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SUMMARY

The development of applications for high-performance embedded systems is a long and error-prone process
because in addition to the required functionality, developers must consider various and often conflicting
nonfunctional requirements such as performance and/or energy efficiency. The complexity of this process
is further exacerbated by the multitude of target architectures and mapping tools. This article describes
LARA, an aspect-oriented programming language that allows programmers to convey domain-specific
knowledge and nonfunctional requirements to a toolchain composed of source-to-source transformers, com-
piler optimizers, and mapping/synthesis tools. LARA is sufficiently flexible to target different tools and host
languages while also allowing the specification of compilation strategies to enable efficient generation of
software code and hardware cores (using hardware description languages) for hybrid target architectures
– a unique feature to the best of our knowledge not found in any other aspect-oriented programming
language. A key feature of LARA is its ability to deal with different models of join points, actions, and
attributes. In this article, we describe the LARA approach and evaluate its impact on code instrumentation
and analysis and on selecting critical code sections to be migrated to hardware accelerators for two embedded
applications from industry. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development and mapping of applications to contemporary heterogeneous and possibly
multicore, high-performance embedded systems require tools with very sophisticated design flows.
Developers must be aware of critical applications requirements, both functional and nonfunctional
(e.g., real-time performance and safety) while meeting their target architecture’s stringent resource
constraints (e.g., storage capacity and computing capabilities). This development and mapping pro-
cess must consider a myriad of design choices. Typically, developers must analyze the application
code (or another form of functional specification) and partition it among the most suitable system
components through a process commonly known as hardware/software partitioning [1]. Subse-
quently, they have to deal with multiple compilation tools that target each specific system
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component. These problems are exacerbated when dealing with field-programmable gate arrays
(FPGAs), a popular hardware technology for fast prototyping that combines the performance of
custom hardware with the flexibility of software [1, 2]. As a consequence, developers must explore
code and mapping transformations specific to each architecture so that the resulting solutions meet
overall requirements. As the complexity of emerging heterogeneous embedded systems continues
to increase, the need to meet increasingly challenging implementation trade-offs (e.g., energy effi-
ciency and performance) will undoubtedly increase the complexity of mapping sophisticated appli-
cations to these embedded systems. Another issue contributing to development complexity lies in
the existence of different product lines for the same application, a characteristic increasingly present
given the need to support multiple target platforms.
One of the key stages of the mapping process is to profile the code for the purpose of

understanding its performance behavior, which is commonly achieved by extensive code
instrumentation and monitoring. Code instrumentation is becoming increasingly important in
the context of profiling and monitoring to support: the analysis of application behavior, the
identification of regions for parallelization and/or mapping to accelerators, and the assessment
of the impact of specific optimizations and design decisions (e.g., Refs. [3–5]). Approaches
providing flexible and programmable mechanisms for extracting runtime information are of
paramount importance given the increasing role of customization. The current de facto standard
practices for the development of applications targeting high-performance embedded systems relies
extensively on architecture-specific source code transformations and/or on the use of tool-specific
compilation directives. Such practices lead to low developer productivity and to limited applica-
tion portability, as when the underlying architecture changes developers invariably need to restart
the design process.
To address these challenges, we designed the approach inspired by aspect-oriented programming

(AOP) [6, 7], conceptually illustrated in Figure 1. An important element of this approach is LARA,
an AOP language (a first version was introduced in Ref. [8]) to support developers in mapping their

Figure 1. Overview of the LARA approach.
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applications to embedded systems (including heterogeneous high-performance systems) across var-
ious design stages including code analysis, monitoring, mapping decisions, and hardware/software
compiler optimizations. In addition to supporting traditional AOP mechanisms, our approach fo-
cuses on mechanisms that address nonfunctional requirements (NFRs), including crosscutting con-
cerns exposed by various design elements, such as the application source code, the tools used in the
design flow, and the target platforms.
LARA allows developers to capture application NFRs in a structured way, leveraging high/low-

level actions and flexible toolchain interfaces. Developers can thus benefit from retaining the
original application source code while also leveraging the benefits of an automatic approach for
various domain-specific and target component-specific compilation/synthesis tools. Specifically,
LARA has been designed to help developers reach efficient implementations with low programming
effort. In essence, LARA uses AOP mechanisms to offer in a unified framework: (i) a vehicle for
conveying application-specific requirements that cannot otherwise be specified in the original
programming language; (ii) the use of requirements to guide transformations and mapping choices,
thus facilitating design space exploration (DSE); and (iii) an extensible interface for the various
compilation/synthesis components of the toolchain.
As illustrated in Figure 1, LARA aspects are used to describe concerns (possibly crosscutting) using

different abstraction levels, from the specification of the concerns to strategies based on actions to im-
plement those concerns. This allows a unified view of concerns and the use of the same language
(avoiding the need to learn more than one language) over different specific concretizations and design
flow levels. Figure 1 also illustrates the different levels of abstraction using a specific crosscutting con-
cern: ‘maximize performance on platform X’. This concern is specified and applied as LARA strategies.
These LARA strategies may consist of monitoring, mapping and guiding, specializing, andDSE actions.
The actions are then applied in a weaving stage that can be at the source-to-source level, at the compiler
optimizations level, and/or at the DSE level. The work described here focuses on the use of concerns
and strategies implemented using a source-to-source weaving approach as depicted in Figure 1.
This article makes the following specific contributions:

• Describes the syntax and the semantics of LARA, an AOP language capable of capturing trans-
versal (across multiple modules and/or applications) and vertical concerns (across different
stages of a design flow).

• Describes the LARA join point model and the flexible and extensible join point metaproperty at-
tributes, which allow LARA strategies to use information from application profiling and analysis.

• Evaluates the LARA approach through the use of complex applications and considering a number
of concerns with significant importance in the context of developing embedded applications.

• Presents experimental results of the use of LARA for a set of real-life applications targeting a
heterogeneous embedded architecture mainly consisting of a general-purpose processor (GPP)
and a reconfigurable coprocessor.

This article describes the research and development of LARA mainly in the context of the
REFLECT research project [9]. The selected case study and associated requirements were provided
by an industrial partner of the REFLECT consortium.
This article is organized as follows. Section 2 describes the main motivation and the rationale for

the work presented in this paper. Section 3 provides an overview of our aspect-oriented approach
and design flow. Section 4 focuses on the LARA language with a number of illustrative examples.
Section 5 shows the practical impact of our approach with a number of benchmarks and with indus-
trial applications. In Section 6, we present the use of our approach in the context of two real-life
industrial applications targeting an embedded computing system consisting of a GPP and a custom-
izable coprocessor. In Section 7, we describe related work and conclude in Section 8.

2. MOTIVATION

The development of high-performance embedded applications is a notoriously complex process as
developers need to master various design tasks, toolchains, and target architecture details. The com-
plexity rises as embedded systems typically consist of a myriad of architectures with various
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heterogeneous components, which requires a development process that takes into account
hardware/software partitioning and mapping. In addition, the complexity of mapping applications
expressed in high-level imperative programming languages to heterogeneous reconfigurable com-
puting architectures (as is the case of FPGA-based architectures) is further exacerbated by the vari-
ety of mapping tools and computing paradigms these architectures expose. Typical design flows
include tools that provide distinct interfaces and are controlled by a wide range of parameters, thus
creating a large and complex design space with distinct controlling features.

2.1. Requirements

Developers have to deal with a set of strict NFRs and face a number of tasks, which include carry-
ing out a detailed performance analysis study for selecting the set of computational kernels that can
benefit from source-level code transformations and/or hardware acceleration. NFRs may include
performance, power/energy restrictions, real-time constraints, reliability, safety, computer architec-
ture, and device restrictions. The best solution for specific requirements, such as input data rates,
may simply not be feasible considering other requirements, such as the ones imposed by constraints
such as size or power. Strict NFRs, such as reliability, safety, performance, and energy consump-
tion, are usually not supported by existing tools or cannot be easily expressed using current pro-
gramming languages.
As an example, let us consider mapping a C implementation of an MPEG-2 audio encoder

(layers I and II) to an embedded system consisting of a GPP coupled to reconfigurable hardware
on which we map custom accelerators for executing critical sections of the application. In this con-
text, Table I presents a list of concerns identified by our industry partner. These concerns span the
application development cycle from the analysis phase (with the use of instrumentation to monitor
specific properties) to the mapping to the target architecture. More specifically, the different stages
of a development cycle typically include monitoring, fine-tune optimizations, hardware/software
partitioning, and synthesis/compilation. Most of these concerns are crosscutting and are common
to other applications.

2.2. Challenges to address requirements

The development process for embedded systems usually includes the following tasks: instrumenta-
tion of the source code for monitoring and custom execution profiling; code transformations and

Table I. Examples of concerns applied to an MPEG audio encoder application source code.

Type of aspects Examples

Monitoring
(C code insertion)

Monitor range of the variables z and m in function fsubband for word length
optimization

After word length optimization, monitor variables s and y to validate deviations
from their original values

Replicate the fsubband function body with different word lengths to do
deviation analysis internally

Specializing Variables defined as ‘double’ (in functions add_sub, fsubband, and II_f_f_t)
should be analyzed by the word length analysis tool to optimize their sizes

Convert ‘double’ to ‘float’ data types in function II_f_f_t and monitor the
possible deviations introduced

Mapping and guiding Map functions add_sub, fsubband, and II_f_f_t to the hardware accelerator
Define specific hardware mapping strategies for add_sub, fsubband, and
II_f_f_t functions

FIFOs, as well as hardware cores for audio I/O, are key hardware blocks in any
audio system. In a specialized version, these hardware blocks need to interface
with the read_samples function. Generate from the unmodified original code a
code version interfacing to these hardware blocks

Bind the functions pow and log10 in the II_f_f_t and add_db functions to hardware
Map arrays in functions fsubband and II_f_f_t to external memories
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optimizations regarding, for example, performance; hardware/software partitioning; and explora-
tion of various design alternatives. In most cases, these tasks are performed with independent tools
and approaches, without an integrated view. For instance, the results of the profiling are manually
used to identify critical functions. Furthermore, the application source code is usually instrumented
to expose information that can be used in various stages of the design flow, to help analyze and
identify critical sections, data dependences, and specialization opportunities in support of optimiza-
tion goals that include performance, resource utilization, energy consumption, and safety.
In order to satisfy NFRs, one may need to apply a set of strategies, possibly taking into account

best practices. These strategies usually imply a sequence of tasks, such as a set of compiler optimi-
zations and code transformations, the use of specific fault-tolerance schemes, and customizing the
execution of the toolchain. Therefore, we consider important to have an approach that allows
developers to express such strategies in a systematic way, supported by tools that can apply them
automatically, and providing a single and unified view of the entire strategy. In particular, this
unified view should cover all stages of the design flow, including profiling and mapping.

2.3. Using aspects to address requirements and challenges

The rationale for the choice of an AOP approach is backed up by the wide experiences of using
LARA aspects for software/hardware transformations [9], which have revealed the benefits of
AOP in application code development, including program portability across architectures and tools,
and productivity improvement for developers. Next, we describe how our aspect-oriented approach
can address these concerns by providing an example of how LARA can enhance the development
process.
We express the concerns as LARA aspects and use our weaving tools to automatically apply

these aspects to the application source code of an MPEG encoder. In a first stage, we identify the
critical functions corresponding to possible performance bottlenecks by profiling the application
on a PC environment. Using LARA aspects and our tools, we then automatically instrument these
critical functions to generate dynamic call graphs to uncover different runtime scenarios, taking into
account the two layers and two psychoacoustic models used by the encoder, and associated special-
ization code. In a second stage, we use LARA aspects to instrument the code to monitor the appli-
cation using API calls to hardware timers. Figure 2 illustrates a LARA aspect responsible for
inserting API calls to hardware timers to measure the number of clock cycles of each call in a func-
tion. In our example, we wish to instrument only functions that contribute more than 10% of the
overall execution time of the application. To determine the share of execution time of each function,
this aspect requires the application to be first profiled (e.g., using GNU gprof) and the profiling re-
sults to be subsequently translated to a LARA format so that they can be used by the timing aspect
presented in Figure 2. The instruction call profiling_module is responsible for loading the profiling
results. Once the profiling results are loaded (via the import statement), they become available

Figure 2. LARA aspect for timing function calls contributing with more than 10% of the execution time
(using previously provided information).
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through the use of attributes associated to join points of type function and call. The condition in-
struction restricts the instrumentation to functions with a share of execution time larger than 10%
($call.time >10), which, as previously stated, is the result of profiling the code and translating
the profiling results to a LARA report format. The instrumentation code, defined in the apply
section, inserts the required header files, the declaration of the start and end time_t variables, the
code to sample the time before and after the function call, and the code to report the measurements.
These code elements are added at different source code points as specified by the LARA aspect.
In a subsequent stage, additional code is automatically inserted using another aspect to acquire

the following: (i) runtime information about data exchanged between noncritical and critical func-
tions and (ii) the number of iterations of the loops in these critical functions. When targeting an em-
bedded system with a GPP coupled to hardware accelerators, one can explore the following two
mapping scenarios: (i) mapping the entire code to the GPP leveraging software compiler optimiza-
tions or (ii) generating an application-specific architecture derived from partitioning the application
between the GPP and reconfigurable hardware resources. Each of these mapping scenarios may re-
quire different strategies in terms of how the computation is partitioned between target components
(e.g., GPP vs. reconfigurable hardware) and consequently how data are organized. Furthermore,
once data and computations have been partitioned, data communication between the components
and their subsequent synchronization need to be considered and included in the mapped code.
Once data partitioning and mapping are defined, the computations may still be subject to further

transformations. For instance, they can be subject to a wide variety of transformations offered by
software/hardware compilers [10], including loop-based transformations (e.g., loop unrolling
and/or software pipelining), data type conversions (double to float or double/float to fixed point),
and even array to memory mapping and caching in local memories. With respect to computations
mapped to reconfigurable hardware accelerators, there is a wider range of compilation and synthesis
options that can be exercised that further increase the complexity of this mapping process. For exam-
ple, local arrays can be mapped to the distributed memories available in the reconfigurable hardware
device. Loop transformations can then be used to expose concurrent accesses to arrays. To achieve
this mapping result, a developer may define a strategy to combine loop transformations such as
unroll-and-jam followed by a specific mapping of array variables to internal storage resources [2].
In addition, although not discussed in this article, our compilation and synthesis approach also

supports DSE strategies [11].

3. THE LARA ASPECT-ORIENTED PROGRAMMING APPROACH

In AOP, crosscutting concerns are expressed as aspects and are merged, or woven, with tradition-
ally encapsulated functionality [6, 7]. The main concept of aspects can be described as: ‘In program
P, whenever condition C arises, perform action A’ [12]. Associated with AOP are the notions of
pointcut, join point, and advice [6, 7]. A pointcut designator exposes join points, which are points
in the program execution. The areas in program text where join points may originate (statically or
dynamically) are named as join point shadows [13]. An advice defines the actions to be performed
for each join point exposed by the pointcut designator. Pointcuts can match join points dynamically
at runtime or statically at compile time.
In AOP, a join point model defines the artifacts source of join points for a given programming

language. A typical join point model includes function calls and read/write operations on variables.
Our approach considers a join point model that captures most constructs (e.g., loops, conditionals,
scalars, and accesses to arrays) found in C in order to support actions that target such code artifacts.
LARA includes a join point model with both syntactic (structural) and semantic join points.
An important concept of AOP is the notion of weaving. With LARA, the weaving process

combines, in an automated fashion, functional and nonfunctional concerns leading to the desired
implementation. There are several benefits to the weaving process as pursued by the LARA-guided
design flows:

• It allows nonfunctional concerns to be developed and maintained independently from the
original application source code. This decoupling promotes a clean separation between the
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algorithmic specification and nonfunctional descriptions leading to a cleaner and thus easier to
maintain source code base (Figure 3(a)).

• LARA aspects can specify strategies that capture a set of transformation steps to achieve dif-
ferent NFRs thus leading to potentially distinct implementations. Aspects can be applied and
updated on the basis of different types of requirements without directly affecting the original
source code. This feature substantially improves overall portability and application code main-
tainability (Figure 3(b));

• Aspects can be developed independently from application source code and therefore reused
in the context of multiple applications. This reuse of aspects allows nonexpert developers to
exploit specialized transformations and strategies geared toward specific target architectures,
thus substantially promoting productivity and portability across similar target architectures
(Figure 3(c));

• The ability to specify generic and parameterizable aspects in LARA is particularly useful for
describing hardware-based and software-based transformation patterns and templates, thus fa-
cilitating DSE (Figure 3(d)). Examples of aspect parameters include application-specific and
domain-specific information.

The LARA approach supports a generalized weaving process in which actions are tied to the
program code base, to its intermediate representations or to the target system architecture. Another
key innovation of our approach lies in bringing together, in the same framework, various types of
transformations and operational aspects in the mapping of computations to embedded systems.
Specifically, LARA allows developers to specify, in a broad sense, different types of concerns.
Those concerns are mainly addressed by the following concepts:

• Monitoring: specification of monitoring features, such as current value of a variable or the
number of items written to a specific data structure, providing insight for the refinement of
other aspects.

Figure 3. The LARA aspect-oriented programming approach: (a) weaving process decoupling function and
nonfunctional specifications; (b) multitarget design; (c) aspect reuse; and (d) aspect parameterization for

design space exploration.
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• Specializing: definition of specific properties for a particular input code when targeting a spe-
cific system (e.g., specializing data types, numeric precision, and input/output data rates).

• Mapping and Guiding: specification of mapping and compiler optimization strategies,
which embody mapping actions to guide tools to perform specific implementation decisions
(e.g., mapping arrays to specific memories and applying loop unrolling to loops meeting cer-
tain conditions).

LARA aspects are processed by a LARA front-end component (depicted in Figure 4(a)), which
converts a LARA aspect file into an executable specification in XML called the Aspect-IR. The
front-end requires three specification files: (i) the join point model representing the points of interest
in the input programming language; (ii) the join point attributes defining properties associated with
each join point type‡; and (iii) the action model describing each possible action that an aspect can
perform on a join point. We describe each of these models next.

3.1. Join point model

The program elements exposed to the weaving process are specified in the join point model. The
join point model specification describes join point types and their hierarchy and can be used to val-
idate pointcut expressions (also known as pointcut descriptors and as pointcut designators). Rather
than hardcoding types in the LARA grammar, this approach allows the model to be easily updated
and expanded to other target programming languages, tools, and platforms. Also, by accepting a
join point model file externally to the front-end, it is possible to reuse the LARA front-end for other
programming languages (e.g., Ref. [15]) and with different system components and architectures.
Figure 4(b) and Table II show an excerpt of the join point model currently used for C programs.
As an example, the join point loop has as its predecessor the body of a function, followed by the
file it belongs to, and as its successor init, condition, counter, and body elements.

‡Some of the join point attributes supported can be seen as metaproperty attributes, and aspects using those attributes can
be seen as metaproperty aspects in a similar way of the concepts presented in Ref. [14].

Figure 4. (a) LARA front-end and its input models: (b) excerpt of the join point model definition for C
programs and (c) excerpt of the attribute model.
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The join point model considered by the LARA language includes both syntactic (structural) and
semantic (behavioral) join points, that is, pointcuts that can consider not only program structures
but also behavior. Syntactic join points refer to points of the code (or of the execution flow of the
program) where the selection is only based on the program syntax, for example, loops, nested loops,
and functions. Semantic join points are related to elements of the program where the selection is
based on their meaning. A scalar variable of type int, an array variable, are examples of semantic join
points. Possible join points related to behavior only known at runtime need to be explicitly translated
to code responsible to verify the behavior at runtime. For example, a selection of a variable when it
has the value 4 might be only resolved at runtime and specific verification code needs to be included
in the aspect (i.e., the current LARA weaver does not generate the code needed to verify at runtime
this behavior). LARA is, however, sufficiently modular and powerful to allow developers to specify
native aspect code to verify complex behavior of the application on the selected join points.
The join point attributes, described in the following section, are the artifacts that can be used to

define pointcut expressions considering static and/or semantic join points.

3.2. Join point attributes

The attribute model used by LARA contributes to a powerful selection and expressive mechanism
as attributes can supply LARA aspects with system properties, and results from profiling, compiler
analysis, or estimation tools, among others. Attributes expose information of each join point,
which can be obtained by the weavers and/or can influence the use of actions as part of a strategy.
Figure 4(c) illustrates examples of attributes associated with join points supported by our current
join point model. For example, the join point type var has properties including its name, data type,
and kind (e.g., array and scalar). Another example is the information we can obtain about a loop.
For example, with the number of loop iterations, an aspect can decide whether to perform loop

Table II. Some join points and some of the possible attributes.

Join point Attribute Description Examples

sym name Name of the variable ‘x’
type Type of the variable ‘int []’
scope Whether it is global, parameter or local ‘local’
num_reads Number of times the symbol is accessed 10
num_writes Number of times the symbol is defined 15
decl Returns the join point statement that declared the symbol <join point decl.>
is_pointer/is_array Whether the symbol is declared as a pointer or an array False/true
array_dim Number of array dimensions (0 if it is scalar) 2
shape Returns a string with the size of each dimension if known ‘[2] [14]’

var name Name of the variable ‘x’
type Type of the variable ‘int’
is_array/is_pointer Whether the variable is declared as an array or a pointer False/true
is_in/is_out Whether the variable is being used or defined True/false
value Value of the variable (if known at compile time) 10
iswrite/isread Whether is a write or a read to a var False/true
sym Returns the join point symbol associated to the variable <join point sym>

loop type Whether the loop is for, while, or do-while ‘for’
num_iterations Number of loop iterations (�1 if unknown) 15
is_innermost Whether the loop is innermost in a loop nest False/true
is_outermost Whether the loop is outermost in a loop nest False/true
increment_value Increment step in each for-loop iteration 1
nested_level Returns the level in a loop nest 2
rank Returns the nested levels of the loop and its ancestors ‘1 : 2’

call name Name of the function invoked ‘sqrt’
is_pointer Whether it is invoked through a function pointer False/true
num_args Number of arguments 3
type Function return type int
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unrolling. On the other hand, with is_innermost, is_outermost, nested level, and rank attributes, an
aspect can identify and select specific loops.
In the current implementation of LARA weavers, attribute values are acquired at compile time or

using previously generated reports. These values can be used to filter join points (e.g., a for-type loop
is defined as a join point loop with attribute type with value ‘for’) in conditions that trigger the use
of a certain aspect action and also as arguments for the apply sections of an aspect. Join point
attributes also provide a mechanism for exchanging information between tools in a design flow. For
instance, the report data output from gprof is translated to LARA aspects by defining the values of join
point attributes.
As with the join point model, the attributes specification file allows the aspect language to be up-

dated and expanded more easily.

3.3. Action model

The action model specifies all actions that can be applied to join points. The most representative
types of actions are the following:

• Insert: allows arbitrary code to be inserted before, around, or after a specific join point. This
action is mainly used for instrumenting, monitoring, and adding functionalities if needed.

• Define: allows attributes to be modified.
• Optimize: allows a number of compiler transformations and optimizations (e.g., loop unrolling,
function inlining/outlining, scalar replacement, and loop fusion) to be performed on a specific
set of join points.

The action model is specific to a design flow and makes the LARA front-end aware of the
actions, tools, and arguments possible to be used. The action model for each compiler optimization
defines the name of the compiler engine and the possible parameters such as loopunroll (with unroll
factor) or tiling (with size of the block). In summary, by having a join point model, join point
attributes, and an action model independent of the LARA front-end, we improve flexibility and
adaptability of different programming languages, target systems, and compilation/design flows.

3.4. LARA examples

In this section, we present two practical examples of LARA aspects: counting loop iterations and
timing applications.

3.4.1. Counting loop iterations. Determining the number of iterations of a loop at runtime is a key
metric for the applicability of specific loop transformations. Figure 5(a) illustrates an aspect, which

Figure 5. Adding loop count monitoring for every innermost loop in the application: (a) LARA aspect and
(b) excerpt of a woven code (inserted code is highlighted).
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instruments every innermost loop using two pointcut expressions. The first pointcut expression is
used to insert the required #include statement, and the second pointcut selects the entry for each in-
nermost loop, in which the statement to dynamically acquire the number of iterations is inserted.
The loop uid attribute returns a unique identifier for every join point and in this case is used to iden-
tify each selected loop and to assign a unique location that stores the number of iterations (C code
not shown and present in the function profile_ count). An example of the code after weaving is
shown in Figure 5(b).

3.4.2. Timing applications. Developers often need to time their applications, which usually requires
instrumenting the original application source code. One can describe this concern using LARA in a
way that the aspect can be reused with other applications, while also reducing code pollution in the
original source. Figure 6(a) illustrates an aspect that instruments the main function and adds the nec-
essary code to time the functions of the application including loops (Figure 6(b)). It contains four
pointcut expressions. The first selects the first statement of every file to insert the required include state-
ment. The second, Entry, and the third, Exit, select the first and the return statements found in the func-
tions, respectively. We join these two pointcut expressions to access these join points in one apply
section and insert the required code to start and end the timer measurements for each function. The last
pointcut selects the last statement executed before the return from the main function to insert invoca-
tions to the profile_timer_report function responsible for reporting the results.
As the LARA approach allows users to specify their own instrumentation strategy, users can deal

with the possible instrumentation overhead by specifying strategies that instrument only specific
parts of the application source code. For instance, when instrumenting loop nests, each loop in a
nest can be instrumented and thus timed separately while still allowing for aggregated measure-
ments a posteriori. Furthermore, one can measure the instrumentation overhead and subtract it from
the timing measurements. These instrumentation schemes can be easily described in LARA, and
their effectiveness depend on the profiling support given by the tools, operating system, and by
the target architecture.

Figure 6. Timing functions of the applications with loops: (a) aspect that instruments the code and (b) code
of the application after weaving (inserted code is highlighted).
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4. LARA LANGUAGE DESCRIPTION

In this section, we briefly present the LARA language (described in detail in Ref. [16]). LARA bor-
rows syntactic and semantic elements from the JavaScript programming language [17]. In particu-
lar, many of the programming constructs used in LARA comply with the standardized ECMAScript
scripting language (ECMA-262 specification and ISO/IEC 16262) [18]. Examples include arrays;
loop constructs, that is, for, while and do..while; and conditional constructs, that is, if and switch.
In order to address concerns (e.g., NFRs), developers can specify strategies defined by one or

more LARA aspects. Such aspects describe a sequence of weaving actions using an elaborated con-
trol flow execution. In order to support strategy composition, we include a mechanism that allows
aspects to be invoked within other aspects. This mechanism is implemented by the call instruction
(see Figure 2 for an example). The following sections describe the main structure of a LARA file
and the principal components of the LARA aspects (Figure 7(a)).

4.1. Aspect definition

A LARA aspect file is composed by three main sections: import declarations, definitions of aspect
modules, and code definitions. The import declaration section is optional and allows references to
external aspects. The section with aspect definitions, on the other hand, contains the specification
of each aspect. Finally, the code definition section, also optional, includes code, possibly with pa-
rameterized features, to be injected into the application source code.
An aspect definition (as depicted in Figure 7) is declared using the aspectdef keyword. Here, de-

velopers can define pointcut expressions and also the actions to take place over the selected join
points. In LARA, an aspect definition consists of three dependent weaving sections: select, apply,
and condition. For instance, the apply section can be associated with one or more pointcut expres-
sions (selects). A condition instruction can be used to enable/disable apply executions, that is, ac-
tions over a join point. In general, there can exist various apply sections to the same select and
apply sections associated with more than one select section.
Each aspect definition begins with the declaration of input and output parameters. These param-

eters are used to pass values to aspects and to return values from aspects, respectively. Each aspect
has four additional optional sections for: declaring variables, declaring functions, code to initiate the

Figure 7. (a) The sections of a LARA aspect and (b) an example of aspect invocations.
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execution (initialize), and code to terminate the execution (finalize) of the aspect. Each aspect has a
number of default attributes that store information about the execution of an aspect and include:
numapplies (number of times the apply sections have been executed) and changed (if there were
changes to the input program produced by actions, possibly only reflected in its intermediate
representation).
Figure 8 depicts an aspect that inserts a printf statement immediately before each function call.

To capture the intended join points a select statement is used. The select statement can be identi-
fied by a label (in our example, allFunctionCalls) and includes a pointcut expression that defines
the join points to be captured. The pointcut expression represents a path (join point chain) in the
join point model (Figure 4(b)), and it is validated by the front-end using the join point model
specification. Pointcut expressions do not need to be specified using the complete paths as
reflected in the join point hierarchy, as the front-end computes the entire path using the join point
model specification as a reference. Also, the pointcut expression can use join point attributes to
filter the selection.
One type of action associated with a pointcut expression is code insertion (see insert statement at

line 4 in Figure 8) with the option to use values of join point attributes. As shown in the example in
Figure 8, the code section between tags %{ and }% in line 4 allows the use of parameters (between
[[ and ]]) that are replaced by the weaver with the corresponding values. Code insertions can be
carried out before, after, or around the join point. Target code can be placed between tags %{
and }% after the insert command, as depicted in Figure 8, or in a separated LARA section called
codedef. The LARA front-end does not take actions over the code by itself, and therefore, the inser-
tion action is passed to the weaver.
Other supported actions include compiler transformations and optimizations, such as loop

unrolling and function inlining. The loopunroll action triggers the unrolling of selected loops using
a factor number specified by the developer. The inline action inserts the body of the function to
inline on the location of the function call.
In addition to setting the values of join point attributes without directly affecting the representa-

tion of a program, our current action model also includes the define action (def keyword). This ac-
tion leads, whenever possible, to modifications of the program representation (e.g., defining the data
type of a variable).
To control the scope of apply statements, developers can use conditions. Conditions can be

regarded as logical expressions that support pointcut expressions to refine the join points they ad-
dress and define the triggering conditions for actions specified in an apply statement. Join point at-
tributes can also be used to build condition expressions. Examples of actions dependent on specific
conditions are the following: (i) apply loop unrolling only if the loop is of type for and has at most
eight iterations; (ii) insert code before a function call if it returns a float; and (iii) inline a function if
it does not contain loops. LARA also allows the use of conditional statements (if, if-else, and switch
statements) in the code of apply sections, and they can be also used to limit the actions over selected
join points.

4.2. Join point chains

In LARA, pointcut expressions reflect the hierarchy defined in the join point model (Figure 4(b)). For
instance, in Figure 9, the pointcut expression has four elements connected in a chain: the file
captures all files with names starting with grid, the function includes all functions enclosed in

Figure 8. Example of a simple LARA aspect code that performs instrumentation.
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those files, the body reflects the code of those functions, and the loop captures for-type loops
in those functions. This hierarchical mechanism has similarities to the within/withincode used
in AspectJ [19, 20], but in this case, we are able to address other program elements besides
fields and methods of classes.
To access the join points resulting from the evaluation of a pointcut expression, we use the $ op-

erator with the pointcut element identifier. In the example in Figure 9, $file, $function, $body, and
$loop refer to chained join points. We can use these join points and their attributes as part of an ac-
tion or a condition. Join point identifiers enable access to join point attributes, for example, given
the pointcut expression file.function.loop, $file.name refers to the name of the file where a particular
$loop join point can be found.
An action can also target any element associated with a join point chain. By default, actions are

performed on the last join point in the chain specified by the pointcut expression. However, LARA
allows the specification of actions (e.g., insert) using the identification of other join points in the
chain. In the following example, the first action inserts code after the $loop join point (the last join
point in the chain), whereas the second action inserts code before the $body join point.

4.3. Composite pointcut expressions

Multiple pointcut expressions can be composed using logical and other special operations. For in-
stance, they can be joined and associated with a single apply allowing access to multiple branches
in the join point hierarchy at once, thus reducing the size of the aspect definition. In particular, LARA
supports the ‘::’ operator which, when used in an apply definition, joins the results of two pointcut
expressions. In particular, the ‘::’ operator performs the natural join of two select statements. A nat-
ural join performs a set of combinations of two join point chains that are equal to their common point
element identifiers. In the example of Figure 10, the first pointcut expression (A) refers to all loops in
function f1, and the second pointcut expression (B) refers to the first statement of the functions. The
use of :: allows to apply actions and access attributes on join points that are found in different
hierarchical branches ($loop and $first in this example) of the join point model. As another example,
Figure 2 presents an aspect using the natural join operator applied to three pointcut expressions.

Figure 9. The evaluation of pointcut expression results in a table, where each row captures a chain of related
join points, whose attributes can be used in actions and conditions.

Figure 10. Example of a pointcut expression using the natural join operator ‘::’.
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4.4. Control flow pointcuts

Pointcuts describing control flow can be important to apply actions when the program execution
reaches specific execution points such as ones exposing sequences of function calls. Control
flow information is usually required for various concerns, such as debugging, testing, mainte-
nance, and program comprehension. LARA does not provide native support for pointcut
expressions/designators specifying interprocedural control flow. Instead, control flow is sup-
ported in LARA through the explicit use of code instrumentation. For example, a LARA imple-
mentation of the AspectJ cflow and cflowbelow [19, 20] includes the explicit inclusion of code
necessary to maintain a stack on function calls. This can be transparent to the developer using the
modularity provided by LARA. For instance, the pointcut designator (and (pcalls f) (pwithin g)
(cflow (pcalls h))) given at Ref. [21] ‘indicates that the piece of advice to which this pointcut desig-
nator is attached is to be executed at every call to procedure f from within the text of procedure g, but
only when that call occurs dynamically within a call to procedure h’. Below is a possible LARA im-
plementation that calls an aspect that instruments the code with the required call stack functionality,
including the use of stackContains("h"), a function provided by the InsertCallStack aspect.

4.5. Exposing program variables

As part of LARA’s join point model geared towards the C language, program variables can be
accessed in two ways: from the program scope (commonly associated to a symbol table) and as part
of the source code. Most programming languages provide the notion of scope that defines the life-
time of a programming variable.
To access variables that are visible from a particular code block, we use the pointcut element sym.

For instance, to select all symbols available to the function, we use the following select statement:
select function.body.sym end. In this example, the join points associated to sym expose all symbols
that are visible to the top-level function scope, including those available in the global scope and
function parameters. Rather than referencing specific locations of the source code, these join points
expose elements from symbol tables. In contrast, variables can be a part of an expression inside
code statements. We can select these variables using the var pointcut element. For instance, the fol-
lowing select statement finds all variables ‘x’ found in a function: select function.var{name=="x"}
end. In this case, multiple var join points corresponding to the same variable can be exposed as a
result of a select statement to select different parts of the code. Table II includes some of the attri-
butes supported by the sym and var join points.
As an example, consider the following aspect that monitors the ranges of single-precision

floating-point variables in the application. This aspect finds all writes to floating-point scalar var-
iables. For each of these writes, the aspect instruments the code with a monitoring function,
prof_range_float, which considers the new value written. Hence, during execution the range
values (min and max) of each variable are acquired. This simple strategy can be useful, for ex-
ample, for further hardware design optimizations by customizing the word lengths of variables
and expressions.
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4.6. Exposing program loops

In LARA’s current join point model, all types of loops are captured by the loop pointcut element.
This includes for, while, and do-while loops (identified by the type attribute). Loop join points sup-
port a number of specific attributes (Figure 4(b) and (c) and Table II) such as the nested_level and
the rank, which can be used to select loops in loop nests in different ways as shown by the pointcut
expression examples presented in Table III. In general, chained join points include not only the link
between parent and immediate children but also all combinations between parent and descendants
in the nested program structure. Using attributes such as nested_level, one can filter unwanted
combinations.
Loop join points can also link to their program structures that depend on the type of loop. In the

pointcut chains, loops can link to body, condition, initiation, and counter. These join points are
useful to access loop structures.

4.7. Exposing program conditionals

Branches can be selected using the if pointcut element that locates if statements in the appli-
cation source code. In a select statement, the if pointcut element can be chained with the
following pointcut elements: cond returns an expression corresponding to the if condition,
then returns the block of code corresponding to the true branch, else returns the block of code
corresponding to the false branch, and body returns both true and false branches.
The following LARA aspect shows how one can monitor branch frequencies. The aspect instru-

ments all if statements by inserting a function call (profile_branchfreq) at the beginning of each
branch (true and false) to monitor the number of times a branch is executed. The arguments of this
monitoring function are as follows: (i) an identifier of the branch; (ii) an identifier of the (parent)
conditional statement; and (iii) a label that describes the branch. To identify the branch and the con-
ditional statements, we use the corresponding uid attribute that returns a unique number identifying
the program element. The label identifying the branch is obtained with the branch_cond attribute
that returns the C condition associated with that branch. Branch frequency monitoring may help

Table III. Examples of pointcut expressions for loops.

Code example Pointcut expression Chain selection Description

Select loop end A, B, C ,D Select all loops
Select ($l1 = loop).
($l2 = loop) end

A→B, A→C, A→D
B→C, B→D, C→D

All combinations of two
loops in a loop nest.
Note: A→B corresponds
to $l1 =A and $l2 =B

Select ($l1 = loop).
($l2 = loop).($l3 = loop)
end

A→B→C, A→B→D,
A→C→D, B→C→D

All combinations of three
loops in a loop nest

Select loop
{nested_level==1}
end

B Only one loop in the loop
nest satisfies this condition

Select ($l1 = loop)
{nested_level! = 0}.
($l2 = loop) end

B→C, B→D, C→D All combinations of two
loops that does not include
the outermost loop

Select loop end A, B, C, D Select all loops
Select loop{rank == 2}
end

D Second top-level loop

Select loop
{rank == 1.1} end

B First loop in the second
level of the first nested
loop structure

Select loop{rank == 1.2}
end

C Second loop in the second
level of the first nested
loop structure

266 J. M. P. CARDOSO ET AL.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:251–287
DOI: 10.1002/spe



developers and tools to determine the branches more biased and that could benefit, for example,
from more hardware resources and optimizations.

4.8. Exposing program function calls

Function invocations or calls can be selected using the call pointcut element. This pointcut element is
usually chained with the args pointcut element, which returns all argument expressions associated with
the function invocation. Examples of attributes associated to call join points are listed in Table II.
The following aspect segment reports the execution time of all non-system function calls that are

not invoked via pointers. The strategy includes instrumenting each candidate function call before
and after to compute the elapsed time. Such monitoring strategy can be used to find critical sections
in the program and, unlike conventional profiling tools, allows fine-grained control over what re-
gions of code to profile.

4.9. Select–apply semantic

The LARA weaving process operates with join point shadows (i.e., program elements in the source
code) that are selected statically according to pointcut expressions. The code in apply and condition
sections is statically executed. The exception is the code specified in an insert action that is injected
in the application source code and is only executed during the execution of the compiled woven
code. The decision to have an offline weaving process is because of the nonacceptable overhead
that would result of an online weaving process and also because most weaving actions currently
supported by LARA, for example, related to code transformations and code optimizations, are
undesirable and/or impossible to perform at runtime.
There are cases however where specific actions are dependent of join point attributes with values

only known at runtime. Figure 11(a) presents an aspect with an action that is dependent on the evalu-
ation of a condition using two attributes (iswrite and value) of a join point related to variables used in a
function. The attribute iswrite is resolved offline as it requires the inspection of code assignments to
variables. However, the value of the attribute value is only known at runtime, unless the variables have
statically known constant values. This condition may require the insertion of code responsible to eval-
uate the value of the variable during runtime, unless the specific value is obtained by a previous exe-
cution of the application and passed to the aspect (as in some of the cases presented in the industrial
case study in Section 6). The aspect in Figure 11(b) uses an explicit insertion of that code and uses a
condition statement fully resolved offline. When considering a static weaving process, as in our current
case, and the evaluation of a runtime dependent value, the second aspect (Figure 11(b)) must be used.

4.10. Invoking aspects and execution semantics

The front-end requires a single LARA source file as input. The first aspect definition in this file is
the one to be executed by default. All subsequent executions of aspects are performed explicitly by
aspect calls. A call can invoke any aspect definition in that source file or in external files indicated
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by the import statement. LARA supports two mechanisms for invoking an aspect. The first uses the
traditional in-line ‘call/return’ procedure (no return value) semantics. In this case, we can use, as-
suming is an aspect module, ; or when passing
arguments to the aspect. The second mechanism uses an object-oriented notation. In this mecha-
nism, the program can create a named aspect object when instantiating the object and then explicitly
invoke it with the call statement:

There is also the possibility to pass arguments in the declaration of the aspect instances (e.g., var
A=new myAspect(1, num)) or when calling each specific instance (e.g., call A(1, num)). The input
parameters of an aspect can also be accessed using the name of the aspect or of an instance of the
aspect followed by ‘.’, and the name of the input parameter such as: A.factor=1 or A.numLines=num.
The values of output parameters can be accessed with the same syntax as the input parameters. For
instance, in the following example, the access output parameter is used: if(A.success) print

(“aspect was successfully applied!\n”).
Aspect invocation behaves as a function call in common imperative languages, with limited

inter-invocation state sharing. Within an aspect definition, input and output parameters are treated
as variables, which can be accessed and modified without restrictions. Global variables defined
within the context of an aspect definition can be accessed and modified (retaining state) across
all apply actions in that aspect but not across other aspects. Local variables defined within an
apply section retain their values during the sequence of executions of the apply and are only visible
in that section. As such, there are no side effects as a result of an aspect call.
All aspect input arguments are evaluated eagerly and passed by value. Aspects can only share

state through aspect parameters and static variables.
The order of execution between select–apply statements inside a LARA aspect definition is dic-

tated by a particular execution semantic. Currently, the order of execution of select–apply sections
follows the textual order present in the input LARA aspect module.§

5. EXPERIMENTS WITH LARA USING CODE INSTRUMENTATION

In this section, we evaluate the effectiveness of LARA in capturing nonfunctional concerns related to
application monitoring and apply these concerns automatically and systematically to a number of

§Although possible, there is no support for concurrency between one or more select–apply sections.

Figure 11. Dynamic and static attributes: (a) an action depending on the value of a static and a dynamic
attribute and (b) an action depending on a static attribute.
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benchmarks (Section 5.3). The nonfunctional monitoring concerns considered in this section, such as
counting loop iterations, monitoring range values, and timing applications, correspond to tasks often
carried out by developers by manually instrumenting their applications’ code to extract runtime
behavior, in order to understand which parts of code to optimize, for instance, by offloading to
hardware accelerators. In this context, there is considerable effort in modifying existing applications
to implement these concerns, affecting both productivity and maintainability.
This section aims to answer the following questions:

• Is LARA able to capture different monitoring concerns?
• Can a single monitoring concern described in LARA be reused in different applications?
• Can multiple monitoring concerns described in LARA be used in the same application code?
• Are we able to reduce the programming effort of monitoring concerns on existing applications
when compared with manually implementing these functionalities?

5.1. Methodology

5.1.1. Design flow. The experiments described and reported in this section use the Harmonic [22]
source-to-source compiler, which was enhanced to support LARA specifications [9]. As shown in
Figure 12, the compiler accepts two types of source descriptions as inputs: (i) input application in C
(C99 std. compliant) and (ii) LARA files capturing concerns in the form of aspects and strategies.
For the experiments reported here, we rely on a LARA-based design flow structured as three major
components:

• LARA front-end, which translates LARA descriptions into Aspect-IR (aspect intermediate rep-
resentation) to be processed by the weavers. The Aspect-IR is a low-level representation of
LARA in XML format, where information is structured in a way to facilitate the parsing of as-
pects and strategies.

• Source-to-source transformer, which uses Harmonic to perform source-level transformations
(C to C) including but not limited to code instrumentation and monitoring, hardware/software
partitioning using cost estimation models, and insertion of primitives (such as remote procedure
calls) to enable communication between software and hardware components. The results of this
stage are source files reflecting the partitioning and additional code generated to realize synchro-
nization and communication between software and hardware partitions.

• Compiler tool set, which includes the front-end, middle-end, and optimization phases, with the
latter two common to both software and hardware partitions, which are target architecture

Application (C code)

Source-to-source
Transformer
(Harmonic)

C source code
(hardware & software

sections)

Aspects and
Strategies (LARA)

Aspect Front-End
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ea
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Figure 12. Typical LARA-based design flow.
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independent. This stage can be performed by any hardware/software C compiler or by a spe-
cific C compiler that is controlled by LARA aspects and strategies. The code generators of
the compiler tool set may include assembly code generators for GPPs (software sections)
and VHDL/Verilog generators for specific hardware cores.

A typical LARA-based design flow may also include additional weavers at different levels of the
toolchain. Each weaver receives as input: C source code or an IR and the Aspect-IR, and outputs:
the transformed C code or the transformed IR and, if required, a modified Aspect-IR for the next
weaver in the sequence.

5.1.2. Aspect metrics. To assess the impact of our approach, we use seven metrics: the number of
join point shadows, lines of code (LOC), concern impact on LOC (CILOC), concern diffusion over
LOC (CDLOC) [23], aspectual bloat [24], tangling ratio [24], and the function-level weaving cov-
erage (percentage of functions that are affected by the given aspect). Table IV associates each re-
search question to the metrics used. We explain each of these metrics next.
The LOC metrics referred herein are as follows: (i) the number of LOC in the original applica-

tion; (ii) the number of lines of the woven application; and (iii) the number of lines in the LARA
descriptions. These metrics provide a measure of complexity for both C and LARA descriptions.
For instance, the aspects listed in Table VI have 23–34 LOC.
The number of join point shadows refer to the number of program locations where join points

may originate.
The CILOC gives us the ratio between the original source code LOC and the woven code LOC

on which concerns have been applied. This metric gives us a first intuition about the impact of using
aspects. Thus, the smaller and further away the CILOC is from 1, the larger is the woven application
in comparison to the input source code.
The CDLOC metric, on the other hand, measures the number of switch points (also called tran-

sition points) where code transitions from concern-specific (code introduced as a result of an aspect)
to functional (original code) and vice versa [23]. Hence, this metric provides a measure of code
intermingling. The number of transition points depends on the concern, as it may require the inclusion
of only a block of statements per join point, or may require in more complex cases the inclusion of
blocks of statements in different source code locations.
Another related aspect metric is the ratio between the CDLOC count and the woven code LOC,

called the tangling ratio [24]. The tangling ratio gives us another measure of code intermingling,
this one revealing the number of transition points per line of code in the resultant woven

Table IV. Aspect metrics using goal–question–metrics.

Goal Question Metric

To minimize the effort in
applying nonfunctional
concerns on existing
applications

How much effort is required to analyze
existing applications to apply a new
concern?

LOC
Number of join point shadows

What is the impact of applying a concern
in the application?

Number of join points
CILOC
Function-level weaving coverage

What is the complexity of incoorporating
a concern into the functional code?

CDLOC
Tangling ratio

Is it worth to manually implement a
concern in a single application,
or automatically through aspects?

Aspectual bloat

Is it worth to manually implement a
concern in a set of applications, or
automatically through aspects?

Aspectual bloat reuse

LOC, lines of code; CILOC, concern impact lines of code; CDLOC, concern diffusion lines of code.
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application. The higher the tangling ratio, the more intermixed is the concern code with the func-
tional code. The lower the tangling ratio, the more localized the concern related code is.
The aspectual bloat [24] measures the efficiency of an aspect with respect to the woven code gen-

erated. This metric is computed by dividing the number of LOC that implement a concern by the
aspect LOC. If the aspect bloat is less than 1, it means low aspect efficiency as more code was used
to write the aspect than the code to implement the concern. In general, a higher aspect bloat means
that the aspect has a higher impact factor in the application and potentially higher reuse.
In order to have a measure of both the efficiency of an aspect with respect to the generated woven

code and its reuse, we include an extension to the aspect bloat that we named ‘aspect bloat reuse’.
The aspectual bloat reuse is calculated considering all the applications to which the same aspect has
been applied and uses the following quantitative evaluation expression:

aspectual bloat with reuseð Þ ¼ ∑ LOC application after weavingð Þ - ∑ LOC applicationð Þ
LOC aspects usedð Þ

Large values of the aspectual bloat reuse mean high levels of reuse.

5.2. Application concerns

In this section, we present experimental results using the LARA language to capture nonfunctional
concerns and a LARA-based design flow toolchain on three benchmark repositories. These

Table V. Main characteristics of the benchmarks used.

Benchmark
repository Application/kernel #files #functions

#call
statements #loops

#innermost
loops

#IF
statements #LOCs

REFLECT 3dpath (3DPP) 6 48 164 46 15 43 9,444
stereo_nav (SN) 26 157 1,099 397 313 600 10,075
mpeg_enc (MPEG) 15 154 1,152 261 165 443 9,022
g729 (G729) 33 127 520 391 302 535 11,005

MiBench
consumer

jpeg 54 391 1,745 531 372 1,471 24,866
lame 32 230 5,718 509 355 1,182 16,031
tiff2bw 34 375 6,958 515 377 1,532 22,887
tiff2rgba 34 372 12,758 514 373 1,526 22,771
tiffdither 34 371 7,797 510 372 1,540 22,735
tiffmedian 34 377 6,990 558 395 1,589 23,516

MiBench
network

dijkstra 1 6 26 7 5 10 163
patricia 2 7 66 10 10 39 569
CRC32 1 4 9 3 3 2 123
sha 2 8 40 10 10 7 233
blowfish 7 8 30 12 11 30 965

LOC, lines of code.

Table VI. Concerns and corresponding Aspects used in our experiments.

Concern (abbreviation used) Aspect name Goal Aspect #LOC

Counting loop iterations lcount Print the number of iterations for each
innermost loop in the application

23

Monitoring range values vrange Print the range values for each int variable 23
Monitoring memory allocation/
deallocation

hmem Monitor heap memory allocation and
deallocation (malloc, realloc, free)

28

Computing branch frequencies
(bfreq)

bfreq Generate a runtime branch frequency report 34

Computing a dynamic call graph
(cgraph)

cgraph Generate a dynamic call graph with estimated
cost for VIRTEX5 and PPC

26

Timing applications (timer) timer Timing all functions that contain loops 28

LOC, lines of code.

271INSTRUMENTATION AND MAPPING STRATEGIES WITH THE LARA AOP APPROACH

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:251–287
DOI: 10.1002/spe



repositories consist of two groups of applications from the MiBench benchmark suite [25]
(consumer and network) and four real-life applications that have been provided by the two
industrial partners in the REFLECT project. Table V presents the relevant characteristics of
the benchmarks used. They consist of simple applications that are part of the MiBench
Network group (from 1 to 7 files, 4 to 8 functions, and 163 to 965 LOC) and the more
complex applications that are part of the REFLECT and MiBench Consumer benchmark sets
(described in the next section).

5.2.1. Targeted benchmarks. The REFLECT benchmark set consists of two audio domain appli-
cations (an MPEG-2 audio encoder (MPEG) and a G729 voice encoder) and two avionics applica-
tions (SN and 3DPP). A set of concerns and application requirements were translated into LARA
aspects. These concerns are associated to different stages of the development cycle including mon-
itoring, fine-tune optimizations, and efficiently mapping the application to the target architecture
using schemes such as hardware/software partitioning. As an illustrative example, we introduced
in Table I a list of concerns for the MPEG application. These concerns span the application devel-
opment cycle from the analysis phase (with the use of instrumentation to log and monitor specific
properties) to the mapping of the application to the target architecture. This, we believe, demon-
strates the flexibility and wide scope of our approach.
As previously explained, the monitoring capability enables us to understand runtime behav-

ior, such as the following: (i) the most executed paths in if-then constructs; (ii) nonvariant
parameters in specific function calls that enable distinct specializations for the same function;
and (iii) data ranges and accuracy that can be used to guide word length optimizations. The
use of aspects related to (ii) allowed us to identify opportunities for function specializations
in all the four applications. For instance, in 3DPP, we evaluated three specialized versions
of the griditerate function, and in SN, we considered three possible specializations of a
convolution function [9]. These specializations were important to achieve better performance
as in most cases they were related to loop iteration counts, enabling full loop unrolling and
strength reduction.

5.2.2. Aspects for application code analysis. We now consider a number of representative moni-
toring concerns (Table VI). They consist of measuring branch frequencies, monitoring range values
(min and max) for variables in the program, monitoring function calls, monitoring the number of
iterations of loops (see example in Figure 5), monitoring memory allocation and deallocation,
and timing applications (see example in Figure 6). We expressed the concerns as LARA aspects
(last column of Table VI presents the number of lines for the LARA aspect for each concern)
and applied them to the four industrial applications previously introduced and to a number of appli-
cations of the MiBench consumer and network sets [25] (Section 5.3).

5.3. Evaluation

We apply the six concerns summarized in Table VI to the benchmarks briefly described in Table V.
These concerns represent common monitoring aspects and include the following: (i) counting of it-
erations of selected loops (lcount); (ii) reporting of the range values of specific variables (vrange);
(iii) monitoring of memory allocation and deallocation instructions (hmem); (iv) reporting of the
frequencies of the execution paths taken considering if and if-else constructs (branch frequencies,
bfreq); (v) generating a customized call graph with information related to execution costs (cgraph);
and (vi) timing of all functions containing loops (timer).
Figure 13 presents the number of join point shadows selected when applying the LARA aspects

listed in Table VI. A minimum of 5 (CRC32 benchmark and lcount concern), a maximum of 16,170
(jpeg benchmark and vrange concern), and an average of 1,931 join point shadows were selected.
These join points represent code elements in the source code in which we apply instrumentation.
The large numbers of join points indicate a high manual effort if an automated approach was not
used. This manual effort is actually larger as the actions related to the concerns are selective and
need an analysis of each join point (including its context) in order to decide about the application
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of the actions. As expected, the vrange concern implies the highest number of join point shadows
because of the high number of variables in the source code. The lcount concern has the lowest num-
ber of join point shadows as the number of loops in the source code is not as high when compared
with other program elements.
The number of join point shadows is lower for the MiBench network benchmark set (minimum

of 5, maximum of 1074, and an average of 84) as the programs included in this benchmark have
from 163 to 965 LOC and have potentially a lower number of join points (Figure 13). The percent-
age of join point shadows selected for applying actions are however very similar. Figure 14 illus-
trates the averages related to those percentages when considering the three benchmark sets and
the six concerns. A minimum of 0.2% (stereo_nav benchmark and vrange concern), a maximum
of 100% (patricia, CRC32, and sha benchmarks and lcount concern), and an average of 49.9%
of join point shadows were selected for applying insertion actions. In addition, Figure 14 shows
the percentage of functions affected by the code insertion actions. The insertion coverage corre-
sponds to a minimum of 0.6% (stereonav benchmark and vrange concern), a maximum of 88.3%

Figure 13. Selected join point (shadows) for each application considering each aspect.

Figure 14. Averages related to the percentages of the selected join point (shadows) and of the functions
where insert actions took place.
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(dijkstra benchmark and bfreq concern), and an average of 43.6% of the total number of functions
in the three benchmark sets.
Despite a high number of join point shadows selected by the vrange and hmem aspects, the per-

centage of those join points to which code insertion actions have been performed is very low (1.5%
and 7% on average for vrange and for hmem, respectively). With respect to vrange, this is a conse-
quence of the fact that the monitoring concern only focuses on writes to scalar variables of type int,
while the select statement captures all variable references, which are subsequently filtered by a con-
dition statement. The percentage of functions where instrumentation takes place is 14% and 10%
for vrange and for hmem, respectively.
Figure 15 shows the tangling ratios for the benchmarks considering the six concerns in Table VI.

The highest tangling ratios occurred for bfreq and cgraph concerns as both the percentage of se-
lected join points and the percentage of join points where actions were applied are high (around
80% on average) as can be seen in Figure 14. The lowest tangling ratios occurred for the vrange
concern. For this concern, the selected number of considered join points is one of the highest
(Figure 13), but the ones where actions are in effect applied is very low (1.5% on average) as
can be seen in Figure 14.
The CILOC metric for the aforementioned benchmarks and concerns reflects a similar result as

the tangling ratio metric. In particular, the inserted code is always smaller (a couple of code state-
ments) when compared with the application code. The CILOC metric shows 4% (CILOC=1.04) of
code increase on average. The highest CILOC metric values of 1.15 and 1.14 were obtained for
dijsktra and patricia considering the cgraph concern.
The CDLOC metric, on the other hand, reveals average values from 66 (for hmem) to 1242

(for cgraph), a minimum of 4 (for vrange and hmem when applied to CRC32) and a maximum
of 5450 (for bfreq when applied to tiffmedian). The global CDLOC average is 762 that clearly in-
dicates a high intermingling between application source code and code related to concerns.
Figure 16 shows the aspectual bloat values for our three benchmark sets and the six concerns

from Table VI. We measured an aspectual bloat of 12.96 on average. Globally, the highest values
of the aspectual bloat occurred for the bfreq concern when applied to the MiBench consumer bench-
marks. For these benchmarks, the aspectual bloat values range from 51.56 to almost 79.47. In case
of the MiBench network benchmarks, the highest values of the aspectual bloat occurred for the
cgraph concern. For the REFLECT applications, the aspectual bloat values are higher for cgraph
when applying this concern to 3dpath, stereo_nav, and mpeg_enc and for bfreq in the case of the
g729 application. This is explained by the fact that g729 includes a higher percentage of branch
statements and a lower percentage of function calls, while 3dpath, stereo_nav, and mpeg_enc have
a lower average of statements per function that based on the number of functions imply a higher
overhead of the code inserted per function call statement. The hmem concern has the lowest

Figure 15. Tangling ratio for each application and considering each aspect.
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aspectual bloat, followed by the vrange concern. This reduces the impact of the woven application
source code as it has similar LOC values (0.22% on average for all the benchmarks used). The
vrange concern also has a low impact on the woven code as the LOC metric increases only
0.38% on average. Both hmem and vrange have a low percentage of join points effectively used
for weaving actions (Figure 14). In case of hmem, the aspect replaces invocations to standard mem-
ory management functions malloc, free, and realloc with wrapper functions that monitor memory
allocation and deallocation operations. The CDLOC and tangling ratio values also point to the same
conclusions.
Figure 17 shows the aspectual bloat for reuse. The measurements clearly show the high reusabil-

ity of the aspects related to the concerns in Table VI. All these aspects can be reused with every C
application and not just benchmarks used in this paper. The results show that the efficiency of the
aspects in terms of woven code and reuse is higher for bfreq (506.79), followed by cgraph (372.4)
and lcount (145.6). The hmem and vrange are concerns with lower efficiency. The MiBench net-
work benchmarks exhibit lower efficiency (aspectual bloat values from 1.0 to 6.9) as was expected
given the number of selected join points (Figure 13) and the percentage of those join points effec-
tively used for instrumentation actions (Figure 14).
For the aspects used in these experiments, the execution time of the weaving process strongly

varies with the size of the application but less with the aspect. The execution time varies from sec-
onds (Mibench consumer) to minutes (around 12min for MiBench networks).

5.4. Summary

With respect to the questions listed at the beginning of this section, the experiments provide strong
evidence that: (i) LARA is able to capture monitoring concerns typically part of a development
cycle targeting embedded platforms; (ii) a single monitoring concern described in LARA can be

Figure 16. Aspectual bloat for each application when considering each of the six concerns.

Figure 17. Aspectual bloat values taking into account the reuse of aspects.
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reused in different applications; (iii) multiple monitoring concerns described in LARA can be used
in the same application code; and (iv) LARA is able to reduce the programming effort to support
these monitoring concerns when compared with their manual implementation.

6. AN INDUSTRIAL CASE STUDY: ADVANCED INSTRUMENTATION AND HW/SW
PARTITIONING

We now describe the use of the LARA aspect-oriented approach to identify code sections to be mi-
grated to hardware accelerators in the context of two industrial applications. A typical first step in
the assessment of the computational requirements includes the identification of the performance
bottlenecks or computationally intensive code sections – also called critical sections. These code
sections are commonly structured as critical loop constructs directly manipulating array variables.
To identify these code sections, developers make use of popular execution profiling tools such as

gprof. Yet, such tools provide limited information about performance. In particular, they provide
wall-clock time at the granularity of the function or procedure. This limits their usage in the first
profiling stage, as various computationally intensive sections might be located inside the same func-
tion, or worse, a noncomputationally intensive code section can easily dilute or mask the perfor-
mance weight of a section inside the same function. As a result, either the identification of
critical code sections are missed or developers must restructure the code beforehand to isolate each
potentially critical code section as a separate procedure, an arduous and error-prone process.
The approach described in this section relies on an automatic source-to-source transformation

tool guided by LARA aspects, which has the added benefit of preserving the original source code
while supporting customized performance metrics at the level of any C construct (such as loops)
and irrespective of their function boundaries.

6.1. Methodology

In these experiments, we present the results of the integration of our aspect-oriented design flow
with a commercial architecture developed by Coreworks [26]. This architecture consists of a
RISC-type GPP, named FireWorks [26], coupled to a one-dimensional coarse-grained
reconfigurable array (CGRA) coprocessing unit (on the basis of the one described in Ref. [27]),
named SideWorks [26]. This architecture provides a master-slave execution model where the
embedded GPP triggers the execution of a specific task in the CGRA by loading a configuration file
and activating its execution by setting up specific registers in its I/O map.
As such, a key step in the development of efficient and high-performance implementation con-

sists in the identification of the critical code sections, which are subsequently translated to a low-
level description to configure/program the CGRA. To determine these code sections to be executed
in the CGRA, the application source code must be profiled to identify hotspots in the code and in-
strumented to determine runtime information such as the number of times a loop has been executed
or to count the average number of loop iterations.
As part of our evaluation, we wish to capture existing design practices and strategies devised by

experts at Coreworks with LARA and automatically identify candidate code sections for hardware
acceleration using our aspect-oriented design flow. Note that the actual process of translating can-
didate code sections to the Coreworks CGRA is not supported by our current source-level transla-
tion weaving process and would require a dedicated hardware compiler. Finally, we investigate how
the manual and automated approaches compare in terms of the quality of the derived solution and
their development effort.

6.2. Application concerns

6.2.1. Targeted benchmarks. In the evaluation and experiences described in this section, we focus
on the performance analyses of two large applications from the audio encoding domain, namely, the
MPEG and the G729 audio encoders. These encoders are representative of the typical type of
applications used in Coreworks. These encoders consist of 15 files, 154 functions, and 9,022 lines
of C code for MPEG and 33 files, 127 functions, and 11,105 lines of C code for G729. Despite the
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differences between them, both applications have characteristics that are common to the audio ap-
plication domain, as well as to the digital image processing domain.

6.2.2. LARA strategies: instrumentation, execution, and partitioning. Our approach relies on a
weaver, integrated into the Harmonic source-to-source transformation tool, to identify critical sec-
tions of the two audio applications mentioned earlier. As LARA allows to export an interface that
captures runtime information such as number of executed iterations in a loop, these metrics can be
subsequently folded into the selection criteria for transformation of a given loop.
In this evaluation, we consider two strategies, namely, strategies I and II, responsible to automat-

ically select all critical outermost loops in a program that would benefit from hardware execution.
Each strategy employs a specific heuristic (devised by the Coreworks experts) to select nested loops
using static (source code) and dynamic (runtime extracted) parameters, as listed in Table VII. We
identify nested loops by considering only their outermost loop body, with nested loops inside the
outermost loop body not considered as part of the selection.
The key steps of these two strategies are the following:

• Step 1, instrumentation: The profiling aspect instruments the C code generating the ‘woven
code’ to report the values of the dynamic parameters, when the modified application is executed.

• Step 2, execution: When the woven code is compiled and executed, the profiling functions
inserted in the original source code report the values of the parameters of interest. The informa-
tion retrieved at runtime is stored in an intermediate file called ‘loop_analysis.js’ that is proc-
essed in the next step by the selection aspect.

• Step 3, selection: The selection aspect (for hardware/software partitioning) chooses the critical
loops on the basis of the criteria defined by the strategy. In this step, static and dynamic param-
eters (on the basis of runtime information collected from step 2) are used. The identification of
the critical loops is based on a set of conditions, which classify all outermost loops as ‘critical’
or ‘noncritical’.

The identification of the parameters and strategies has to be performed by an expert in the appli-
cation and platform domains, in order to transfer his or her knowledge to the LARA language. Note,
however, as we demonstrate in our evaluation, that the parameters and strategies can be reused for
other applications in the same domain.
Dynamic parameters such as number of iterations and number of frames are obtained by the fol-

lowing aspects: (i) instrument the application in a first phase with self-monitoring code to obtain the
required dynamic parameters and (ii) execute the instrumented code to generate dynamic parame-
ters. Once the dynamic parameters are obtained using the aforementioned steps, loops are selected
on the basis of specific criteria as described next.

Table VII. Parameters used by strategies I and II to identify critical loops.

Parameters Description Type Strategy

num_stmts Number of statements inside the block of nested loops Static I
iterations Number of iterations of the innermost loop Dynamic I
num_frames Number of audio frames to encode Dynamic I, II
instances Number of times the block of nested loops is executed Dynamic I, II
num_oper Number of operators inside an innermost loop Static II
instances_avg Average number of times the block of nested loops

is executed per frame
Dynamic II

iterations_avg Average number of iterations of the innermost loop Dynamic II
num_ifs Number of ‘if’ statements inside the innermost loop Static II
num_ifs_outer Number of ‘if’ statements inside the block of nested loops Static II
if_count If innermost loop contains an ‘if’ statement, count the

number of times the ‘if’ statement is executed
Dynamic II

then_count If innermost loop contains an ‘if’ statement, count the
number of times the condition evaluates to true

Dynamic II

else_count If innermost loop contains an ‘if’ statement, count the
number of times the condition evaluates to false

Dynamic II
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Using the LARA approach, in step 3, each critical loop is encapsulated in a #define statement. This
#define is used to toggle between the original code and a call to the SideWorks [26] coprocessor.
Therefore, when compared with the manual profiling, the effort to perform the software/hardware
partitioning is slightly reduced. The additional effort to define the SideWorks datapaths that implement
the critical loop depends on the Coreworks design tools, but it is identical whether the LARA ap-
proach is used or not. We note that the use of other types of accelerators (e.g., custom hardware)
would require a different translation process for the code sections to be migrated to the accelerator.
For instance, when considering custom FPGA hardware, one might use a C-to-hardware tool to gen-
erate the accelerator’s hardware. In case of the Coreworks design flow, the code sections must be
manually translated to a native language that is able to program the coprocessor. The development
of an automatic compilation tool that addresses this translation is out of the scope of this article.

Strategy I: This strategy employs four key parameters, as presented in Table VII, that are extracted
from each candidate nested loop: number of loop body statements that we use tomeasure
its complexity (num_stmts); total number of iterations (iterations) of the nested loop per
instance; number of audio frames (num_frames); and number of instances that specifies
the number of times the nested loop has been executed (instances). To acquire the num-
ber of iterations and the number of instances, the profiling aspect instruments each can-
didate nested loop: to count the total number of iterations per instance a counter is placed
in the innermost loop body; to count the number of instances a counter is placed in the
outermost loop body.Moreover, to derive the number of frames, the name of the variable
storing the number of frames must be provided to the profiling aspect, which will auto-
matically instrument the source code to monitor its value during the execution of the ap-
plication. Once the instrumented application is executed, it will generate a report with the
dynamic parameters for that particular execution.

Strategy I selects the outermost loop body with the following criteria:

Strategy II: This strategy improves strategy I by the following: (i) considering multiple executions
of an application; (ii) taking into account conditionals; and (iii) supporting a better
measure for code complexity. To support monitoring of multiple application execu-
tions, we compute the minimum, maximum and average number of loop instances
(instances_min, instances_max, and instances_avg). We perform a similar statistical
analysis for the number of loop iterations (iterations_min, iterations_max, and
iterations_avg). To support conditionals, we included the computing of the frequency
of then and else branches inside each innermost loop body (then_count, else_count).
Finally, code complexity is measured by the number of arithmetic operators inside
the innermost loop body (num_oper) with the possibility to customize the weights
of different operators of a C expression. As with strategy I, we instrument the original
source code to create a self-monitoring application that can compute the above dy-
namic parameters. Next, this woven application is executed, and a report with the
runtime results is generated. This is followed by running the original application with
the selection aspect, this time using the dynamic parameters computed in the previous
step with static parameters to choose loops that are suited for hardware acceleration.

The loop selection criterion in Strategy II is now defined as follows:

Specifically, a loop is selected if the expression above evaluates to true where the various condi-
tions are described in Table VIII. Note that we can add another condition (i.e., condition 6), in
which loops are rejected if they are enclosed in a function that executes less than a fraction of
the total time of the application.
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6.3. Evaluation

6.3.1. Strategy comparison. The two strategies presented in the previous section have been
derived from empirical observations and user expertise, and programed as LARA aspects. One
important feature of our approach is that aspects are fully parameterized, and thus, these strategies
can be easily changed in the context of automatic DSE and/or manual user experimentation. A
second point is that strategy II is more complex than strategy I, taking into account more static
and dynamic parameters providing more fine-grained control about the loop selection.
Table IX presents the results obtained by applying these two selection strategies, respectively,

strategy I and strategy II, to the MPEG and G729 applications. More specifically, for each of the
functions in these applications, we report the number of loops sections deemed as critical using
the two selection strategies. For comparison purposes, we also include the results of using a manual
selection approach relying on the profiling results generated by the gprof tool and by direct code
inspection by developers. Regarding the ‘manual’ approach, we also rely on the use of various
printf calls to capture relevant values of key parameters such as the number of loop iterations.
Table IX shows that strategy II excluded functions ‘I_a_bit_allocation’, ‘ACELP_codebook64’,

and ‘cor_h_cp’ that contribute with 5.02%, 2.57%, and 2.04% of the MPEG global execution time,
respectively. These functions are too complex to be mapped to the SideWorks CGRA, and this fact
is correctly identified by strategy II but not by strategy I, as the latter only measures complexity by
using the number of statements and the number of operators.
For both applications, all critical loops manually identified by developers were also automatically

selected by the two LARA-based strategies. The LARA-based strategies, however, were able to
identify additional critical loops for both applications, as are the examples of loops in the two
FFT functions (I_ f_ f_t and II_ f_ f_t in MPEG code) and in the correlation function (autocorr in
G729 code). A detailed analysis reveals that those loops do not belong to functions that emerge
at the top of the profiling results, which were therefore not identified manually. The automatic iden-
tification of more suitable critical loops by the LARA strategies allows developers to converge more
quickly to solutions that can achieve the required real-time performance.
In conclusion, the results automatically achieved by our LARA strategies provide information

that cannot be easily derived manually or it can only be obtained at a high maintenance cost.
Coreworks reported that an experienced developer required an entire day to manually identify the
loops referred in the column “Manual approach” of Table IX. Conversely, the LARA technology
performs this task automatically in less than 30min. This effort, however, does not take into account
the coding and testing of the LARA strategies, as these are reusable across other applications.
It is worth noting that the LARA strategy II refines the results obtained by LARA strategy I and

selects fewer numbers of loops as critical. Although the migration to dedicated hardware of these
loops may not degrade the performance, the effort required to manually map them to the SideWorks

Table VIII. Conditions for selecting loops using Strategy II based on parameters from Table VII.

Condition Description

1 (a) innermost loop body with no IF constructs
(b) number of operators in the loop are more than zero and less than a constant value
(OPER_PER_BLOCK)

num_ifs == 0 AND num_oper > 0 AND num_oper<OPER_PER_BLOCK
2 (a) innermost loop body contains one IF construct

(b) one of the branches has a frequency greater than 95%
(c) difference between total number of operators and the number of operators of the least
frequent branch is less than OPER_PER_BLOCK

num_ifs == 1 AND max(then_count / if_count, else_count /if_count) > 0.95 AND
num_oper – least_freq_branch_num_ops<OPER_PER_BLOCK

3 reject the loop if contains ’if’ statements outside the innermost: num_ifs_outer< = 1
4 selects outermost loops executed more than once: instances_avg> = 1
5 selects outermost loops with number of iterations greater than a specific value

(MIN_ITERATIONS): iterations_avg> = MIN_ITERATIONS
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coprocessor is substantially reduced. Each loop with substantial complexity requires almost 1 day of
work to be mapped to SideWorks as this mapping currently requires the translation from C code to
the SideWorks low-level native programming language, the extraction of the loop from the appli-
cation, and the integration of the communication and synchronization primitives in the application,
and testing. An approximate figure of the effort reductions when using strategy II rather than strat-
egy I for the MPEG and G729 applications would be around 4 and 13 days, respectively.

6.3.2. Productivity analysis. The profiling results described in the previous section and provided
by LARA and Harmonic in this context have direct impact in the metrics defined by Coreworks.
The following sentences summarize the conclusions of the senior software engineer from
Coreworks who conducted this experimental evaluation:

• The development time is considerably reduced. The developer did not need to instrument the
code manually with printf calls, which is a huge benefit for large applications, such as MPEG
and G729. The experiments also show that the quality of the results obtained with the LARA
approach is higher than the quality of results obtained manually. Critical loops not identified
have a negative impact in the performance of the overall system in terms of execution time
and energy consumption. In these case studies, we observed significant productivity improve-
ments considering the time required by an expert Coreworks developer to analyze and select
the loops without using LARA and the time using the LARA approach. More specifically,

Table IX. Identification of the critical loops for the MPEG and G729 applications.

Application Function #Loops

% Global
exec. time
(profiling)

# Critical loops

Manual
approach

LARA
strategy I

LARA
strategy II

MPEG fft_gen 3 13.31 1 1 1
filter_subband 6 38.16 3 3 3
fft_ii_for2 1 3.37 1 1 1
empty_buffer 2 0.29 1 1
get_audio 6 0.18 1 1
I_a_bit_allocation 7 5.02 1
I_subband_quantization 3 0.85 1
make_map 2 0.08 1
I_f_f_t 4 0.30 2 1
I_hann_win 2 0.03 1 1
I_tonal_label 5 0.12 1
I_minimum_mask 2 0.09 1
II_f_f_t 4 0.15 1
II_hann_win 2 0.02 1
Total 49 61.97 5 15 11

G729 syn_filte 4 4.73 1 1 1
syn_filte_2 4 5.14 1 1 1
residue_40_10 2 5.12 1 1 1
autocorr 3 5.84 1 1 2
lag_max1 3 7.69 1 1 1
lag_max2 3 5.33 1 1 1
lag_max3 3 2.66 1 1 1
pre_process 1 0.6 1
ACELP_codebook64 33 2.57 8
cor_h_cp 12 2.04 5
cor_h_x 2 3.28 1 1
convolve 2 6.19 1 1
pred_lt_3 2 2.48 1 1
lsp_pre_select 2 5.46 1 1
lsp_select_1 3 0.77 1 1
lsp_select_2 3 1.06 1 1
Total 82 60.96 7 27 14
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for large applications, the profiling takes approximately one working day. Using the LARA ap-
proach, the profiling time is reduced by one order of magnitude.

• A major advantage of the LARA approach lies in the ability to reuse the same aspects (LARA
files) across applications and possibly by nonexpert developers about the target architecture. In
this particular case, the LARA aspects used to identify the critical loops were reused in both
applications without any modification. This reusability represents a huge benefit to develop-
ment time, as well as to nonrecurring engineering costs.

• LARA allows powerful ways to specify sophisticated strategies (possibly reusable) for moni-
toring, instrumentation, and for customized profiling schemes.

• One of the LARA approach strengths is the flexibility to express and customize criteria for
selecting loops that may help developers and/or other tools to decide about the mapping of
those loops.

• The use of LARA allowed to automatically identify critical and SideWorks suitable loops in
large applications (MPEG encoder and G729).

• The LARA aspect-based approach truly helps and enhances the methodology used by
Coreworks on loop analysis and loop selection, allowing them to experiment with different
strategies by revising the heuristics.

We performed a quantitative evaluation using specific AOP metrics with strategy II (which is an
enhancement of strategy I) and with three applications, namely, MPEG, G729, and a universal au-
dio encoder, which merges the first two encoders and selects the encoding format according to dy-
namic requirements. Table X presents some of the characteristics of the LARA code for strategy II
and of the application source code used in the experiments. Table XI presents the metrics related to
the application of the strategy and to the resultant C code. The LARA code for strategy I consists in
three aspect definitions (three source files): (i) loop_analysis; (ii) loop_selection; and (iii)
loop_sideworks, with 108, 156, and 46 LOC (a total of 310 lines of LARA code), respectively.
For the ‘loop_analysis’ aspect, the weaving needed to consider a large number of join point

shadows. In this example, the value for CDLOC, tangling ratio, and aspectual bloat are high and
clearly show the huge efforts needed if the code insertions were carried out manually. In fact, the
weaving time for the examples illustrates the substantial code analysis and code insertions needed.
The aspectual bloat for reuse is 85.11 and 6.74 for aspects 1 and 3, which, with only three applica-
tions, already show high advantages of reuse in terms of code.

7. RELATED WORK

The use of programming approaches for code instrumentation, compiler strategies, and mapping de-
cisions has been addressed by various authors. In this section, we highlight related work in the areas
of AOP and specification of strategies for compilers.

Table X. Some characteristics of the LARA aspects considering Coreworks strategy II and application C
code.

LARA aspects

Application (C source code)

Universal audio encoder MPEG G729

Aspect
#

defs
#

sources
#

LOC
#

files
#

funcs
#LOC
initial

#
files

#
funcs

#LOC
initial

#
files

#
funcs

#LOC
initial

loop_analysis
(1)

1 1 108 42 213 16,880 9 88 6,102 34 131 11,078

loop_selection
(2)

1 1 156

loop_sideworks
(3)

1 1 46

LOC, lines of code.
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7.1. Aspect-oriented programming
Aspect-oriented programming has been the subject of intense research over the last decade. AspectJ
[7, 19, 20], one of the most widely known AOP languages, is an AOP extension to Java aimed at
providing better modularity for Java programs. AspectJ contributes to cleaner and better code by
modularizing programs, providing solution for several crosscutting concerns such as monitoring,
logging, debugging, synchronization, and performance. Another example with noticeable success
is AspectC++ [28, 29], which is an AOP extension to the C++ programming language. Both
AspectJ and AspectC++ do not consider join points related to local variables, statements, loops,
and conditional constructs. LoopsAJ [30] extends the join point model of AspectJ to allow the direct
intervention over loops by adding a new loop pointcut (captured with different pointcut expres-
sions), including contextual information used for loop parallelization. @AspectJ [31] is a refine-
ment of AspectJ that allows the specification (using labels) of join points at the level of
individual statements such as if and while loops. Rajan and Sullivan [32] propose Eos-T, a version
of the aspect-oriented language Eos [33]. Both Eos and Eos-T extend C# with AOP concepts to in-
clude branches and loops as join points. We have extended in LARA their notion of advices to in-
clude code transformations, compiler optimizations, mapping options, and property specifications,
report generation, besides code weaving.
Reflecting AOP’s growing acceptance, several AOP extensions have been proposed to other

languages and domains of applicability. For instance, AspectMatlab [34] provides AOP extensions
for MATLAB focusing on array variables and loops, as these are key constructs in scientific
applications. AspectMatlab supports the AOP notion of pointcuts (called patterns) and advices
(called actions).
While LARA has been inspired by many AOP approaches, including AspectJ and AspectC++, it

differs from these efforts in several ways. First, we extend the capabilities associated with types,
such as their shapes and precision (as described in our previous work [35, 36]). In addition, the join
point model allows the specification of pointcuts in virtually all points in a program avoiding or
diminishing the need for labels, annotations, and pragmas. Second, and while we have opted mech-
anisms similar to the ones used by AOP approaches based on functional queries [37], in LARA,
pointcut expressions allowed by select sections of the aspect modules are able to define composable
select expressions (similar to composable queries) as in Ref. [37]. We can associate two or more
pointcut expressions to the same advice (apply statement) along with an operator to specify the type
of association thus enriching the semantics of the pointcut mechanisms. Third, we have defined a
join point model that reflects the need to interface with a potentially wide variety of tools and target
embedded computing systems. Lastly, following the notion of patterns and actions in
AspectMatlab, our approach also formalizes the concept of strategies as a way to capture and reuse
a sequence of program transformations and application mapping choices.
The main drivers of our AOP approach have been the functional requirements elicited by the

industrial partners of the REFLECT project [9]. On the basis of the requirements, LARA includes
in the actions associated with join points not only code to be executed (as in AspectJ) but also
compiler optimization directives and data and type information about variables. LARA allows pow-
erful pointcut mechanisms to expose context information about join points. One of the requirements
we faced was the migration of code related to conditional compilation (#ifdef clauses in C) to
aspects [38, 39]. We have also faced the need of migrating to aspects toolchain directives imple-
mented as C #pragmas. They spread around code artifacts and are commonly used to annotate code
with directives for compiler optimizations and code transformations. As their use depends on the
target architecture and on the toolchain being used, it is common to have variations for the same
application. Aspects mitigate this problem. This separation of concerns facilitates the manual explo-
ration of certain compiler properties, as the changes to be evaluated are performed to concentrated
code in aspects and not to pragmas spread along the application (as it seems to be a trend [40]). As
an example, Catapult-C [41] supports at least 10 different pragmas. Annotations have severe
limitations as they refer to static join points, pollute the code, impose code variations (possibly
implemented using conditional compilation mechanisms), and do not allow compiler sequences,
while our AOP approach allows syntactic and semantic join points and join points exposed along
compiler sequences.
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One of the strengths of our approach is to use AOP to support portability and retargetability. By
exposing to aspects concerns such as the ones related to safety and performance requirements,
different aspects can lead to the generation of different hardware or hardware/software
implementations. This can be conceptually thought as the implementation of portability addressed
by Alves et al. [42] in the context of software product lines. By exposing to aspects the character-
istics of the target architecture, we promote toolchain adaptability for different architectures. Note
that besides code variations we also support AOP-based strategies that allow different
implementations by controlling key toolchain stages.
The use of a join point model to process LARA aspects into an Aspect-IR representation allows

LARA to address different design flows and different host programming languages (our core expe-
riences have been focused on C, but we had experiments with LARA aspects for MATLAB). Rel-
evant to our approach are the join point and mapping models proposed by Jackson et al. [43] to
achieve a cross-language AOP in the context of the .NET framework. They envision a program-
ming language-independent AOP approach through an XML AOP language based on AspectJ. Al-
though regarding the flexibility to deal with more than one host programming language, common
points with our approach are seen, they rely to the AOP approach of AspectJ that is not suitable
for our objectives.
Other approaches address language-independent tools [44] for weaving existing components

with aspects written in the language of choice. Others target application components in different
languages and use a common representation of the components to apply the aspects (e.g.,
UniAspect [45]). UniAspect keeps a similar syntax to AspectJ and introduces “@” annotations
for identifying target language. This is similar to LARA as the insert statements can also identify
the target language.
The LARA support to access to a particular join point and to its attributes (including the meta-

attributes) has conceptual similarities to the ThisJoinPoint variable used in AspectJ [19, 20] and
AspectC++ [28, 29]. For example, in AspectJ, the thisJoinPoint variable contains meta-information
about the join point (e.g., the method signatures and arguments when in the presence of a method
call). In our case, each of the join point types in the join point model has a number of attributes. Our
approach allows the use of specific information obtained at the moment by static evaluation or by
runtime information feedback, for example, during execution or profiling of the application.

7.2. Controlling compilation

The PATUS framework [46] defines a domain-specific language specifically geared toward stencil
computations. It allows programmers to define a compilation strategy for automated parallel code
generation using both classic loop-level transformations such as loop unrolling and loop splitting,
as well as exploiting architecture-specific extensions such as SSE instructions. To increase the flex-
ibility and performance portability of the generated codes, PATUS generates parameterized stencil
codes, which then interface with an autotuner for specific parameter value selection.
The PATUS framework differs substantially from the LARA framework both in scope and ex-

pressive power. Whereas PATUS focuses exclusively on the specific notions in stencil domains,
and on its operators, LARA is a domain-specific language geared toward arbitrary computations.
Rather than relying on specific abstractions for a given domain, LARA leverages the transforma-
tional power of third-party engines. In addition, the join point model exported by LARA allows
users to develop very sophisticated transformation and mapping strategies clearly beyond the reach
of the PATUS approach given its limited set of abstractions.
Existing high-end compilers do not completely expose the set of transformations but rather only

allowed a limited set of them to be controlled by developers via pragma annotations. Research ef-
forts, such as CHiLL [47] and POET [48], have attempted to expose source-level transformations in
a controlled fashion by offering a script specification of the sequence of transformations and corre-
sponding parameters.
These analyses and transformation frameworks also differ from the LARA-based approach in

various respects. They have concentrated exclusively on source code transformations for either sci-
entific computing or, as is the case of POET, on multilanguage translation focusing on the important
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issue of performance and autotuning for performance portability. Instead, the LARA-based ap-
proach bridges the gap between hardware synthesis and software compilation. In addition to
directing transformation engines, LARA allows programmers to customize, in a nonintrusive
way, the source code to be used by other tools. Uses of LARA regarding code transformations
and compiler optimizations as the main actions are presented in Refs. [9, 10].
In the context of DSE, there have been approaches to enable developers to customize the compo-

sition and parameterization of design transformations through scripting, in order to automatically
derive designs that can meet specific goals (e.g., Ref. [49]). LARA complements DSE approaches
by providing a unifying DSE platform, which captures and enacts evolving strategies with full de-
sign flow control [9]. As shown in Ref. [11], LARA can be used to specify sophisticated DSE strat-
egies involving all the stages of a design flow.

8. CONCLUSION

This article presented a novel AOP language named LARA, which provides separation of concerns,
including NFRs and strategies, for the mapping of high-level applications to high-performance het-
erogeneous embedded systems. We described how LARA supports code instrumentation, code in-
sertion, profiling customization, and selection of critical code sections for hardware acceleration, all
in the context of development for embedded computing systems. Our LARA-based tools have been
evaluated with real-life industrial C applications and the experimental results provide strong evi-
dence of its usefulness and practical benefits in terms of application and performance portability
and programmer productivity and portability across distinct target architectures.
We see the flexibility of aspect-oriented approaches, such as the one presented in LARA, as a key

programming technology that will enable developers to meet increasingly demanding challenges in
developing embedded systems. Ongoing work is focusing on the dynamic weaving support for the
LARA technology and on the traceability and dependability aspects for specifying sequences of
code transformations and compiler optimizations. Future work will address a meta-model for
LARA aspects that will be mapped to join point and attribute models of different host languages,
to allow aspects to be reused across multiple software languages (e.g., C and MATLAB).
A number of demos providing the use of LARA to control/guide different compilers are available

online: MATISSE¶ (a MATLAB to C compiler), Reflectc| (a C compiler), and MANET** (a tool for
source-to-source transformations).
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