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One of the most essential and challenging components in climate modeling is the atmospheric model. To
solve multiphysical atmospheric equations, developers have to face extremely complex stencil kernels that
are costly in terms of both computing and memory resources. This article aims to accelerate the solution
of global shallow water equations (SWEs), which is one of the most essential equation sets describing
atmospheric dynamics. We first design a hybrid methodology that employs both the host CPU cores and
the field-programmable gate array (FPGA) accelerators to work in parallel. Through a careful adjustment
of the computational domains, we achieve a balanced resource utilization and a further improvement of
the overall performance. By decomposing the resource-demanding SWE kernel, we manage to map the
double-precision algorithm into three FPGAs. Moreover, by using fixed-point and reduced-precision floating
point arithmetic, we manage to build a fully pipelined mixed-precision design on a single FPGA, which can
perform 428 floating-point and 235 fixed-point operations per cycle. The mixed-precision design with four
FPGAs running together can achieve a speedup of 20 over a fully optimized design on a CPU rack with
two eight-core processorsand is 8 times faster than the fully optimized Kepler GPU design. As for power
efficiency, the mixed-precision design with four FPGAs is 10 times more power efficient than a Tianhe-1A
supercomputer node.
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1. INTRODUCTION

In recent decades, climate change has brought significant influence on human activi-
ties. Investigating the climate change mechanism has become an important research
issue among governments and research institutes. However, due to the complicated
nature and extremely large simulating domain, it is difficult for scientists to verify
their theories through controlled experiments, such as those in physics and chemistry.
Computer-based modeling becomes the key method to study the climate change mech-
anisms and make predictions into future climate risks. Since the first climate modeling
program [Charney and Eliassen 1949] running on ENIAC (the first electronic digital
computer), climate research has made rapid progress with the technical revolution of
computers.

Among all of the different components in a climate system, the global atmospheric
circulation model is one of the most essential and challenging ones. Developers have to
face the difficulties from the complex kernels that involve multiple scales and multiple
physics, and from the requirement for high resolution that involves billions of mesh
points. These issues bring a tough challenge to the computing capability of platforms
and call for a wise manner to handle the large dataset.

Current high-performance platforms, such as the CPU, GPU, and Intel Many Inte-
grated Core (MIC), are mostly based on multicore or many-core architectures and can
improve the performance not only through the increasing computing capabilities of
new architectures but also through enabling applications to run on hundreds or even
thousands of computing cores or vector units. However, as multicore and many-core
architectures achieve parallelism through single instruction multiple data (SIMD) or
single thread multiple data (STMD) approaches, applications with complex and irregu-
lar computation and heavy communications, such as the upwind stencil in atmospheric
equations, would generally face the constraints of memory and communication band-
width. Moreover, the atmospheric modeling usually desires large-scale scenarios, which
brings great power consumptions and resource usages when running on traditional
platforms.

Reconfigurable dataflow engines (DFEs), such as field-programmable gate arrays
(FPGAs), achieve high parallelism through a deep pipeline of computing units and
can deploy the computation blocks through user-defined circuits rather than through
processors that take instructions. The customizable features on data presentations
enable the combination of different data types and precisions, which brings a big
design space on improving the performance and reducing the resource cost at the
same time. Furthermore, the magnitude of low chip frequency generally leads to great
power efficiency than traditional computing platforms.

In this article, we propose a hybrid algorithm to solve the global shallow water
equations (SWEs), which is one the most essential equation sets among the atmospheric
simulation. Our main work and contributions are as follows:

—We first design a hybrid methodology that divides the computing domain into two
parts and employs both the CPU host and FPGA accelerators to work in paral-
lel. Through carefully adjusting the computational domains, we achieve a more
balanced resource usage than Gan et al. [2013] and further improve the overall
performance.
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—Through decomposing the resource-demanding SWE kernels, we manage to map the
double-precision algorithm into three FPGAs. Moreover, by using fixed-point and
reduced-precision floating point method, we manage to build a fully pipelined mixed-
precision design on a single FPGA, which can perform 428 floating-point and 235
fixed-point operations per cycle.

—The experimental results of the optimal multiple FPGA design demonstrate magni-
tude of improvement in both the performance and the power efficiency, and reveal
great potential on applying FPGA platforms in atmospheric simulation.

The mixed-precision design with four FPGAs running together can achieve a speedup
of 20 over a fully optimized design on a CPU rack with two eight-core processors and is
8 times faster than the fully optimized Kepler GPU design. As for the power efficiency,
the mixed-precision design with four FPGAs is 10 times more power efficient than a
hybrid CPU-GPU Tianhe-1A supercomputer node.

The rest of the article is organized as follows. Section 2 presents related work.
Section 3 introduces the equations, discretization, and the CPU algorithm. The hybrid
CPU-FPGA methodology is introduced in Section 4, followed by the description of the
FPGA double-precision design in Section 5 and mixed-precision design in Section 6.
Section 7 discusses the bandwidth requirement and the implementations. The experi-
mental results and analysis is given in Section 8, and the article concludes in Section 9.

2. RELATED WORK

There are a number of atmospheric studies based on traditional platforms such as
CPUs [Strand 2011; Skamarock et al. 2005; Johns et al. 2003] and GPUs [Henderson
et al. 2011; Shimokawabe et al. 2010, 2011; Mielikainen et al. 2012; Yang et al. 2013].
Even though some experimental results demonstrate high speedup and high scalability,
the constraint of data presentations, and the fact that traditional platforms generally
consume much more power, bring a tough challenge as the atmospheric kernel becomes
more computationally insensitive and the resolution becomes more fine grained.

In recent years, we start to see some promising results using FPGAs as accelerators
in some key applications, such as the exploration geophysics Fu et al. [2012] and
financial computing [Tse et al. 2010; Mingas and Bouganis 2012]. The high density
of computing logics and the reconfigurable feature on data presentations provide big
optimizing space to improve the performance.

There has been related work on mapping atmospheric simulation onto reconfigurable
platforms. Smith et al. [2005] accelerate the Parallel Spectral Transform shallow water
model using ORNL’s SRC Computers. Only some subroutines (FFT or LT) are deployed
on the FPGA, and a small speedup is gained over CPUs. Wilhelm [2012] analyzes a
high-level approach for programming preconditioners for an ocean model in climate
simulations on FPGAs but do not manage any actual acceleration. Oriato et al. [2012]
accelerate a realistic dynamic core of the LAM model using FPGAs. It is a successful
trial on reducing resource usage through fixed-point arithmetic.

Compared to traditional architectures, reconfigurable systems have their unique
advantage in supporting mixed precisions. Significant performance improvement has
been achieved in recent efforts on applying mixed-precision designs for Monte Carlo
simulations [Mingas and Bouganis 2012; Chow et al. 2012].

For kernels with a specific error requirement, Lee et al. [2006] design MiniBit, a tool
to optimize bit widths of fixed-point numbers. However, for numeric simulations that
run for thousands of timesteps, such as the atmospheric simulation, it is difficult to
determine the optimal bit width through analytic methods. In our work, we design a
method that can choose the best data predictions while guaranteeing the final accuracy.
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Fig. 1. Mesh and computational domain.

3. GLOBAL SHALLOW WATER EQUATIONS

3.1. Equations and Discretization

To simulate the atmospheric dynamics, there are several different equation sets avail-
able. SWEs are one of the most basic and important ones that are widely used as the
test bed for designing new simulation methods. SWEs are a set of conservation laws to
simulate the wave propagation and model the essential characteristics and dynamics
of the atmosphere. We choose a gnomonic cubed-sphere mesh as our computational
mesh in this article. The cubed-sphere mesh (Figure 1(a)) is obtained by mapping a
cube to the surface of the sphere. The computational domain is then the six patches
(Figure 1(b)), each of which is covered with rectangular meshes. Compared to other
choices, such as the latitude-longitude mesh, the cubed-sphere mesh provides better
load balance for pole regions.

When written in local coordinates, SWEs have an identical expression on the six
patches, which is

∂Q
∂t

+ 1
�

∂(�u1 Q)
∂x1 + 1

�

∂(�u2 Q)
∂x2 + S = 0, (1)

where (x1, x2) ∈ [−π/4, π/4] are the local coordinates, Q = (h, hu1, hu2)T is the prog-
nostic variable with h being the thickness of the atmosphere, and u1, u2 being the two
horizontal velocity components. In Equation (1), the variable coefficient � depends only
on (x1, x2) and is invariant with time. The source term S has a complicated form due to
not only to the nonorthogonality of the cubed sphere but also the inclusion of a possibly
nonflat bottom topography (see Yang et al. [2013] for more details).

To model the dynamics of the shallow water wave propagation in a certain period of
time, we need to loop a certain number of timesteps to update the prognostic compo-
nents (h, hu1, and hu2) of every mesh point. Spatially discretized with a cell-centered
finite volume method and integrated with a second-order accurate TVD Runge-Kutta
method [Gottlieb et al. 2001], solving Equation (1) is transformed into the computa-
tion of a two-dimension 13-point upwind stencil (Figure 2(a)). At each timestep and
to get the prognostic components of the central point, the neighboring 12 points need
to be accessed. For those points in the boundary of the patch, points from neighbor-
ing patches (the empty points in Figure 2(b), named as halo) need to be accessed.
Because the six patches of the cubed-sphere mesh is not smoothly connected, we
need to do a one-dimension interpolation to properly transfer those halo data between
patches.
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Fig. 2. Stencil and halos.

3.2. The CPU-Only Algorithm and Challenges

Algorithm 1 shows the CPU algorithm to solve the SWEs at each timestep. For each
of the six cubed-sphere patches, halos must be updated first (line 2). Each patch needs
to fetch the halo values from its four neighboring patches. We use the neighboring
communication functions from the framework of PETSc (the Portable Extensible
Toolkit for Scientific computation [Balay et al. 2013]) to help finish the update. Second,
a linear interpolation (line 3) is carried out on the halo across patch interfaces to
properly transfer halo information for stencil computations. We then do the stencil
calculation (lines 4 through 8), which includes the computation of local coordinates
based on global index j and i, and the computation of Flux variables, State Reconstruc-
tion, Reimann Solver, and Source Terms (h, hu1, hu2). The work flow of the CPU-only
algorithm is shown in Figure 3(a), where all steps are doing in serial (from 1© to 4©).

ALGORITHM 1: The CPU-only algorithm for each stencil cycle
1: for all the six patches do
2: Halo Updating
3: Interpolations on halos when necessary
4: for all the mesh cells in each patch do //Upwind Stencil
5: Compute Local Coordinate based on global index ( j, i)
6: Compute Flux, State Reconstruction, and Riemann Solver
7: Compute Source Terms for h, hu1, hu2

8: end for
9: end for

The SWE algorithm brings serious design challenges for efficient solutions on the
FPGA platform. Halo updating and interpolations bring data communication between
patches. The communication must be carefully handled because it would be extremely
heavy and greatly impact the overall performance when the mesh points increase
to a large scale. Boundary interpolation also includes a lot of complex conditional
statements, which would consume a lot of the limited FPGA resources. Moreover,
although the upwind stencil from SWEs only involves 13 points (Figure 2(a)), the
computational complexity is much higher than normal stencil kernels. To compute one
mesh point, we will need at least 434 ADD/SUB operations, 570 multiplications, 99
divisions, 25 square roots, and 20 sine/cosine operations. The high arithmetic density
and the irregular operations bring further challenge for the limited on-chip resources.
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Fig. 3. Workflow of different algorithms.

4. THE HYBRID CPU-FPGA DESIGN

4.1. Hybrid Domain Decomposition Methodology

Instead of deploying the whole computational domain into the FPGA, we design a
hybrid algorithm that utilizes both the host CPU and the FPGA simultaneously. We
decompose each of the cubed-sphere patches into the inner part and two layers (L = 2)
of the outer part according to Figure 4(a). Then we can find that all halo exchanges
(“Comm. between patches” arrow in Figure 4(a)) and boundary interpolation in
Algorithm 1 only happen in the outer part. Therefore, we assign the CPU to process
the outer part and assign the FPGA to perform the more regular inner-part stencil
computation. Figure 3(b) shows the work flow of the hybrid design. The CPU will
process the halo exchanges ( 1© → 2©), interpolations ( 2© → 3©), and the outer-part
stencil computing ( 3© → 4©), while simultaneously the FPGA will process the inner-
part stencil computation ( 1© → 5©). When both the inner part and the outer part are
finished ( 5©), meshes along the inner-outer boundary will be exchanged ( 5© → 7©)
(“Comm. between CPU and FPGA” arrow in Figure 4).

Our proposed decomposition methodology has the following advantages:

—The CPU is now working simultaneously with the FPGA to solve the problem, which
achieves an efficient usage of both computing resources.
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Fig. 4. Domain decomposition of our hybrid CPU-FPGA algorithm.

—The CPU time for communication and computation can be hidden in FPGA comput-
ing, which achieves a well computation-communication overlapping.

—Specifically for SWEs, all complex conditional statements, which are expensive in
resources for the FPGA to implement, are now assigned to the CPU to compute.

The hybrid algorithm can also be applied to platforms with multiple FPGAs.
Supposing that we have a computing node with m×k FPGAs and multicore CPUs, and
are handling a problem with the mesh size of Nx × Ny (Figure 4(b)), we first decompose
the original patch into m × k subpatches so that the mesh size for each subpatch is
(Nx/m) × (Ny/k). Here we assume that Nx and Ny can be divided exactly by m and k,
respectively. Such inner patch decomposition will bring extra communication between
each subpatch (“Comm. between subpatch” arrow in Figure 4(b)). Now we can find
that a subpatch has the similar computational and communicating mechanism with
the original patch, with only 1/(m× k) of the computing area.

4.2. Balanced Task Partition

Based on the hybrid decomposition methodology, we can further improve performance
by adjusting the area of the inner part and outer part to a balanced partition, where
the CPU time and FPGA time are closest. The overall performance will increase
accordingly. For example, when we set L = 2 in Figure 4, the FPGA time for processing
the inner part is bigger than the CPU time for processing the outer part [Gan et al.
2013]. Therefore, we can carefully track the CPU and FPGA time according to the
increase of the parameter L, and find the optimal point where the CPU time and FPGA
time are closest. In this way, parameter L will be decided for the sake of balancing the
computing time of the inner and outer parts rather than by the shape of the stencil
(i.e., the thickness of the halo).

Based on different resolutions (i.e., the computing size of the problem), the optimal
value of L can be different. For a certain resolution, the CPU performance is determined
by the outer-part calculation as well as the communication and interpolation. We
write a script to automatically search and record the performance of CPU processing
the outer part according to different value of L, and compare it with the performance
of FPGA for a similar value of L. The FPGA performance for processing the inner part
is predicted based on the methodology proposed in Fu et al. [2013].
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Table I. Resource Cost for Double Precision and the Designs with Different Optimizations

Resource LUTs FFs BRAMs DSPs
Double precision 299% 220% 20% 189%

Algorithm optimization 240% 176% 17% 149%
FPGA 1 62.43% 45.66% 7.77% 29.14%

Algorithm decomposition FPGA 2 64.24% 46.18% 7.71% 28.77%
FPGA 3 69.18% 53.27% 27.07% 46.13%

Mixed precision 76.17% 53.41% 12.59% 44.84%

Fig. 5. Algorithmic decomposition design.

5. A DOUBLE-PRECISION FPGA DESIGN WITH DECOMPOSED KERNELS

5.1. Resource Analysis and Algorithmic Optimization

Based on the hybrid methodology in Section 4, the FPGA now only needs to process
the more regular inner-part stencil.

The resource requirement for a straightforward double-precision version on Virtex-6
SX475T can be found in the second row of Table I. Except for the BRAMs, all of the
other resources cannot satisfy the requirement of the double-precision design.

We first conduct some algorithmic optimizations to reduce the resource requirement.
In Algorithm 1, local coordinate computation (line 5) only relates to global index j and
i. Therefore, it can be precalculated during the compiling stage and stored in ROMs
that are implemented with BRAMs. In this way, extra BRAMs are occupied in exchange
for other more demanded resources. Another method is to erase the redundant com-
putations. We extract all common factors that happen many times in the algorithm to
avoid repeated calculations. For example, if factor X happens many times as a common
denominator, we extract and precalculate the value of 1/X and multiply it with other
factors when needed.

Although the preceding optimizations reduce the resource cost by 20% (third row in
Table I), the resulting design is still too large to fit into one Virtex-6 SX475T FPGA.

5.2. Algorithmic Kernel Decomposition

Even though the overall resource requirement is too high, we can decompose the SWE
kernel into smaller subkernels and use multiple FPGAs to process them respectively.

When we perform the kernel decomposition, we explore different options to achieve
the following two goals: (1) minimized intercommunications between the different sub-
kernels to avoid the interlink between different FPGAs becoming the performance bot-
tleneck, and (2) balanced resource costs of different subkernels so that we can achieve
a balanced utilization of different FPGAs.

Figure 5(a) shows the computational architecture of the SWE algorithm. The steps
of Flux, State Reconstruction, and Riemann Solver need to be performed for the com-
ponents in four different directions (left, right, top, and bottom). Although the three
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Fig. 6. Mixed-precision design.

different steps (Flux, State Reconstruction, and Riemann Solver) need to be processed
consecutively, the computation for the four different directions are relatively indepen-
dent. The computation in different directions generally only depend on the variables
and previous steps in the same direction. The only exception is the Riemann Solver
step, where the right and top components depend on the left and bottom components,
respectively. Therefore, to minimize the intercommunications, it is better to decompose
the algorithm by directions rather than by different steps.

As for the resource consumption, the left, right, top, and bottom direction each ac-
count for around 35% of the resources on the Virtex-6 SX475T FPGA, and the Source
Term computing requires nearly 70%. Therefore, to achieve a balanced utilization, a
natural choice is to assign the Source Terms computing module to one FPGA and as-
sign the four-direction computing to another two FPGAs. Considering that there are
data connections between left and right, as well as between top and bottom, we put
the left and right directions into one FPGA, and put the top and bottom directions into
another FPGA (Figure 5(b)). The kernel decomposition approach now allows us to map
the SWE algorithm into three FPGAs. The resource usage of different FPGAs after
decomposition can be found in the fourth row of Table I.

6. A MIXED-PRECISION FPGA DESIGN

In this section, we use the mixed-precision method to decrease the resource requirement
and deploy the whole SWE kernel into a single FPGA to improve the performance.

6.1. Range Analysis

Current FPGAs are generally more efficient for fixed-point arithmetic rather than
floating-point arithmetic. Therefore, one strategy we take is to locate the region in the
program that actually computes in a small range and then replace the region from
floating-point arithmetic to fixed-point arithmetic.

For all of the different intermediate variables throughout the kernel, we first
perform a range analysis to track the range of their absolute values. As shown in
Figure 6(a), whereas some variables (e.g., xhv, ql0hv, and tm) cover a wide dynamic
range, some other variables (e.g., xh, xhu, ql0h, and ql0hu) only change within a small
range. As those variables all locate in the process of State Reconstructions, we can
extract the four-direction State Reconstruction parts and use a fixed-point data type
in that module. As the values of all variables in the State Reconstructions are located
in the range of (2−20 , 21), we set the fractional bit width to be 2, which is big enough
to represent all variables.

Most variables in the remaining parts cover a wide range, which we then apply a
reduced floating-point number to represent. As the maximum dynamic range of the
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Fig. 7. (a) Mixed-Precision Design. Module1 (fixedpoint): Four-direction Reconstructions. Module2 (reduced
floating-point): Four-directionRiemann, and the Source Terms. (b) Computation-communication overlapping
with balanced partition.

base-two logarithmic values of those variables are smaller than 60, a floating-point
with an eight-bit exponent would be good enough for representing the range.

6.2. Precision Analysis

As the SWE kernel generally involves a large number of iterations, it is difficult to
achieve meaningful results through analytic precision analysis approaches due to the
conservative assumptions. Therefore, in our approach, we determine the precision bit
width through bit-accurate simulations for different bit-width configurations. Note
that the simulation is performed based on the data of a typical benchmark scenario
(zonal flow over an isolated mountain), which demonstrates the typical features of
numerical atmospheric simulation.

To determine the mantissa bits, we explore a set of different bit widths from 53
to 24 and observe the dynamic trend of the relative error of divergence and the
on-chip resource cost according to different floating-point bit-width configurations
(Figure 6(b)).

The relative error of divergence is computed by comparing the simulated divergence
against the standard dataset validated in Williamson et al. [1992] and can be used as
an important indicator for the quick estimation of the accuracy. If the relative error is
larger than 5%, the final result will no longer be true.

For brevity, hereafter float(e, m) denotes a floating point with e bits exponent and m
bits mantissa, and fixed(i, f ) denotes a fixed point with i bits integer and f bits fraction.
From Figure 6(b), for float(8,53), float(8,48), and float(8,40) settings, we observe a
similar relative error as the double-precision float(11, 53). For float(8,32), we can still
achieve a relative error of around 2%. However, when we further reduce the precision
to float(8,30), we see a surge of the relative error to a level that is far above the required
5%. The sharp accuracy reduction at float(8,30) indicates the precision threshold
[Haohuan et al. 2009] of the SWEs. When the bit width of data keeps decreasing and
cannot satisfy the precision threshold, the accuracy will break down sharply.

On the resource cost side, float(8,32) is also a suitable choice that reduces the LUT
usage from around 240% to 80% of the total capacity of a Virtex-6 SX475T FPGA.

For the fixed-point variables in the Reconstruction parts, we apply a similar ap-
proach to determine the fractional bit width to be 38. Therefore, we pick float(8,32) and
fixed(2,38) as the number representation in the algorithm.

6.3. Architecture of the Mixed-Precision Design

Through mixed-precision arithmetic, the resource requirement is greatly decreased
(the fifth row of Table I), which enables us to fit the SWE kernel into one FPGA.

The general architecture of the mixed-precision design is shown in Figure 7(a). The
input streams are originally in double precision and will later be converted into fixed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 11, Publication date: March 2015.



Solving the Global Atmospheric Equations through Heterogeneous Reconfigurable Platforms 11:11

point and go through Module 1 for the all-direction State Reconstructions. Then it will
be converted into a reduced-precision floating point and go through Module 2 for the
computation of all-direction Riemann and the Source Term. During the computation,
local coordinates are acquired through looking up the ROMs. After the computation is
finished, the results will be converted back into double precision.

7. BANDWIDTH DISCUSSION AND IMPLEMENTATIONS

7.1. Bandwidth Requirement

In the hybrid algorithm, the FPGA only processes the inner-part points. Data streams
will go through the FPGA DFE to finish the upwind stencil operation. The bandwidth
requirement of an application would be

Bandr = S × b × fFPGA, (2)

where S refers to the total number of the streams that go through the DFE at
each timestep, b refers to the number of bytes of the data type, and fFPGA refers to
the frequency of the FPGA. If the bandwidth of the network Bands can satisfy the
bandwidth requirement, say

Bands ≥ Bandr. (3)

It would be ideal so that all input and output streams can be prepared in one phys-
ical cycle. For cases that cannot satisfy Equation (3), we can either increase Bands
or decrease Bandr. To improve Bands, we can use the medium with higher accessing
bandwidth to replace the original network. To decrease Bandr, we can either use the
hardware (de)compression scheme [Fu et al. 2013] or optimize the algorithm to de-
crease the number of streams [Yang et al. 2013] and the data bytes. We usually do not
decrease the frequency of the FPGA, as such behavior will slow down the physical cycle.

7.2. Experimental Platforms and Implementations

The designs proposed in Section 5 and Section 6 can be applicable to any host systems
with FPGAs as accelerators. Here we use the MaxWorkstation and MaxNode FPGA
platforms from Maxeler [Pell and Averbukh 2012] to implement the single and
multiple FPGA designs, respectively.

The Maxeler MaxWorkstation [Maxeler 2011] is a small factor PC that brings the
power of dataflow computing to the desktop. MaxWorkstation contains one Intel Core
i7 quad-core CPU with 16GB RAM, and one DFE with a Virtex-6 SX475T FPGA and
24GB on-board memory (DRAM). The DFE connects to the CPU via a PCI Express
gen2 x8 with a bandwidth of 8Gbytes/s. The MaxNode (MPC-C series in Maxeler
[2011]) is a server-class HPC system and contains 12 Intel Xeon CPU cores and four
DFEs. Each DFE has one Virtex-6 SX475 FPGA and 48GB on-board memory (DRAM),
which are connected to each other through the MaxRing high-speed interconnect
[Lindtjorn et al. 2010]. The DFEs connect to the CPU via a PCI Express gen2 x8. In
both platforms, we use the general-purpose MaxCompiler development environment
[Pell and Averbukh 2012] to program and optimize our designs.

We set the total mesh size of the SWEs to be 1024×1024×6—that is, Nx = Ny = 1024.
Therefore, mesh size per DFE for Workstation and MaxNode would be 1024×1024 and
512 × 512, respectively. For both designs, FPGA will only process the inner-part com-
puting, whereas the host CPU will process the outer-part computing and halo updating.
We also apply OpenMP in the CPU side to fully explore the multicore resources.

In terms of the balanced task partition proposed in Section 4.2, through tracking the
performance based on different parameter L in Figure 4, we find that L = 8 (instead
of L = 2 in Gan et al. [2013]) is the best choice for both the one FPGA and four FPGA
designs to reach a more balanced partition and further improve the performance. The
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result of the communication-computation overlapping is shown in Figure 7(b), from
which we can find out that the CPU time is well overlapped by FPGA computing.

As for the bandwidth requirement, in the SWE DFE, there are 11 double-precision
streams. Assuming that the FPGA runs at 100MHz, Bandr = 8.8 Gbytes/s according to
Equation (2). If all data are stored in the host CPU, Bands is equal to the bandwidth of
PCIe 2.0 (8 Gbytes/s), which cannot satisfy Equation (3). So we use the DRAM on DFE,
which has a much higher accessing bandwidth (38 Gbytes/s) for the FPGA, to increase
Bands. In this way, we only need to perform the data exchange of the boundary part
between the CPU and FPGA through the PCIe 2.0 interface.

8. EXPERIMENTS AND ANALYSIS

8.1. Benchmark Designs

Compared to our previous work [Gan et al. 2013], the benchmark designs in this article
are based on more powerful platforms with the most state-of-the-art optimizations.
Therefore, the performances are greatly improved.

The CPU design is based on a computing rack with two Intel E5-2650 (Sandy Bridge)
CPUs. Each CPU has eight cores, and each core has two vector units. OpenMP multi-
threading, vectorization, and cache blocking are used to improve the performance.

The CPU-GPU design is based on two generations of different GPU cards. The Fermi
M2050 GPU comes from Tianhe-1A, one of China’s largest supercomputers with 7,168
computing nodes. Each Tianhe-1A node is equipped with two six-core Intel X5670
CPUs and one Fermi GPU. Our previous work [Yang et al. 2013] has scaled the SWEs
to more than 3,750 Tianhe-1A nodes and achieved a performance of 803 TFlops in
double precision. We also have a GPU node with the more advanced Kepler 20x GPU
card. We have performed systematic optimizations [Yang et al. 2013] for both the GPU
and CPU sides, including multithreading and GPU shared memory. The performance
on those platforms is used here to be a comparison basis for our FPGA designs. Note
that in this article we have optimized the SWE algorithm in Section 5.1, so we also
apply those optimizations in our CPU and GPU code for a fair comparison.

8.2. Accuracy Validation

Our numerical test is based on a model problem—zonal flow over an isolated
mountain—which is taken from the benchmark test set of Williamson et al. [1992].
The test runs in 100 timesteps, and the mesh size is fixed to 1024 × 1024 × 6.

The numerical solutions of our programs are close in accuracy to the standard refer-
ence that has been validated in Yang et al. [2013]. We further use mass conservation—
one of the most essential integral invariants in atmospheric simulation—to give a
more concrete accuracy comparison. Mathematically, the discretization scheme that
we employ leads to exact mass conservation. Due to the truncation error, the error of
mass conservation is near to machine epsilon (i.e., around 10−14 in double precision).
This conservation property can be further relaxed to, for instance, 10−11, which indi-
cates that at most 1% of total mass discrepancy is introduced after a billion timesteps.
Figure 8 shows the mass relative error at each timestep. Double precision refers to the
CPU standard version and the algorithm decomposition design. FPGA mixed refers to
the mixed-precision algorithm, whose relative error of FPGA-mixed maintains smaller
than 10−11, and therefore satisfies the accuracy requirements. We also show the case of
the single-precision FPGA version that does not satisfy the conservation requirement.

8.3. Performance and Power Efficiency

Table II shows the performance (evaluated by total mesh point processed per second)
and the power efficiency (evaluated by performance per Watt) on different platforms.
Note that the power consumption (Watt) in the single-node scenario is obtained through
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Fig. 8. Mass conservation. Values should be less than 10−11.

Table II. Performance and Power Efficiency

Single Node Scenario (Mesh Size: 1024 × 1024 × 6)
Performance Power Efficiency Power

Platform (points/second) Speedup (Watts) (points/(second·Watt)) Efficiency
CPU rack 82K 1 377 217.5 1
Tianhe-1A node 110.38K 1.35× 360 306.6 1.4×
Kepler K20x 209K 2.55× 365 572.6 2.6×
Algorithm decompositiona 22.12K 0.27× 420 52.6 0.24×
MaxWorkstationb 481K (468.11K)c 6× 186 2.59K 12×
MaxNodeb 1.59M (1.54M)c 19.4× 514 3.09K 14.2×

Supercomputer Scenario (Mesh Size: 25600 × 25600 × 6)
Performance Power Efficiency Power

Platform Total Nodes (points/second) (Watt) (points/(second·Watt)) Efficiency
Tianhe-A 3,750 413.93M 1.35M 306.6 1
MaxNodes 264 419.76M 135.7K 3.09K 10×

aDouble-precision design in Section 5. bMixed-precision design in Section 6.
cValue in parentheses refers to previous optimal performance in [Gan et al. 2013], without balanced partition.

the direct measurement using a power meter. For hybrid designs, the measured power
consumption includes both the accelerators (GPU or DFE card) and the CPU cores that
serve as the host controller and outer-part processor.

Due to the data exchange between decomposed kernels, the algorithm decomposition
design in Section 5.2 is slower than the CPU design.

Utilizing the mixed-precision method greatly solves the bottleneck. The mixed-
precision design with one Virtex-6 FPGA (MaxWorstation) gains 6 times speedup over
the CPU rack with two eight-core Sandy Bridge CPUs, 4.4 times over a Tianhe-1A
node, and 2.35 times over a Kepler 20× node. With four FPGAs running simultane-
ously, the performance of mixed-precision MaxNode gains a speedup of 19.4 over the
CPU rack, 14.4 times over the Tianhe-1A node, and 8 times over a Kepler 20× node. The
performance of MaxNode is equivalent to 14 nodes in the Tianhe-1A supercomputer.

As for the power efficiency, the mixed-precision design with MaxWorkStation is
8 times more power efficient than the Thianhe-1A node, and the mixed-precision design
with MaxNode is up to 10 times more power efficient than a Tianhe-1A node.

Although we do not yet have a large-scale FPGA cluster to run a simulation in the
same high resolution that we have managed to run on the Tianhe-1A, in the super-
computer scenario of Table II, we derive a projected performance on 264 MaxNodes,
which achieves equivalent performance to 3,750 Tianhe-1A nodes. In this case, to run
the same 25600 × 25600 resolution, the number of FPGA nodes and the power con-
sumption is only 10% of the Tianhe-1A scenario.
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8.4. Analysis and Discussions

Even though we have applied the latest CPU and GPU architectures that bring much
higher computing power than that in Gan et al. [2013], and have performed the most
state-of-the-art optimizations, the performance of SWEs on traditional CPU and GPUs
still cannot surpass the FPGA design that is working in an even lower frequency.

The parallelism of CPU and GPU architectures is achieved through the scaling
over the computing cores and the vector units. For the CPU design, the performance
of SWEs is improved by 15 times through OpenMP multithreading and is further
doubled through vectorization to reach the optimal record in Table II. For the GPU
design, through carefully considering the block size and the configuration between
shared memory and the L1 cache, we have achieved very high computing efficiency.
The multiprocessors have been fully occupied (more than 99.99% monitored through
the NVVP profiling tool). The performance of SWEs on Kepler is double the performance
on Fermi, which mainly comes from the increased computing power of Kepler that has
more streaming cores (192) in each of the increased streaming multiprocessor (SMX).
Although the CPU and GPU is highly paralleled, the extremely high density of the
SWE algorithm has decreased the computing efficiency and prevented the performance
from further increasing. For the FPGA, it achieves parallelism through a deep pipeline
of concurrency computing units. In our FPGA design, even though the FPGA device
works at a low frequency of 100MHz, we manage to build the complex kernel on a fully
pipelined FPGA card, which can efficiently perform 428 floating-point and 235 fixed-
point operations per cycle. Meanwhile, the usage of DRAM in Section 7 manages to
eliminate the bandwidth bottleneck between the CPU and FPGA. Therefore, all of the
input data can be prepared to be ready at each cycle and go through the fully pipelined
FPGA kernel.

As for the memory optimization, cache blocking in CPU and the usage of GPU L1
cache/shared memory have contributed to the improvement of cache behavior and the
data reuse. However, the memory accessing pattern of the stencil evaluation brings a
lot of cache misses, as the neighboring points are not sequentially stored. Execution
units will have to spend more time on caching or memory addressing to access targeting
data. The situation will become even worse with the increase of the simulating size.
For our FPGA design, through customizing the BRAMs into a window buffer (shown as
the input buffer in Figure 7(a)), we have achieved perfect data reuse in the data access
[Fu and Clapp 2011] to efficiently eliminate the memory bottleneck.

In terms of the computation-communication overlapping achieved through the hybrid
decomposition methodology and the balanced partition proposed in Section 4, it would
be of great importance to hide the communication efficiently, especially in the large-
scale simulation, when the data exchange becomes extremely heavy.

9. CONCLUSION

In this article, we propose a hybrid reconfigurable algorithm that employs both the
CPU and FPGA to solve the global SWEs in parallel. Compared to the general FPGA
methods, we have achieved more balanced utilization of both the CPU and FPGA
computational resources and have gained a well computation-communication over-
lapping. By decomposing the resource-demanding SWE kernel, we manage to map the
double-precision algorithm into three FPGAs. Moreover, we manage to reduce the great
resource demand through a mixed-precision floating-point and fixed-point method and
build the extremely complex upwind stencil into one FPGA card.

Platforms based on single and multiple FPGAs are employed to accelerate the per-
formance. The experimental results of the optimal FPGA design demonstrate magni-
tude of improvement in both the performance and the power efficiency over the fully
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optimized CPU and GPU programs, and reveal great potential in applying FPGA plat-
forms in atmospheric simulation. Current and future work includes extending our
designs to cover various algorithms for climate modeling and automating design explo-
ration to enable rapid and efficient implementations.
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