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Abstract— Through energy harvesting system, new energy
sources are made available immediately for many advanced
applications based on environmentally embedded systems. How-
ever, the harvested power, such as the solar energy, varies
significantly under different ambient conditions, which in turn
affects the energy conversion efficiency. In this paper, we propose
an approach for designing power-adaptive computing systems
to maximize the energy utilization under variable solar power
supply. Using the geometric programming technique, the pro-
posed approach can generate a customized parallel computing
structure effectively. Then, based on the prediction of the solar
energy in the future time slots by a multilayer perceptron neural
network, a convex model-based adaptation strategy is used to
modulate the power behavior of the real-time computing system.
The developed power-adaptive computing system is implemented
on the hardware and evaluated by a solar harvesting system sim-
ulation framework for five applications. The results show that the
developed power-adaptive systems can track the variable power
supply better. The harvested solar energy utilization efficiency
is 2.46 times better than the conventional static designs and the
rule-based adaptation approaches. Taken together, the present
thorough design approach for self-powered embedded computing
systems has a better utilization of ambient energy sources.

Index Terms— Design optimization, energy harvesting, neural
network, power adaptation.

I. INTRODUCTION

ENVIRONMENTALLY embedded systems have devel-
oped rapidly in recent years. These systems are deployed
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Fig. 1. Energy harvesting embedded system model.

in various environments, such as forests, rivers, build-
ings, and factories, to monitor the change of environmental
conditions [1], [2].

A critical concern with regards to the design of the envi-
ronmentally embedded systems is how to supply the electrical
power both readily and reliably to allow the systems work
perpetually. Batteries with limited capabilities are not an
economical solution [3]. With the advancement in energy
harvesting technologies [4], a new spectrum of power delivery
strategies according to various environmental conditions and
systematic volumetric is available. As a result, the environ-
mentally embedded systems can be self-powered by harvesting
ambient energy from the environments.

Energy harvesting powered system needs to adapt to the
unstable nature of the ambient energy. Hence, power adaptabil-
ity is one of the major design merits for the system. Power
adaptability optimizes the system behavior according to the
changing external power supply and thus allows the system to
work in a long duration [5], [6].

Fig. 1 shows a model of the energy harvesting embedded
systems [1], [2]. The energy harvester converts ambient energy
to electricity. The power converter extracts power from the
harvester and performs ac–dc or dc–dc conversion with the
goal of transferring as much power as possible to the energy
storage or application system. The energy storage buffers the
harvested energy temporally and supplies energy to the appli-
cation system, the embedded application-specific functional
unit. If the harvested energy exceeds the energy consumed
by the application system, the system is powered directly by
the harvester and the surplus will charge the energy storage.

To improve the energy conversion efficiency, studies on
various system modules shown in Fig. 1 were carried out
in the past few years. A reconfiguration algorithm was pro-
posed to increase the power conversion efficiency of a solar

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

harvester [7]. A low-power maximum-power-point-tracking
controller was implemented to achieve an efficient power
converter [8], while a control algorithm for dc–dc converters
was developed [9]. An efficient charging method for energy
storage supercapacitors was presented to improve buffering
efficiency [10]. Power management techniques to improve the
consumption efficiency for the embedded application system
were developed [2], [5], [11]–[15].

Many new advanced applications based on the
environmentally embedded systems require real-time
information processing such as image compression and data
classification [16], [17]. However, most existing solar-energy-
powered embedded systems, such as the wireless sensor
networks, lack this capability. Therefore, this paper proposes
a design approach for power-adaptive computing system,
which equips the environmentally embedded systems with
the required computing capability.

The design of the power-adaptive computing system consists
of the design of the energy estimator, the system controller,
and the computing unit, as shown in Fig. 1. We propose a
thorough approach for designing and managing the power-
adaptive computing system. Specifically, several design opti-
mization techniques are applied and the design space is
explored for a parallel computing structure with low-speed
homogeneous processing units (PUs). Due to the interaction
between the multiple optimization objectives and the non-
linearity of the design space, the geometric programming
technique is exploited to formulate the design space and
provide the globally optimized solutions. The power profile of
the designed computing unit is regulated using the clock gating
technique. At run time, a simplified geometric programming
optimization problem is solved to determine which PUs are
clock-gated ON/OFF for a particular time slot.

This paper also extends the design optimization tech-
niques [18]–[20] to design the parallel computing unit and the
system controller with practical considerations. They are inte-
grated with an energy estimator to provide a thorough solution
for designing and managing the power-adaptive computing
system. The proposed approach is comprehensively evaluated
in various solar energy contexts. The contributions of this
paper are as follows.

1) A geometric programming technique-based modeling
approach is presented for designing the power-adaptive
computing unit with multiple low speed homogeneous
PUs. The computing unit adds additional computing
capability as well as power adaptability to the environ-
mentally embedded systems.

2) A convex model-based adaptation strategy is proposed
for the power management of the computing unit. The
adaptation strategy improves the energy consumption
efficiency by maximizing the performance of the com-
puting unit and by controlling the power consumption
(i.e., power consumption does not exceed the harvested
power).

3) Given the fact that the robustness of the energy har-
vesting powered adaptive systems relies on the accuracy
of energy prediction [2], the artificial neural network is
exploited to estimate the solar energy available in the

future time slots. The neural network-based prediction
with an accuracy of 2.45% is input to the system
controller to provide a reliable adaptation control.

4) The proposed power-adaptive computing system was
first implemented on an FPGA-based embedded hard-
ware platform and then evaluated by a solar energy
harvesting simulation framework. Five signal processing
algorithms were used to exemplify the practical applica-
tion of the proposed approach. The results demonstrate
the achieved computing performance and improved
energy utilization efficiency.

The rest of this paper is arranged as follows. Section II
includes a comparison between the low-power and power-
adaptive designs, as well as an introduction of various tech-
niques for dynamic power management. Section III presents
the proposed approach for designing the power-adaptive com-
puting system. Section IV describes a practical instantiation of
the proposed approach for five applications. The experimental
results are shown in Section V. Section VI is the conclusion.

II. BACKGROUND

A. Low-Power Design Versus Power-Adaptive Design

Designing power-adaptive systems is quite different from
designing low power systems. Traditional design methods
for low power systems aim to minimize the average power
dissipation to increase the batteries-driven powerup duration
of an electronic device. Hence, the main concern is the
reduction of energy consumption. In contrast, the design goal
of the power-adaptive computing systems in this paper is to
maximize the system performance, under the constraint that
the power consumption does not exceed the amount of power
supply available. This constraint is also known as the energy
neutral mode [5], where the energy consumption rate has to
match with the availability of the power supply.

Two optimization problems formulating the low power
design (P1) and power-adaptive design (P2) are shown as
follows:

min Pc(�x)

s.t. Texe(�x) ≤ Treq (P1)

min Texe(�x)

s.t. Pc(�x) ≤ Ps(t) (P2)

Texe(�x) ≤ Treq

where Pc(�x) is system power consumption, Texe(�x) is system
execution time, Treq is execution time requirement, and Ps(t)
is system power supply changing over time.

Problems P1 and P2 are two formulations to show a
performance–energy consumption tradeoff. Although they are
related to performing certain tasks in a given time at lowest
energy possible, they target different applications. The problem
P1 implies that a system can run slowly as long as the exe-
cution time requirement is met to reduce power consumption,
whereas the problem P2 means that the system can run as
fast as possible, while the power consumption constraint is
not violated. The system with faster computation speed can
provide higher quality of service (QoS). This is particularly
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important in development wireless sensor networks for video
and image sensing applications [21]. Given sufficient energy,
the system can provide high-quality signal processing. This
was not concerned in traditional low power designs as in P1.
P2 presents the characteristics of the power-adaptive design.
An intelligent control that adapts the system performance to
the transient power supply constraint is required in a power-
adaptive computing system.

B. Adaptive Power Management

Various dynamic approaches for system-level power man-
agement have been reviewed in [22]. The basic idea of these
approaches is to switch the system to different operation
modes according to different workloads. Different operation
modes tradeoff power for speed. A recent development for
determining the optimal switching rules for nonstationary
workloads was reported in [23]. The target applications of
these approaches are those with varying run-time workloads.
In this paper, the target of the power-adaptive computing
systems is the application scenarios, where the power supply
varies over time. Although both varying workloads and power
supply can be regarded as a net power change, in fact they are
quite different. With the former, the system can choose not to
change the operation modes and it might result in energy waste
or delay in computation. In contrast with the latter, the system
has to change the operation modes, otherwise the system might
generate errors and break down eventually. For example, the
harvested solar energy decreases dramatically in the future
time slots. Therefore, the systems with varying power supply
have a more demanding design requirement.

Works on adaptive power management in energy harvesting
systems were presented in [2], [5], and [11]–[15]. There are
two key elements for the adaptive power management: power
modulation technique and power adaptation strategy. While
the power adaptation strategies determine when and in which
mode a system should work according to the harvested energy,
the power modulation techniques regulate the system power
consumption so that a system can work in multiple power
modes.

Power modulation techniques such as duty cycling, dynamic
voltage and frequency scaling (DVFS), power gating, and
clock gating are widely used. Duty cycling changes the active
time of the system components to adjust the power consump-
tion. References [2], [5], [11], [12], and [24] used linear
programming to determine the duty cycle of wireless sensors
to adjust the data transmission rate. The DVFS technique
controls system power consumption by adjusting the supply
voltage and frequency. Zhang et al. [14] formulated the process
of voltage and frequency selection and used enumeration to
find the appropriate solution with respect to the system charac-
teristics. Liu et al. [13] arranged tasks according to priority, so
that high-priority tasks execute with the required voltage and
frequency. Through enabling/disabling functional units and
their clock sources, clock gating technique [25] regulates the
system power consumption. These three techniques affect only
the system dynamic power profile. The power gating technique
modulates both the dynamic and static power by powering

ON/OFF parts of the systems [26]. According to [22], DVFS
and power gating introduce time delay between power mode
transitions. In addition, DVFS has a limited dynamic range
due to the system operational restrictions on clock frequencies
and supply voltages. Power gating implemented on the top
of clock gating can further increase the power modulation
range, leading to more effective power-adaptive approach.
However, the combined scheme requires further effort on new
implementation and design of complicated control. These will
be our future work.

The power adaptation strategies are generally divided into
two categories: the rule-based and numerical model-based
strategies. The former switches the system operation modes
according to predefined rules, which specify an operation
mode for a power supply range. This strategy is simple to
implement, but it is often unable to reach the optimal condition
for general cases [23], e.g., the mode transition costs cannot
be ignored or the system operation modes are ambiguous.
The latter formulates the decision process as optimization
problems, such as linear programming [2], [5], [11], [12], and
solves the problems in real time to find the optimal adaptation
schemes.

We exploit the clock gating technique and the model-based
strategy to manage the power consumption of the developed
computing system. The process of determining the clock
gating schemes is formulated as a geometric programming
optimization problem by taking advantage of convex optimiza-
tion techniques [27]. This dynamic management can adjust the
number of active PUs of the computing unit in a time slot and,
thus, modulates the peak power consumption more effectively.

III. POWER ADAPTIVE COMPUTING SYSTEM DESIGN

The power-adaptive computing system is composed of three
components: the computing unit, the system controller, and the
energy estimator (Fig. 1). This section presents the proposed
approaches for designing these three system components.

A. Computing Unit

The computing unit presented in this paper is capable of
processing data with customized arithmetic functional units
in hardware. We applied several design optimization tech-
niques [18]–[20], including data reuse, loop pipelining and
loop parallelization, and explore design space to determine an
single-process multiple-data (SPMD) computation structure, as
shown in Fig. 2.

In the computing structure, system operations were divided
into three steps: data input, computation, and data output.
In the data input step, operand data processed by all PUs
were loaded into corresponding on-chip memories from the
off-chip global memory. Each datum was loaded only once.
In the computation step, all PUs with the same functionality
processed different data in parallel. The structure of PUs was
customized for the target applications, and operations in each
PU were pipelined. In the output step, computation results
were transferred back to the off-chip memory. All three steps
were pipelined. Therefore, the computing structure achieved
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Fig. 2. Power adaptive enabled computing system.

hierarchical parallelism: global pipelining, local paralleliza-
tion, and local pipelining, for a low clock frequency and high
parallel computations.

The parallel computing structure was designed based on the
decision made by the following optimization problem:

min T ( �ρ, �k, i i)

s.t. P( �ρ, �k, i i) ≤ Pspeak

Rmem( �ρ, �k) ≤ Resram (P3)

Rcomp(�k, i i) ≤ Rescomp

where the system execution time T is minimized under the
constraints of the peak power Pspeak of harvested energy, and
the availability of memory resources Resram and computational
resources Rescomp in hardware. The execution time model T ,
the power consumption model P , the memory resource utiliza-
tion model Rmem, and the computational resource utilization
model Rcomp will be defined later. �ρ is a data reuse variable
vector determining the local memory space for each processing
unit. �k = (k0, k1, . . . , kN−1) is a loop parallelization variable
vector indicating kl iterations of loop l in a N-level nested
loop structure were executed in parallel. i i is the number of
clock cycles of the local pipelining initiation interval in PUs.

Obviously, the model P3 is a multiobjective optimization
problem. We refined P3 based on the geometric program mod-
eling technique [28]. The geometric program is the following
optimization problem:

min : f0(x)
s.t. fi (x) ≤ 1, i = 1, . . . , m

hi (x) = 1, i = 1, . . . , p

where the objective function and inequality constraint func-
tions are all in posynomial form, while the equality constraint
functions are monomial. The geometric program has the
feature of convexity and has efficient solvers for the globally
optimal solution [28]. In [18], the geometric program has been
applied to data reuse and parallelism co-optimization.

Extended from [18]–[20], the problem P3 was refined as
follows. Unlike [19] where low power is the optimization
objective, the objective in P3 is to design a parallel computing
structure used in the solar energy harvesting environment.

In addition, the peak power of the harvested solar energy,
which was not preset in [20], was considered to ensure the
designed computing unit work reliably in that environment.
Furthermore, in [18] and [19], data input/output and com-
putation were not parallelized, while here the execution of
the parallel computing system is a pipelining of data input,
computation, and data output. Therefore, the execution time
is defined as

T ( �ρ, �k, i i) = (v − 1) × t + Tin( �ρ, �k)

+ Tcomp(i i) + Tout( �ρ, �k) (1)

t = max(Tin( �ρ, �k), Tcomp(i i), Tout( �ρ, �k)) (2)

where Tin, Tcomp, and Tout are respectively data input time,
computation time, and data output time in the number of
execution cycles. Among them, the maximum determines the
global pipelining initiation interval t . v is the total number of
times the three steps have to execute.

Each PU performs only arithmetic computations and could
contain adders/subtracters, multipliers or comparators for
the target applications, and only accesses its own local
memory. All operations are pipelined with initiation interval i i .
Local memory bandwidth, data dependence, and computa-
tion resources are the factors that determine i i and thus
Tcomp(i i) [19].

Tin and Tout are the functions of variables �ρ and �k.
In practice, larger local memory size and more PUs mean
more data transferred between off-chip and on-chip memories
and thus longer input and output time. Tin, Tcomp, and Tout will
be deliberated in the next section for different applications.

The on-chip memory resource constraint is

K =
N∏

l=1

kl (3)

Rmem( �ρ, �k) = K ×
R−1∑

i=0

Ei −1∏

j=0

ρ
log2 Bi j
i j (4)

where K is the total number of homogeneous PUs; R is
the number of array references in a target application; Ei

is the number of data reuse options of array reference i ; Bij

is the size of on-chip memory required for data reuse option j
of array i . ρi j takes values 1 or 2; taking 2 means data reuse
option j is chosen for array i , otherwise 1. The details about
data reuse options were presented in [18].

The computation resource constraint is defined as follows:

Rcomp(�k, i i) = K × r(i i) (5)

where r(i i) is the number of computational resources used by
a PU, which is related to the pipeline scheduling [19]. Usually,
the shorter the pipelining interval is, the more the concurrent
working of the computational resources is required.

Finally, the system power model was extended from [19] to
model the power consumption of the computing unit and the
global memory as follows:

P = (p1 Rmem + p2 Rcomp + p3)F + p4
(Tin + Tout)

Cg
(6)
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where the first bracket includes the power consumed by
the local memory resources, the computational resources,
and other control logic of the computing unit under clock
frequency F ; the second bracket is the power consumption
of the global memory caused by data transfers, where Cg is
the average number of cycles per global memory access.

The optimization problem P3 determines the computation
structure with the peak speed. However, this peak speed is
only achievable when the harvested solar energy reaches the
peak value. If the harvested power is not sufficient to support
all K PUs working, the system has to stop computation.
To prolong working time, a number, less than K , of PUs can
be designed, to trade speed for working time. The structure
determined at design time is a static design and in Section V,
we will show that the static designs have low energy efficiency.
In the next section, behaviors of the computing system are
dynamically adjusted corresponding to the power supply.

B. System Controller

The run-time adaptability of the parallel computing structure
in this paper is realized by adjusting the number of PUs
concurrently running, given that each PU can be clock gated
independently. At run time, the task of the system controller
is to select the most power-efficient clock gating scheme and
configure the computing unit, so that the system does not
consume more than the supplied power during a particular time
slot. We exploited a numerical model built on P3 to determine
the adaptation scheme.

Since the structure of each PU is fixed and is just clock gated
ON/OFF, there is only one variable k now, which is the number
of PUs gated ON. As a result, in P3, the resource constraints
can be removed and Tcomp becomes a constant. In addition,
the instantly harvested solar energy should be considered now.
At time slot i , the power consumption Pc(i, k) should not
be larger than the harvested energy Ps(i) and the residual
energy in the energy buffer after time slot i − 1 Eb(i − 1), to
achieve energy neutral [5]. Therefore, the optimization model
simplified from P3 is

min T (k) = (v − 1) × t + Tin(k) + Tcomp + Tout(k)

s.t. max{Tin(k), Tcomp, Tout(k)} ≤ t

τ Pc(i, k) ≤ τ Ps(i) + Eb(i − 1) (P4)

T (k) ≤ τ

1 ≤ k ≤ K

where the execution time T (K ) is required to be not larger
than the period τ of a time slot, ensuring the workloads
assigned to the PUs be finished within that slot. This simplifies
the operation mode of the adaptation and avoids context store
and resume which would happen when the computation of
workloads is across time slots. The period τ of a time slot is
equal to the sampling period of solar energy.

We adopted an empirical power model [20], which is
simple and accurate enough to make sure the computation
system works correctly. For the power-adaptive computing
system proposed in this paper, the system power consump-
tion variation with different clock gating schemes can be

expressed as

Pc(k) = Pconst + k × Ppu (7)

where Ppu is the power consumption of a PU when it is
running, and Pconst contains the power consumption from the
system controller, the energy estimator, and the local controller
of the computing unit.

The ratio σ = K × Ppu/(Pconst + K × Ppu) determines
the dynamic range of the system power consumption. For
implementing applications in hardware that has large Pconst,
small K , and simple PUs, the dynamic range could be con-
sidered small. The small dynamic range will limit the benefit
of the proposed power-adaptive management approach. The
percentage of energy efficiency improvement of the power-
adaptive design over the static design with the peak speed
could be computed as ((1 − σ) + 1)n1/n2, where n1 is the
time taken by the power supply increasing from Pconst + Ppu
to Pconst + K × Ppu and n2 is the time period when the power
supply is greater than or equal to Pconst + K × Ppu. This
energy efficiency improvement formula could give guidance
on how to apply the proposed power-adaptive approach for
applications and associated hardware platforms.

The system controller solves the optimization model P4 in
real time to determine that k PUs can be enabled in time slot i ,
such that the system speed is maximized while the system
power consumption is not more than the supplied power. The
advantage of the model-based approach is the optimality of the
obtained power adaptation solution. In addition, the optimiza-
tion model can be easily extended to target different objectives
and include more constraints, such as various QoS constraints,
to satisfy different levels of requirements.

The overhead of the run-time adaptation includes the execu-
tion time and the power consumption of the system controller.
The execution time of the controller is the time required to
solve the optimization model P4. The measured solution time
on our experiment platform is 0.3 s. The time overhead would
not affect the system performance as long as the solution time
is shorter than the time slot τ . The time slot usually is related
to the sample period of the power supply, which depends on
the change rate of the power source. If the change rate is quick,
then the time slot could be increased to include multiple power
samples, i.e., the adaptation resolution decreases. The power
consumption overhead, however, is unavoidable. The measured
power consumption for solving P4 on our experimental plat-
form is 0.5 W.

C. Solar Energy Estimator

The run-time optimization approach, presented in the previ-
ous section, has to use the estimation of harvested solar energy
to determine the adaptation scheme for the next time slot,
because the harvested energy cannot be known for the future
time slots. Therefore, the energy estimator is very important
and is related to the robustness of the energy harvesting
powered systems [2].

In this paper, we exploit a three-layer multilayer perceptron
(MLP) neural network, as shown in Fig. 3, to predict the
harvested solar energy P̄s(i). The input layer has three nodes
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Fig. 3. Three-layer MLP neural network for solar energy prediction. The
inputs are the average power in the previous time slot P̄s(i − 1), the average of
power at the next time slot in the past days μ̄d (i) and the weather comparison
between the current day and the previous days φ̄ j . The output ˆ̄Ps(i) is the
predicted average power for the next time slot.

corresponding to three input parameters: P̄s(i − 1), μ̄d(i),
and φ̄ j . P̄s(i−1) is the average power measured at the previous
time slot i −1, μ̄d (i) is the average of power measured at time
slot i in the past d , days and φ̄ j is a weighted average of the
ratios between the measured power at previous j time slots
before time slot i and the average of power measured at the
corresponding time slots in the past d days. These parameters
similar to the parameters in [29], but we consider average
power, because the energy harvested during a time slot is
P̄ × τ .

The hidden layer contains eight neurons and the output
layer has one node, which is the prediction of solar power
values. The input to each neuron at the hidden layer is a
weighted sum of the input parameters, and each hidden neuron
contains a sigmoid activation function y = 1/(1 + e−x). The
final prediction from the output neuron is the weighted sum
of outputs from the hidden neurons.

The three-layer MLP needs to be trained over a set of
training data {P̄s(i − 1), μ̄d(i), φ̄ j , P̄s(i)}, so that it can
learn the relationship between the three inputs and the output
P̄s(i). Based on the 90-day solar energy data from the ORNL
website [30], the trained three-layer MLP neural network
achieves the average estimation error within 2.45%. The feed-
forward computation of the three-layer MLP with eight hidden
neurons is just about 0.95 ms for predicting once and can be
ignored, compared with the solar energy sampling interval.
Fig. 4 shows the performance of the MLP for predicting the
harvested energy over 3 days with different weather condi-
tions. The small power estimation error can be complemented
by the energy buffer in the system, as shown in Fig. 1, and
the Eb(i − 1) considered in P4. However, if the weather
changes quickly, for example, the last day in Fig. 4, and the
estimator overestimates the solar energy, then the energy buffer
may empty quickly. This will cause the computing system to
produce wrong results or even breakdown [2]. To avoid this
situation, a threshold for the remaining energy in the buffer is
set. When the remaining energy is lower than the threshold,
the computing system comes into idle. This setting will be
described in more details in the next section.

Fig. 4. Estimated solar energy versus real solar energy for 3 days with
different weather conditions. Solar energy of each day from 8 A.M. to 4 P.M.
is sampled for every 1 min.

So far, we have presented our approach for designing a
power-adaptive computing system. The parallel computing
unit is designed based on the geometric programming offline
optimization and enables clock gating for power adaptation.
The optimization problem is simplified and is implemented in
the system controller to determine clock gating schemes in
real time. Finally, an accurate solar energy estimator is built
on a three-layer MLP neural network. In the next section, we
will illustrate the approach by applying it to real applications,
showing a simulation framework of the solar-energy-powered
computing system, optimization model instantiation, and the
related design space.

IV. CASE STUDY

We developed power-adaptive computing systems for appli-
cations shown in Table I: matrix multiplication (MAT),
k-means clustering (k-means), Sobel edge detection (Sobel),
1-d correlation, and n-body simulation (n-body), following
the proposed design approach. The developed power-adaptive
computing systems can be applied to distributed monitor
networks to provide computation capability at sensory nodes.
For example, Sobel extracts edges of subjects in images,
then k-means that it classifies subjects in terms of their edge
properties, and the data of interested subjects are transferred
to the network at the end.

A. Simulation Framework

As mentioned earlier, this paper focuses on power-adaptive
computing system design to improve the power consumption
efficiency. Therefore, to evaluate the proposed approach, we
have simulated an energy harvesting system with the following
assumptions.

The real-time solar energy data from ORNL website [30]
from 5 A.M. to 6 P.M. in August and September, in 2011,
are used to simulate the harvested power, which is sampled
every 1 min, i.e., τ = 1 min. The data are on the range of
0–1125 W/m2 and are scaled down as harvested in a
10 cm × 10 cm solar cell panel to power the target hardware
platform, which consumes power on the range of 2.4–9.5 W.
Here, we only consider the power consumption of the power-
adaptive computing system. When considering the other com-
ponents of the system in Fig. 1, the energy data can be scaled
similarly.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: POWER-ADAPTIVE COMPUTING SYSTEM DESIGN 7

TABLE I

BENCHMARKS

The energy storage module is assumed to act as a buffer for
two purposes: 1) to complement the inaccuracy of the energy
estimator, i.e., when the predicted power is higher than the real
harvested power, the excessive power comes from the energy
storage [15] and 2) to keep the controller alive when there
is not enough harvested energy, e.g., during night or terrible
weather, and also provide certain level of QoS. Therefore,
there is a bottom line for the stored energy in the energy
buffer [15]. If the remaining energy in the buffer reaches to
the bottom line, then the computing system is idle in the next
time slot. The bottom line of the energy buffer is assumed
to be the amount of energy to keep the controller alive until
the next energy charge period. During daytime, the residual
power between the power consumption and the power supply
is stored in the buffer.

The proposed power-adaptive approach can use both field-
programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) to implement the parallel com-
puting system. According to [31], FPGAs with embedded
multipliers and block memories require on average 7 times
more power compared with ASICs, for the same circuit
design. However, the increased nonrecurring engineering cost
makes low to midvolume ASIC production unaffordable [32].
In addition, systems based on energy harvesting usually are
deployed in the wide and remote areas. The costs for sys-
tem maintenance and update also need to be considered.
Therefore, in practice, the hardware implementation platform
should be decided depending on the scale of applications
and the volume of the power supply. This paper uses an
FPGA-based platform to demonstrate the application of the
proposed approach.

Specifically, the developed power-adaptive system is imple-
mented on an experimental platform with an ARM processor
and an FPGA. The parallel computing system is mapped onto
a Virtex5-330t FPGA. The measured peak power consumption
of the FPGA implementations of the five applications at
100 MHz is about 7.3 W, and when idle, the FPGA is
reconfigured with a blank configuration to make the power
consumption negligible. The system controller and energy
estimator are implemented on the ARM processor and the
measured peak power consumption of the ARM processor
is about 2.4 W. This power overhead can be reduced if an
FPGA platform with embedded processor is used for the
implementation.

Fig. 5. Function blocks of the power-adaptive computing system.

The relevant function blocks of the energy harvesting system
are shown in Fig. 5 and the system works as follows. Sensed
data are stored in the global memories. The estimator estimates
the supply power for the next 1 min, and the controller deter-
mines a proper clock gating scheme based on the estimation.
Both estimation and the control decision have to be made
in 1 min before the next time slot starts. After that, the
system controller sends clock gating signals (Ena) to the local
controller to configure the parallel computing system. When
the computing system completes the task, the local controller
sends a finish signal back to the system controller and the
latter handles results.

Remember that the computing system should finish the
assigned task within a time slot defined in P4. In Section IV,
solar energy is sampled every 1 min, while processing one
data set for the applications completes within a few seconds.

B. Approach Instantiation

In this section, we demonstrate how to follow the proposed
approach to develop a power-adaptive computing system for
MAT.

At design time, a parallel hardware design of MAT, deter-
mined by the optimization problem P3 on the target FPGA,
is k1 = 94, k2 = 1, k3 = 1 and i i = 1. In this design,
94 iterations of the outermost loop of MAT are executed in
94 PUs in parallel, where one PU performs the multiplication
of one row of two input matrices and generates one row of
resultant matrix; the innermost loop of MAT is fully pipelined.
This design can obtain the final resultant matrix in 0.36 s at
100-MHz clock frequency, including the data transfer time
between the global and local memories.

Once we implement the design on the FPGA, we could
measure the power consumption of the computation system.
Experimenting with several clock gating schemes, the fitted
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Fig. 6. MAT run-time optimization design space. Each circle indicates the
design consuming the least power while achieving the same speed as those
in its right for a certain range of k.

power model for MAT is

Pc(k) = 6.96 + 0.027k. (8)

For the run-time optimization model, three parts of the
execution time in the number of clock cycles are refined as

Tin(k) = k × numCol (9)

Tcomp = length Pi pe × numCol (10)

Tout(k) = k × numCol (11)

where numCol is the number of columns of the matrix
and length Pi pe is the scheduled length of pipelining the
innermost loop. Bringing these functions into problem P4
instantiates the optimization problem for MAT. Moreover,
since the structure of the PU is fixed, length Pi pe is known at
this stage; it is 1024 clock cycles for pipelining the innermost
loop of MAT. This value is much larger than the upper bound
of k, that is, K = 94. Therefore, the run-time optimization
problem for MAT is

min T (k) = v × Tcomp + Tin(k) + Tout(k) (12)

subject to τ Pc(i, k) ≤ τ Ps(i) + Eb(i − 1) (13)

T (k) ≤ τ (14)

1 ≤ k ≤ 94 (15)

numCol × k−1 × v−1 ≤ 1. (16)

This is a geometric programming model and thus can quickly
converge to a globally optimal solution k, given the supplied
power Ps(i).

The design space of this optimization problem is shown
in Fig. 6, where we can observe that as k increases the
power consumption keeps increasing while the execution time
decreases and sometimes holds constant. The reason for the
nondecreased execution time when k increases to some values
is that the execution time shown in (12) is dominated by the
first addend. For certain values of k, the integer variable v,
which is derived in (16), does not change. This leads to designs
that have the same speed but the different power consumption.
The target of the optimization problem is to find the design
with the fastest speed and the least power consumption given
the supplied power, as circled in Fig. 6.

We followed the same procedure to develop the similar com-
puting systems for k-means clustering, Sobel, 1-d correlation,
and n-body simulation as well with different instantiations of

problems P3 and P4. The number of parallel PUs for each
benchmark is also shown in Table I.

V. EXPERIMENTAL RESULTS

The results shown in the previous section were obtained
after synthesis, placement and routing, and mapping onto the
hardware platform. The power consumption of the FPGA was
obtained by monitoring the current flowing over a current
sense resistor on the FPGA card. The power consumption
of the ARM processor was measured by placing a ac/dc
current clamp at the power supply. With these experimental
data and the instantiated execution time and power models,
as presented in the previous section, the evaluation of the
proposed approach is presented in this section.

For each application, four parallel computing system
designs listed below are implemented and compared.

1) Static design with the maximum number of PUs (S1),
determined by our proposed model P3.

2) Static design with the moderate number of PUs (S2),
obtained from the previous static design by reducing the
number of implemented PUs, trading speed for power
consumption.

3) Power-adaptive design following the rule-based strategy
(RB design) [23]. In the rule-based strategy, the power
adaptability of the parallel computing system is realized
as follows. The operation power range [Pcl , Pcu ] of the
computing system is partitioned into several segments.
Based on (7), a segment i is associated with a rule, that
is, if Pci ≤ Ps ≤ Pci+1 , then the clock gating scheme
k = �Pci − Pconst /Ppu�. Each rule, determined at design
time, specifies a power range and a corresponding clock
gating scheme. The rules are put in a lookup table and
are switched at run time according to Ps .

4) Power-adaptive design following the proposed convex
model based strategy (CMB design). The clock gating
scheme of the parallel computing system is determined
by solving P4 at run time.

The comparison criteria of the four designs is the harvested
energy utilization efficiency

Energy utilization efficiency = Ec

Es
(17)

where Es is the harvested energy supplied to the power-
adaptive computing system and Ec is the energy consumed
by the power-adaptive computing system. An ideal situation is
the energy utilization efficiency equal to one, i.e., all supplied
energy is utilized without waste.

The power consumption behavior of the four designs of
MAT, k-means, and Sobel are shown in Figs. 7, 9, and 10,
respectively, where the dashed line represents the variation
of the power supply and the solid line represents the power
consumption. The results are shown based on a 3-day duration:
day 1 was sunny, day 2 was a day with sunny morning and
cloudy afternoon, and day 3 was cloudy.

Figs. 7(a) and 9(a) show the first static design S1 of
MAT and K -means clustering determined by our proposed
model P3. These fast designs with maximum number of PUs
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Fig. 7. Power variation of MAT at day 1. Ps : supplied power and Pc: power consumption. (a) Static design S1 with 94 PUs. (b) Static design S2 with
64 PUs. (c) Rule-based adaptive design. (d) Convex-model-based adaptive design.

Fig. 8. Computation speed comparison between the RB and CMB designs
for MAT. There are three zones, where in the middle zone the CMB designs
are faster than the RB designs and in the left and right zones designs from
both approaches achieve the same speed.

available require high power and thus can only work for
a short period of time. The second static design S2 with
fewer number of PUs for MAT and K -means clustering is
shown in Figs. 7(b) and 9(b), respectively. This design with
lower power requirement can run earlier, longer but slower
than the previous design. These two static designs only work
when the constant power requirement is met. Otherwise, the
SPMD computing system will be idle (Figs. 7 and 9) and only
the ARM processor will be available to provide a certain level
of computation QoS. The ARM processor used has a low com-
puting capability. The results measured for MAT show that the
ARM processor can only perform 0.78 million floating point
operations per second per watt, while the SPMD computing
system with 94 PUs can perform at about 1.1 GFLOPS/W.
Therefore, keeping the SPMD system working as long and as
fast as possible should be the design goal.

Aiming at this goal, the power-adaptive design with clock
gating schemes determined by the rule-based run-time strategy
described in Section III-B for MAT and K -means are shown in
Figs. 7(c) and 9(c), respectively. The SPMD system operation

power range is partitioned into three segments, thus three
working modes in the system are represented as three power
levels in Figs. 7 and 9. For K -means, due to the fact that the
power supply changes more significantly in the afternoon of
day 2, the computing system falls into the idle state several
times, as shown in Fig. 9(c). Compared with the previous
two static designs, this RB design works longer. However,
the discretization results in inefficient usage of the supplied
power, represented by the gaps between the power supply line
and the power consumption line in Figs. 7(c) and 9(c).

The CMB designs for MAT and K -means are shown in
Figs. 7(d) and 9(d), respectively. The energy utilization used
as metric in this paper is actually the area outlined by the
solid line and the x-axis in Figs. 7 and 9. In Figs. 7 and 9,
it is clear that the areas outlined in Figs. 7(d) and 9(d) is
larger than the areas in the other three subfigures (i.e., the
energy utilization efficiency of the CMB design is the highest
under the same power supply). Compared with the static
design S1, the CMB design works in a longer duration in
Figs. 7(a) and 9(a). Compared with the static design S2 in
Figs. 7(b) and 9(b), the CMB design works for a longer
duration and at a higher speed with all PUs running when the
power supply is sufficient. Compared with the RB design, the
CMB design has a smaller gap with the power supply line.

As mentioned before, the power adaptability stems from the
adaptive computing behavior. This can be shown in Fig. 8.
Designs obtained by using the RB and CMB strategies are
shown. Fig. 8 could be divided into three zones. There is not
enough power supply in the left zone, so the computing system
remains idle. Starting from the left edge of the middle zone,
as the power constraint Ps increases, more and more PUs of
the MAT parallel computing structure are switched on and
thus the computation time decreases. In the middle zone, due
to the real-time optimization and the fine control, the CMB
designs are up to 27 times faster than the RM designs. In the
right zone, designs from both strategies are working at the full
speed, and the markers representing both types of design are
overlapped.
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Fig. 9. Power variation of k-means clustering at day 2. Ps : supplied power and Pc : power consumption. (a) Static design S1 with 96 PUs. (b) Static design
S2 with 64 PUs. (c) Rule-based adaptive design. (d) Convex-model-based adaptive design.

Fig. 10. Power variation of Sobel edge detection at day 3. Ps : supplied power and Pc: power consumption. (a) Static design S1 with 143 PUs. (b) Static
design S2 with 74 PUs. (c) Rule-based adaptive design. (d) Convex-model-based adaptive design.

Unlike Figs. 7 and 9, the four designs of Sobel in Fig. 10
have similar power consumption variations. This is partially
due to the fact that the structure of PUs for Sobel edge
detection is simple, which involves only addition/subtraction
and shift, and as a result variations of the system power
consumption are insignificant for most of the clock gating
schemes. Another reason is due to the serious variation of
the power supply.

The energy utilization efficiencies and their comparisons
of all designs in 3 days are summarized in Table II. From
column three to column six, the energy utilization efficiency
of the designs increases, and the CMB design is the highest
(up to 96% and with an average of 85%). Over the five
benchmarks, for MAT, k-means and n-body the CMB design
has the higher efficiency than for Sobel and 1-d correlation due
to the simpler structure of PUs in the Sobel edge detection and
1-d correlation algorithms. Over the 3-day period, the CMB
design has the higher efficiency in day 2, which has several

moderate fluctuations in power supply, and the lower efficiency
in day 3, in which the power supply increases and decreases
drastically as shown in Fig. 9.

Furthermore, as shown in Table II, compared with the
static design with the maximum number of PUs (EEs1), the
CMB design improves the energy utilization efficiency up
to 2.46 times with an average of 1.58 times in five bench-
marks. Compared with the static design with fewer number
of PUs (EEs2), the CMB design improves the efficiency up to
1.55 times with an average of 1.30 times. When comparing
with the RB design, the efficiency improvement of the CMB
design is up to 1.09 times with an average of 1.05 times.
If the RB strategy can enumerate all possible system states,
the strategy will result in designs the same as CMB. This
is only feasible when the number of system states is small.
The Sobel benchmark shown in Table II belongs to this case.
The advantage of using the rule-based adaptive strategy is the
adaptability response time (time for comparing with different
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TABLE II

ENERGY UTILITY EFFICIENCY (EE). EEs1 : STATIC DESIGN s1 OF THE FIVE BENCHMARKS WITH 94, 96, 143, 96, AND 10 PUS, RESPECTIVELY; EEs2 :

STATIC DESIGN s2 OF THE FIVE BENCHMARKS WITH 64, 64, 72, 64, AND 4 PUS, RESPECTIVELY; EErb: RB DESIGN; AND EEcmb: CMB DESIGN

conditions and determining a mode), while the convex model-
based strategy needs to solve a system of equations. If an
adaptive system requires a quick response time, which cannot
be met by the convex model-based strategy, the rule-based
strategy is more promising.

VI. CONCLUSION

Here, we propose a thorough approach for designing and
managing power-adaptive computing systems to provide com-
puting ability for solar-energy-powered embedded systems.
First, the geometric program modeling and optimization tech-
nique are exploited to design a computing unit that con-
tains multiple parallel low speed and individually clock-gated
processing units. Then, a system controller in run time solves
a simplified geometric programming model to decide how
many processing units are clock-gated ON, such that the power
consumption of the computational system does not exceed
the power supplied and the system computation speed is
maximized. Third, to ensure the reliable power adaptation, an
intelligent neural network is trained to estimate the incoming
solar energy. The proposed approach has been evaluated by
applying to five applications on an FPGA-based hardware
platform. In a solar energy harvesting simulation environment,
our power-adaptive designs can improve the harvested energy
utilization efficiency by 2.46 times compared with the static
and the rule-based adaptive designs.

The limitations of this paper and the potential improvements
in the future are the following.

1) The current approach and platform only support the
clock gating technique, which may not be effective
enough for applications with simple arithmetic architec-
ture, like Sobel edge detection algorithm. In the future,
we will consider to integrate other dynamic power
modulation techniques, e.g., power gating and DVFS,
to increase the power dynamic range.

2) The current approach sets a threshold for the energy
buffer to shut down the system when energy buffer
is nearly empty due to energy overestimation. In the
future, we will adjust the estimator using a feedback
based on the estimation error and the buffer resid-
ual, to prolong the working status of the computing
system.

3) The current approach focuses on improving utilization
of harvested energy in the computing system. In the
future, we will investigate how the efficiency of the other
components of the energy harvesting system is related to
the energy usage, and will try to improve the efficiency
of the whole system while maintaining QoS.
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