGTGA 〈6, 6, 〉

GGGTTC 〈12, 6, 〉

Merge triples → 〈0, 18, 〉

Fig. 5: Merging optimisation.

FASTQ format.
The FASTQ format is typically used to store the short

reads output from NGS platforms. The reads are in no par-
ticular order, so merging cannot be exploited to improve the
compression ratio. Since the reads could be sequenced from
either strand of the DNA, it is possible to achieve a better
mapping by using the reverse complement of the sequence.
Observations indicate that for a typical sequencing data set,
30-40% of the sequences can be exactly matched to the
reference sequence, however this percentage increases to 70-
80% when additionally the reverse complement is considered.
To improve the compression ratio we referentially compress
both the sequence and its reverse complement, and choose
the result with the fewest triples as the final encoding. Each
sequence requires an additional bit in its encoding to determine
if it is the original sequence or its reverse complement.

V. HARDWARE DESIGN

In this section the hardware design for our mapping al-
gorithm is presented. In addition, equations are derived for
modelling the performance.

A. Design overview

Our reference-based compression tool targets computing
systems with FPGA coprocessor boards. The host CPU reads
in the to-be-compressed genomic data and offloads the se-
quences to the FPGA for reference-based compression. The
results are transferred back to the CPU and written to disk.

The host CPU packages the input sequences into packets
composed of: a sequence identifier, sequence length, and the
sequence symbols (where each symbol is encoded using 2-
bits). Sequences exceeding the packet allocation are split
into smaller sub-sequences and compressed separately, after
which the results are collated and the triples merged. The

FPGA is configured with a module whose function is given
by the mapping algorithm shown in Algorithm 2. Concisely
written, each sequence is mapped to locations in the reference
sequence, producing a set of triples. The module writes the
output triples along with the associated sequence identifiers to
off-chip DRAM attached to the FPGA device. After all the
sequences have been mapped, the host reads the output triples
directly from DRAM. The conversion of suffix array indices
to reference sequence positions (SA[low]) is performed on
the host CPU. In addition, the merging optimisation for the
FASTA format is performed on the host CPU, as the data
size is too small to justify FPGA acceleration. Figure 6 shows
the hardware design overview. Note that the mapping module
would be replicated as many times as possible according to
the resources available on the FPGA device.

B. Module optimisation

The FM-index is stored in off-chip DRAM directly attached
to the FPGA device. Accessing DRAM takes hundreds of
cycles, which coupled with the step interdependence of the
FM-index search operation, results in a non-filled pipeline
of operations. To improve the module performance, the pro-
cessing of multiple sequences is interleaved such that in each
pipeline stage a different sequence is processed; consequently,
the pipeline is completely filled, increasing the throughput.
Furthermore, the DRAM memory controller is constantly
processing commands, maximising the memory bandwidth
utilisation. Interleaving is implemented using a circular buffer,
where the buffer size is made equal to the total module
latency. The trade-off is that additional logic and BRAM
resources are required to store the batch of sequences and their
corresponding mapping state. The additional resources can be
minimised by reducing the module latency. For example, a
binary adder tree is developed to count the occurrence in
parallel.

In each cycle, two memory commands are sent to the
memory controller requesting F [low/d] and F [high/d]. A
custom memory command generator is developed so that the
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Fig. 6: Design overview. Note that arrows indicate data streams
between the design components.



 

Sequence       

Buffer 

F[low/d] F[high/d] 

Sequences 

low high 

Memory Controller 

Merged symbols 
Update 

low high 

Host Interface 

Add triple? 

Same 

Bucket? 

low/d high/d 

Triples 

Fig. 7: Mapping module block diagram. Note that dashed lines
indicate there is logic controlling the state of the stream.

index oversampling optimisation can be realised in hardware.
For the F [high/d] memory stream, a control bit is used to
disable the command when low and high point to the same
bucket. In this case the bucket corresponding to F [low/d] is
used to update both low and high, reducing the number of
memory commands processed. Multiplexers are used to select
the appropriate input and computation result based on the
values of low and high. Figure 7 shows a block diagram of
the mapping module.

C. Performance modelling

The mapping time can be modelled as the maximum of
a CPU component, and a DRAM component, as shown in
Equation 1. The CPU component, TCPU , covers the time
spent on software tasks, such as generating the hardware input,
and parsing the output. Since the FM-index search operation
is memory bound, the DRAM component, TDRAM , covers
the hardware processing time. For large volumes of data,
TDRAM will dominate the compression time, whereas for
small volumes, TCPU will dominate.

Tcompress = max(TCPU , TDRAM ) (1)

The DRAM component can be modelled as the total number
of bytes read from memory (Br) divided by the DRAM
bandwidth (BWDRAM ), as shown in Equation 2. Note that
the number of bytes written to memory is omitted since it
equates to less than 1% of the total DRAM usage.

TDRAM =
Br

BWDRAM
(2)

The DRAM bandwidth is platform specific, and depends
on the number of memory channels available, the achievable
bandwidth per channel, and the access pattern. The total num-
ber of bytes read from memory is calculated using Equation 3,
where Naccess is the total number of memory accesses, and
Bsize is the size of the FM-index buckets in bytes.

Br = Naccess ·Bsize (3)

The total number of memory accesses is well-characterised
for the FM-index search operation. In the base algorithm,
mapping a single symbol to the reference sequence requires
two accesses to the index, therefore Naccess = 2 ·Nseq · Slen,
where Nseq is the number of sequences to be compressed, and
Slen is the number of symbols in the sequences. For the n-
step FM-index, mapping n symbols to the reference sequence
requires two accesses to the index; consequently, Naccess is
reduced by a factor of n. For index oversampling, after an
average of X symbols have been matched to the reference
sequence, a single access to the index is required to match each
of the remaining symbols to the reference sequence, therefore
Naccess = Nseq · (2X + (Slen −X)). The total number of
index accesses when both the n-step FM-index and index
oversampling are applied is calculated using Equation 4. The
corresponding index bucket size in bytes is calculated using
Equation 5, where d is the bucket size and n is the step
size for the n-step FM-index. The summands in Equation 5
correspond to the occurrence markers and BWT section, where
each symbol is encoded using 2 bits.

Naccess =
Nseq · (2X + (Slen −X))

n
(4)

Bsize =
(32 bits · 4n) + (2 bits · d · n)

8
(5)

The equations derived allow the compression time to be
accurately estimated for different data sets and hardware
platforms; consequently, platform suitability can be assessed,
and implementations verified.

VI. EVALUATION

In this section we evaluate the performance of our com-
pression tool implemented on a Maxeler MPC-X2000 dataflow
node. Comparisons are made to other compression tools cur-
rently available.

A. Experimental setup

Our hardware design is implemented on a 1U Maxeler
MPC-X2000 node [13] with 8 dataflow engines (DFEs). Each
DFE comprises a single Altera Stratix V FPGA (28nm feature
size) connected to 48GB of DRAM. The DFEs are connected
to a CPU host machine via Infiniband. The design consumes
25% of the available slice registers, 27% of the LUTs, and
30% of the block RAMs on a Stratix V FPGA. The design
runs at 200MHz, whilst the memory controller runs at the
maximum 800MHz. The n-step FM-index is constructed with
a bucket size d = 128, step size n = 3, and a sampling factor
f = 2. These parameters are chosen so that the bucket width
is the same as the DRAM burst width of the Maxeler Platform,
therefore the available memory bandwidth is fully utilised. The
FM-index size for the full Human genome is 17GB. If FPGA
boards with smaller DRAM resources are targeted, the bucket
size can be increased to reduce the index size.



Tool Name Target Format Notes

gdc2 FASTA v2.0

fastqz FASTQ v15, mode e used

lw-fqzip FASTQ v1.01

fqzcomp FASTQ v4.6

gzip General v1.3.12

pbzip2 General v1.1.6, 16 threads

TABLE I: Compression tools used in evaluation.

Each DFE supports a single channel to DRAM; conse-
quently, no additional performance is observed when repli-
cating the module as the DRAM bandwidth is already sat-
urated. Furthermore, the memory controller is optimised for
accessing large contiguous chunks of memory, rather than
random access. Measurements indicate that the achievable
memory bandwidth per FPGA is limited to 4.2GB/s, which
is 11% of the theoretical peak. To improve the performance,
the DRAM memory modules can be decoupled, allowing up
to six memory channels per FPGA. This modification would
permit up to two modules per DFE, and allow the FM-index
buckets to be read in parallel. Although this modification has
not been implemented yet, we use it to provide an upper bound
performance estimate for the MPC-X2000.

The performance of our hardware-accelerated reference-
based compression tool is compared to the compression tools
listed in Table I. We also provide comparisons to a fully-
optimised software version of our tool written in C++ (avail-
able on request). All the software tools are run on a 1U system
with dual Intel Xeon X5650s (32nm feature size) and 120GB
of DDR3-1333. 16 threads were used for tools supporting
multi-threading. For this evaluation we compress the genomic
data sets listed in Table II. The compression ratio is measured
by dividing the sequence component of the original file and
the sequence component of the compression output. Since
this work only targets first order compression, we do not
include second order compression in the compression time
measurements. Disk I/O time is also not included for fairness,
as the MPC-X2000 and CPU system have different storage
devices. For our compression tool we use pbzip2 for second
order compression.

B. Results

Tables III and IV show the compression statistics for the
FASTA and FASTQ format data sets respectively.

File Name Format Seq. Size (MB) Ref. Seq.

chr1 of hg19 [8] FASTA 229 chr1

chr22 of hg19 [8] FASTA 35 chr22

ERP001652 [6]* FASTQ 964 hg19

TABLE II: Genomic data sets used in evaluation. *10 million
reads are extracted from the ERP001652 data set.

chr1 chr22

Tool Name C. Ratio C. Time C. Ratio C. Time

gzip 3.2 55.1 3.1 8.6

pbzip2 3.7 3.12 3.8 1.2

gdc2* 10,556 1.1 10,547 0.17

Our Tool (CPU) 12,772 1.5 10,937 0.31

Our Tool (FPGA) 12,772 0.54 10,937 0.08

TABLE III: FASTA file compression. The compression time
(C. Time) is measured in seconds. *gdc2 results are taken
from [5], as the tool is more suited to compressing large
batches of pre-assembled genomes.

For FASTA format compression we observe that our tool
achieves a superior compression ratio and time compared to
all the tools tested. For example, our tool achieves a 20%
higher compression ratio, and is 2 times faster than gdc2 for
the chr1 data set. The triple merging optimisation improves
the compression ratio up to 41.3 times. This can be attributed
to the high similarity between the to-be-compressed file and
the reference sequence, such that the majority of the triples
refer to adjacent sections of the reference sequence and can
be merged. For the data sets tested, the compression time of
our tool is dominated by software tasks, such as setting up
the data streams; consequently, our tool only shows a small
speed-up over the software tools.

For FASTQ format compression we observe that our tool
achieves a superior compression ratio and time compared to
all the tools tested. For example, our tool achieves a 30%
higher compression ratio, and is 71.9 times faster than fastqz.
The reverse complement mapping optimisation improves the
compression ratio by 2 times. This can be attributed to the
increase in exact mappings to the reference sequence, and that
the best mapping is chosen from the original sequence and its
reverse complement. For the data sets tested, the compression
time of our tool is dominated by the hardware processing time;
consequently our tool shows a more substantial speed-up over
the software tools.

We observe that the n-step FM-index is the largest contribut-
ing factor to the hardware performance, providing a 3 times
improvement over the base algorithm. The improvement from
index oversampling is difficult to quantify as it depends on the
reference sequence length. When the full Human genome is
used as a reference sequence we observed that the performance
improved by 1.8 times. We evaluate the performance mod-
elling equations derived in Section V-C on the FASTQ format
data, as the file is large enough that the compression time will
be dominated by the hardware processing. The compression
time is estimated to be 3.4 seconds, which is within 10% of
the measured value. The main uncertainty in the estimation is
the value of X for the index oversampling optimisation.

When comparing our hardware-accelerated tool to a fully-
optimised software version, a less substantial speed-up is ob-
served. The compression time improvement is approximately



Tool Name C. Ratio C. Time

gzip 3.3 252

pbzip2 3.7 11.0

fastqz 10.5 223

lw-fqzip 5.1 1567

fqzcomp 4.3 19.9

Our Tool (CPU) 14.1 10.4

Our Tool (FPGA) 14.1 3.1

TABLE IV: FASTQ file compression. The compression time
(C. Time) is measured in seconds.

4 times over all the data sets tested. When normalising for
the number of devices used, our hardware-accelerated tool
is marginally faster than the software version of our tool,
however we note that the hardware performance is currently
limited by the MPC-X2000 memory architecture. When the
upper bound estimate is considered, the performance improve-
ment increases to 24 times over all the data sets tested.
It can be argued that a mid-size CPU-based computational
cluster could deliver the same performance as the MPCX-
2000. However, this is not seen as an attractive solution: the
form factor, power consumption and cooling requirements are
not favourable for data centres and clinical settings. In con-
trast, the MPC-X2000 could be fully integrated with current
NGS platforms, enabling on-the-fly compression of sequenced
data as they are generated. For example, the FASTQ format
compression speed for a single MPC-X2000 (312.5Mbps), is
able to match the throughput of 44 Illumina HiSeq X platforms
where each platform has a throughput of 6.9Mbps [9].

Table V shows the energy consumption for FASTQ for-
mat compression. The CPU power values are taken from
the vendors’ product information, whilst the FPGA device
power is measured from the MaxOS operating system. The
values in Table V indicate that our hardware-accelerated tool
consumes approximately an order of magnitude less energy
than the software version of our tool, and up to three orders of
magnitude less energy than the other compression tools tested.
This can be attributed to the low operational clock frequency,

Tool Name Power (W) Energy Consumption (kJ)

gzip 190 47.8

pbzip2 190 2.1

fastqz 190 42.4

lw-fqzip 190 297.8

fqzcomp 190 3.8

Our Tool (CPU) 190 2.0

Our Tool (FPGA) 86 0.27

TABLE V: Energy consumption for FASTQ format compres-
sion. Note that only device power is measured.

coupled with the short compression time. With relatively small
energy consumption, form factor and cooling requirements,
our tool is a promising candidate for integration in data centres
and clinical settings.

VII. CONCLUSION

This paper presents the first FPGA acceleration of reference-
based compression for genomic data. We show that a hardware
design based on a highly optimised version of the FM-
index search operation can achieve good speed-up compared
to software compression tools. Moreover, high compression
ratios can be achieved without sacrificing performance. For
FASTQ format compression, we observe that our tool achieves
a 30% higher compression ratio and is 71.9 times faster
than fastqz. Future work includes: applying memory channel
optimisations, accelerating second order compression strate-
gies, and involving additional genomic data sets in design
evaluation.
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