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Abstract—Gaussian Mixture Models (GMMs) are widely used in many applications such as data mining, signal processing and
computer vision, for probability density modeling and soft clustering. However, the parameters of a GMM need to be estimated from
data by, for example, the Expectation-Maximization algorithm for Gaussian Mixture Models (EM-GMM), which is computationally
demanding. This paper presents a novel design for the EM-GMM algorithm targeting reconfigurable platforms, with five main
contributions. First, a pipeline-friendly EM-GMM with diagonal covariance matrices that can easily be mapped to hardware
architectures. Second, a function evaluation unit for Gaussian probability density based on fixed-point arithmetic. Third, our approach is
extended to support a wide range of dimensions or/and components by fitting multiple pieces of smaller dimensions onto an FPGA
chip. Fourth, we derive a cost and performance model that estimates logic resources. Fifth, our dataflow design targeting the Maxeler
MPC-X2000 with a Stratix-5SGSD8 FPGA can run over 200 times faster than a 6-core Xeon E5645 processor, and over 39 times faster
than a Pascal TITAN-X GPU. Our design provides a practical solution to applications for training and explores better parameters for
GMMs with hundreds of millions of high dimensional input instances, for low-latency and high-performance applications.

Index Terms—Gaussian Mixture Model, Expectation Maximization, High Performance Computing, Data Flow Engine, Reconfigurable
hardware, Algorithms implemented in hardware.

F

1 INTRODUCTION

GAUSSIAN Mixture Models (GMMs) are widely used in
many applications such as data mining, signal process-

ing and computer vision, for probability density modeling
and soft clustering. For example, Greenspan et al. propose
an image segmentation system to identify issues in magnetic
resonance images of the brain where GMMs are employed
to capture the spatial layout information of brain tissues [1].
In Reynolds’s speaker verification system used successfully
in several NIST Speaker Recognition Evaluations (SREs),
GMMs models the acoustic classes of a speaker’s voice [2].
Stauffer et al. design a computer vision system to subtract
the background from video streams and GMMs are used
to judge whether a pixel belongs to the background in a
probabilistic manner [3].

Before working with the GMM probability density
model, which is governed by a set of parameters, param-
eters of the GMM density model need to be estimated
in advance. Maximum Likelihood Estimation (MLE) bears
much importance in the world of parameter estimation.
Expectation Maximization (EM) algorithm is widely used
for the MLE estimation. EM for Gaussian Mixture Models
(EM-GMM), a particular adaptation of the EM algorithm is
a popular estimation solution to estimate the GMM density
model [4]. It estimates the parameters of a GMM in an
iterative manner. In each iteration, the algorithm computes
and collects statistical evidence from the data set and then
updates the parameters based on the evidence.

In recent years, the EM-GMM algorithm becomes in-
creasingly computationally demanding since the develop-
ment of high-definition sensors and novel Internet technol-
ogy leads to a fast growth of data size. The more efficient
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the EM-GMM algorithm is, the more data can be used for
parameter estimation and will result in better parameters.
Some applications expect the EM-GMM algorithm to be a
fast response or even low-latency such as real-time object
tracking [3].

This paper presents a novel design for the EM-GMM
algorithm targeting reconfigurable platforms. We provide
a fast parameter estimation system that handles most of
the computations in the EM-GMM algorithm in a fully
pipelined manner and provide a high performance and low-
latency EM-GMM engine for real-world applications. Our
major contributions are as follows:

• We restructure the workflow of the original EM-
GMM algorithm with algorithmic transformations
to enable pipelining of different computation stages,
resulting in a pipeline-friendly EM-GMM algorithm.

• We propose a customized design of the Gaussian
probability density evaluation unit that minimizes
the hardware cost while achieving satisfactory accu-
racy.

• While the limited hardware resource of an FPGA
chip can only fit designs with a small dimension
(D) and component (K) parameter, we propose a
generalized decomposition scheme that supports a
wide range of D and K values.

• We propose a cost and performance model that esti-
mates the possible necessary logic units given a set
of configurations with a certain confidence.

• We map our design to two FPGA platforms, the
Xilinx Virtex-6 platform and the Altera Stratix-V plat-
form, achieving a maximum of 207 times speedup
over a 6-core Xeon E5645 processor, and 39 times
over a Pascal TITAN-X GPU solution.
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The first two contributions map the EM-GMM algorithm
to FPGA effectively and efficiently, achieving more than
500x speedup over one CPU core [5]. The third contribution
provides a general solution to support a wide range of
dimensions or/and components by fitting multiple pieces
of smaller dimensions or/and components into the limited
space of an FPGA chip, which makes our design a high-
performance engine for real-world applications. A cost and
performance model also saves users a large amount of time
on hardware compilation, and enables them to analyze the
possible resource usage and performance gain more quickly.

The rest of this paper is organized as follows. Section 2
provides an introduction to GMMs and the EM-GMM algo-
rithm, and discusses existing high performance computing
solutions for the EM-GMM algorithm. Section 3 presents
our hardware friendly EM-GMM framework. Section 4 de-
scribes our restructured pipeline-friendly EM-GMM algo-
rithm. Section 5 presents our customized evaluation unit for
Gaussian probability density function. Section 6 gives us an
algorithm to split dimensions and components on hardware
if the logic resources are not enough. Section 7 shows
some experimental results on accuracy and performance
of our design compared with two CPU-based systems and
one GPU-based system. This section also provides us an
equation to estimate the required logic resources for a given
configuration. Finally, Section 8 provides a brief conclusion
and discusses possible future work.

2 BACKGROUND

2.1 Gaussian mixture models

A Gaussian Mixture Model (GMM) is a linear combination
of multiple Gaussian distributions. A GMM with K Gaus-
sian components can be represented in the form

p(xn) =
K∑
k=1

wkG(xn|µk,Θk) (1)

where

• xn = (xn1, xn2, · · · , xnD) is a vector representing a
data instance with D attributes. It can be considered
as a point in a D-dimensional Euclidean space.

• G(xn|µk,Θk) is a Gaussian probability density con-
trolled by mean vector µk = (µk1, µk2, · · · , µkD)
and covariance matrix Θk. The probability density
function can be mathematically defined by

G (xn|µk,Θk) =
e−

1
2 (xn−µk)T Θ−1

k
(xn−µk)

(2π)
d/2 |Θk|1/2

(2)

The probability density function G (xn|µk,Θk) is
referred to as the k-th Gaussian component of the
GMM.

• wk is the mixture weight (or mixture coefficient)
of the k-th Gaussian component. The mixture co-
efficients w1 . . . wK must be non-negative numbers
satisfying

K∑
k=1

wk = 1 (3)

To sum up, a Gaussian mixture model is governed by
three parameter sets: mixture weights {w1 . . . wK}, mean
vectors {µ1 . . . µK} and covariance matrices {Θ1 . . .ΘK}.

The covariance matrices can either be full rank or con-
strained to be diagonal. The choice of the configuration is
usually determined by the amount of data available for esti-
mating the GMM parameters and how the GMM is used in
a particular application. Although the full rank covariance
matrices can be used if some degree of correlation exists
between the features, the linear combination of diagonal
covariance enables basis Gaussians to model the correlations
between feature vector elements [6]. In most situations, the
density modeling of a D-dimensional full covariance matrix
can well be approximated using a larger order diagonal
covariance matrix [2] [6] [7] [8].

In addition, the diagonal matrix GMMs outperform full-
matrix GMMs empirically in some applications such as the
signature verification and speaker identification in terms
of accuracy and robustness [9] [10]. Another benefit of
using diagonal matrix GMMs comes from the computation
complexity since the repeated inversions of a D×D matrix
are not required in diagonal-matrix GMMs, which is more
computationally efficient especially on reconfigurable plat-
forms [2].

In this study, we assume that the covariance matrices for
all Gaussian components are diagonal. Therefore a covari-
ance matrix Θk must satisfy

Θk = diag
(
σ2
k

)
(4)

where σ2
k = (σ2

k1, σ
2
k2, . . . , σ

2
kD) is a vector of variance

value.
This assumption is widely taken by a variety of studies

about GMMs such as [3], [11], [12], [13] and [9]. It simpli-
fies the evaluation of Gaussian probability density function
(PDF) while keeping or even improving the accuracy and
robustness.

2.2 Expectation-maximization for GMMs

One elegant method of parameter estimation is the
Expectation-Maximization (EM) algorithm. The EM algo-
rithm is a general way to solve parameter estimation prob-
lems in machine learning. A particular adaptation of the EM
algorithm, EM for Gaussian mixture models (EM-GMM), can
be used to estimate the parameters of a GMM.

The EM-GMM algorithm estimates the parameters of
a GMM in an iterative manner. We first choose an initial
parameter set arbitrarily and then update the parameter
set by alternating between the following two steps until a
predefined convergence condition is met:

• Expectation step (E step): Compute a responsible
value rnk for each data instance xn with respect to
each Gaussian component k using the current esti-
mation of parameter value {w1 . . . wK}, {µ1 . . . µK}
and {Θ1 . . .ΘK}. More specifically, the responsible
value rnk is defined and computed by

rnk =
wkG(xn|µk,Θk)∑K
j=1 wjG(xn|µj ,Θj)

(5)
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1: procedure SERIAL EM-GMM . Original EM-GMM
2: while stop condition not met do
3: for n← 1 to N do
4: s← 0
5: for k ← 1 to K do
6: gk ← wkG(xn|µk,Θk)
7: s← s+ gk
8: for k ← 1 to K do
9: rnk ← gk

s

10: Nk ← 0, w ← 0, µ← 0, σ ← 0
11: for all n ∈ 1 . . . N, k ∈ 1 . . .K do
12: Nk ← Nk + rnk
13: for all k ∈ 1 . . .K do
14: wk ← Nk

N

15: for all n ∈ 1 . . . N, k ∈ 1 . . .K, d ∈ 1 . . . D do
16: µkd ← µkd + rnkxnd

Nk

17: for all n ∈ 1 . . . N, k ∈ 1 . . .K, d ∈ 1 . . . D do
18: σ2

kd ← σ2
kd + rnk(xnd−µkd)2

Nk

19: for all k ∈ 1 . . .K do
20: Θk ←diag(σ2

k)

21: end procedure

Fig. 1. Serial EM-GMM algorithm

• Maximization step (M step): Estimate new parame-
ter sets

{
w+

1 . . . w
+
K

}
,
{
µ+

1 . . . µ
+
K

}
and

{
Θ+

1 . . .Θ
+
K

}
with the responsible value obtained in the E step.
Then replace the old parameter sets by new ones.
More specifically, the new parameter sets are com-
puted by

w+
k =

Nk
N

(6)

µ+
k =

∑N
n=1 rnkxn
Nk

(7)

Θ+
k =

∑N
n=1 rnk(xn − µ+

k )(xn − µ+
k )T

Nk
(8)

where

Nk =
N∑
n=1

rnk (9)

The original EM algorithm for Gaussian mixture models
is shown in Fig. 1. Sufficient details are provided in the
pseudocode to expose the patterns in memory access and
computations. In Fig. 1, Line 3 to Line 9 correspond to
the expectation step; Line 10 to Line 20 correspond to the
maximization step.

Fig. 2 shows an example of the EM-GMM algorithm on
a set of two-dimensional data instances. The two concentric
ellipses stand for two Gaussian components respectively. In
each component, the data instance located at the inner of
an ellipse has larger responsible value with respect to the
Gaussian component represented with the solid ellipse. In
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Fig. 2. Example run of EM-GMM

our contour, the orange ellipse represents the largest value
while the violet one represents the smallest value.

2.3 Existing acceleration system for the EM-GMM
There are some existing acceleration solutions for the EM-
GMM algorithm based on different platforms such as clus-
ters and Graphics Processing Units (GPUs).

Kwedlo [14] implement the EM-GMM models on a
NUMA system using OpenMP. They use a row-wise block
striped decomposition of large arrays storing feature vectors
and posterior probabilities. Additionally, some NUMA op-
timizations are also described. Their experiments show that
the algorithm scales very well with respect to the number
of cores, achieving over 50 times speedup with 64 cores.
Also, the NUMA optimizations significantly improve its
performance.

Yang et al. [15] propose and implement a comprehen-
sively optimized parallel learning system on multicore clus-
ters for GMM model, named Distrim. The system promotes
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memory sharing among threads, maximizes the usage of
computational resources of multicore clusters and decreases
time and space consumption. Their experiments, which is
deployed on a 30-node cluster demonstrates that Distrim
outperforms Hadoop in terms of both efficiency (2 to 40
times faster) and scalability.

Kumar et al. [11] and Andrew Pangborn [16] present
an implementation of EM-GMM using GPUs following the
’single instruction multiple threads’ model. The speed of
this implementation scales up with the number of GPU
cores. In Kumar’s experiments, the implementation achieves
a maximum of 164 times speedup compared to a naive
single-threaded C implementation on the CPU platform.
Machlica et al. [17] also presents an efficient and robust
implementation of the estimation of GMM statistics used in
the EM algorithm on GPU. Compared with [11] and [16], it
pays more attention to the memory management of the data
adhering to the rules of coalesced access and reuse the data
as much as possible, thus achieving at least 5 times speedup
over Kumar [11] in nearly the same configuration.

While training the parameters of EM-GMM, the larger
number of input samples we trained, the better result we
may have. Although a large amount of work focusing on
accelerating EM-GMM on CPU and GPU platforms greatly
improves the performance, the EM-GMM still expects more
computing power to train more inputs with larger dimen-
sion or component parameters. The reconfigurable platform
such as FPGA is a good alternative to CPU and GPU for
EM-GMM training due to its hardware-based computing
characteristic. Some work of optimizing EM-GMM on FPGA
[18] [19] improves the performance a lot only certain cir-
cumstances, such as small dimension parameter, few sam-
ples. As the EM-GMM algorithm is not naturally fit into
FPGA and the limited space of an FPGA chip can only
fit designs with a small dimension (D) and component (K)
parameter, there is much potential to further improve the
performance if the EM-GMM algorithm can be transformed
into a pipeline-friendly one. Also, Designing strategies to
support a wide range of dimension and component param-
eters on reconfigurable platforms makes it a practical HPC
EM-GMM engine to real-world applications.

3 A HARDWARE-FRIENDLY EM-GMM DESIGN

We first propose a new algorithm, the pipeline-friendly EM-
GMM algorithm that is easier to be adapted and imple-
mented as well as more effective on reconfigurable plat-
forms. This algorithm comprises two parts. The collection
procedure of statistical evidence contains the major compu-
tation of E steps and M steps, thus it is the most computa-
tionally demanding part of the algorithm. The procedure of
updating parameters from the result of previous collection
step is invoked infrequently compared with the collection
procedure. In our hardware framework, we map the proce-
dure of collection to the reconfigurable logics while leaving
the process of updating parameters to the CPUs (shown in
Fig. 3)

The collection of statistical evidence includes multipli-
cation and addition operations that are proportional to the
number of dimensions and components of the EM-GMM

Prepare data for DFE

Not 
Converged

Customized EM-
GMM Alglrithm

Precision Control, 
customized PDFs

Scale dimensions  
and components 

Data Flow Engine

Collection of Statistical Evidence

Update Parameters

Fig. 3. Hardware-friendly EM-GMM framework

algorithm. After mapping the pipeline-friendly EM-GMM
algorithm framework to the reconfigurable platform, it is
likely that such kind of design can only support models
with a small number of dimensions and components. For
real applications like speaker recognition [2] [20] [21] and
image segmentation [22] [23] [24] where the dimensions of
the data set and the components clustered range from tens to
hundreds, directly mapping the pipeline-friendly EM-GMM
algorithm to reconfigurable platforms becomes inapplicable
because the hardware logic resources are not enough.

By carefully profiling and analyzing the existing hard-
ware design, we summarize that

• all numbers are represented by IEEE standard 32-
bit single precision floating point. The floating-point
arithmetic operators are quite resource-expensive.

• most logic resources contribute to the computation
of Gaussian probability density function. It contains
not only simple arithmetic like addition, subtraction,
multiplication, and division, but also square root
and exponential functions. Note that floating-point
square root and exponential function evaluations are
extremely expensive on hardware.

• the computational cost of Gaussian PDF is propor-
tional to the product of D and K. So increasing D or
K will increase logic resources significantly. In our
straightforward design, we only support D=2 and
K=2.

To achieve a dedicated hardware engine to support
real applications, we propose the following three possible
solutions to the challenges mentioned above accordingly.

• We use customized fixed-point number representa-
tion. By carefully profiling each variable for a given
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data set and configuration, fined-grain tuned fixed-
point representation results in better performance
and less resource usage as well as enough accuracy.

• A customized piece-wise linear function approxima-
tion to the Gaussian PDF. Piece-wise linear func-
tion outperforms Gaussian PDF in terms of logic
resources usage. After carefully choosing the number
of pieces and the coefficients of the function, it can
achieve an accurate enough or even better result
compared to Gaussian PDF.

• We propose algorithms to support a wide range of
dimensions or/and components by fitting multiple
pieces of smaller dimensions or/and components
into the limited space of an FPGA chip. In this
way, even a single reconfigurable platform with lim-
ited resources can support real applications with
large dimensions and components, with a significant
speedup over CPU/GPU platforms.

4 A PIPELINE-FRIENDLY EM-GMM ALGORITHM

The original EM-GMM algorithm does not fit into a fully-
pipelined hardware design. This is because the data de-
pendency in the original EM-GMM algorithm makes it
impossible to stream the data only once in each EM iteration.

We propose a pipeline-friendly EM-GMM algorithm in
which the data set is only streamed once in each EM it-
eration. We named the algorithm pipeline-friendly EM-GMM
because it can easily be adapted and implemented as a fully-
pipelined hardware architecture.

4.1 Updating mixture weights and mean vectors
One important step to compute the new mean vectors is to
compute the value N1 . . . Nk. We set up a set of variables
η1 . . . ηK to collect statistical information about N1 . . . NK
such that N1 . . . NK can be calculated effortlessly at the end
of EM iteration.

Before any data instance is processed, η1 . . . ηK are ini-
tialized to zero. When the n-th data instance xn is loaded,
the responsible value rnk for all Gaussian components k
can be computed according to Equation 5 with the current
estimation of parameters. Then we update each element in
η1 . . . ηK by

ηk ← ηk + rnk (10)

When all the N data instances are processed, we have

ηk =

N∑
n=1

rnk = Nk (11)

By Equation 9 and 10, we can compute the new mixture
weights as follows

w+
k =

Nk
N

=
ηk
N

(12)

On the other hand, we use a set of vectors ρ1 . . . ρK
to collect statistical information about the weighted sum of
data instances. Initially, we set all members in ρ1 . . . ρK to
zero vectors. When a data instance xn arrives, we update
the elements in ρ1 . . . ρK by

ρk ← ρk + rnkxn (13)

When all the N data instances are processed, we have

ρk =
N∑
n=1

rnkxn (14)

Finally, at the end of the EM iteration, the new mean
vector for the k-th Gaussian component can be computed
by

µ+
k =

ρk
ηk

(15)

4.2 Updating variance vectors
We assume that the covariance matrices of all Gaussian com-
ponents are diagonal. Therefore, we may decompose the
value of each variance value in each Gaussian component
by Equation 4 and 8

σ2+
kd =

∑N
n=1 rnk(xnd − µ+

kd)
2

Nk

=

∑N
n=1 rnk

(
x2
nd − 2xndµ

+
kd +

(
µ+
kd

)2)
Nk

(16)

It can be further derived to

σ2+
kd =

∑N
n=1 rnkx

2
nd

Nk

−
∑N
n=1 2rnkxndµ

+
kd

Nk

+

∑N
n=1 rnk

(
µ+
kd

)2
Nk

(17)

We first focus on the second term in Equation 17. Along
with equation 7, we have∑N

n=1 2rnkxndµ
+
kd

Nk
= 2µ+

kdµ
+
kd = 2

(
µ+
kd

)2
(18)

We then focus on the third term in Equation 17. We have∑N
n=1 rnk

(
µ+
kd

)2
Nk

=
(
µ+
kd

)2 Nk
Nk

=
(
µ+
kd

)2
(19)

Substitute Equation 18 and 19 into Equation 17, we have

σ2+
kd =

∑N
n=1 rnkx

2
nd

Nk
−
(
µ+
kd

)2 (20)

We consider the transformation in Equation 20 valuable
because it enables us to compute the new covariance ma-
trices without streaming the data into the algorithm again.
Similar to the computation of the new mean vector, we use
a set of vectors, τ1 . . . τK , to collect statistical information
about the first term in Equation 20 and compute the value
of term at the end of the iteration.

Initially, we set all members in τ1 . . . τK to zero vectors.
When a data instance xn arrives, we update the elements in
τ1 . . . τK by

τk ← τk + rnkx
2
n (21)
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1: procedure PIPELINE-FRIENDLY EM-GMM
2: while stop condition not met do
3: for n← 1 to N do
4: ρ← 0, τ ← 0
5: s← 0
6: for k ← 1 to K do
7: gk ← wkG(xn|µk,Θk)
8: s← s+ gk
9: for k ← 1 to K do

10: r ← gk
s

11: ηk ← ηk + r
12: for d← 1 to D do
13: ρkd ← ρkd + rxnd
14: τkd ← τkd + rx2

nd

15: for k ← 1 to K do
16: wk ← ηk

N
17: for d← 1 to D do
18: µkd ← ρkd

ηk

19: σ2
kd ←

τkdηk−ρ2kd

η2
kd

20: Θk ←diag
(
σ2
k

)
21: end procedure

Fig. 4. Pipeline-friendly EM-GMM algorithm.

When all the N data instances are processed, we have

τk =

N∑
n=1

rnkx
2
n (22)

By Equation 15, 20 and 22, the variance vector can be
computed by

σ2+
kd =

τkd
ηk
− ρ2

kd

η2
k

=
τkdηk − ρ2

kd

η2
k

(23)

4.3 Algorithm summary

To summarize the algorithm transformations illustrated
above, we present the pipeline-friendly EM-GMM algorithm
as a piece of pseudocode in Fig. 4.

Note that the algorithmic transformation is lossless.
No numerical or algorithmic approximation was taken in
the transformation. Therefore, theoretically the pipeline-
friendly algorithm should generate exactly the same results
as the original one if we use the same dataset and same
initial parameter sets, although practically the two result
may be slightly different due to the change of computation
sequences in certain parts. Such a similarity suggests that
the pipeline-friendly algorithm will have similar accuracy
and convergence speed as the original one.

The fundamental difference between the original and the
pipeline-friendly EM-GMM is that the former requires data
to be streamed into the corresponding hardware architecture
three times while the latter only once. Other differences
include the following.

• The E step and the M step become overlapped in
the pipeline-friendly algorithm, while in the original

algorithm the M step does not start until the E step
ends.

• The original algorithm stores all the responsible
value in the expectation step, which is not neces-
sary. When the statistical information is collected in
pipeline-friendly EM-GMM, the corresponding re-
sponsible value is discarded safely.

The differences suggest that most of the computations
in the pipeline-friendly EM-GMM can be mapped to the
reconfigurable platforms. In this study, we move the collec-
tion procedure of statistical evidence to the FPGA platform
because they apply similar operations on a large number of
different data instances. We leave the rest of computations to
the CPU because they are infrequently invoked in compar-
ison to the collection of statistical evidence. Moving these
computations to the FPGA platform will waste valuable
logic resources.

Note that although the pipeline-friendly EM-GMM algo-
rithm is designed for the ease of hardware implementation,
it can be implemented in a software form. The software
implementation may have higher performance than the
original EM-GMM as it reduces the number of memory ac-
cesses. Related experimental results can be found in Section
7.

5 CUSTOMIZED GAUSSIAN PDF
The most complicated computation of the pipeline-friendly
EM-GMM is the evaluation of Gaussian PDF. We design a
Gaussian probability density function evaluation unit that
uses fixed-point arithmetic to achieve a similar level of
accuracy. We aim to achieve both low hardware cost and
satisfactory accuracy.

5.1 Function evaluation strategy
Thomas proposes a Piecewise-CLT and Table-Hadamard
Gaussian random number generators in FPGAs [25], [26].
Lee et al. [27] and Detrey et al. [28] design and optimize
function evaluation units for three elementary functions in
fixed-point arithmetic. They also provide a series of valuable
suggestion on function evaluation problem in general. In
our design, we are not proposing a general approach for
evaluating PDF. Instead, we employ a design that is fully
customized according to the accuracy requirement and in-
put value range of Gaussian PDF.

The basic method for computing Gaussian PDFs is
shown in Equation 2. Direct evaluation of such a function in
reconfigurable platforms like FPGAs is extremely expensive
as the function includes complicated computations such
as matrix determinant, square root, matrix inverse, matrix
multiplication and exponent.

Note that the diagonal covariance matrix suggests that
the attributes are conditionally independent. Therefore the
original PDF can be decomposed into a series of one-
dimensional Gaussian distribution functions.

G (xn|µk,Θk) =
D∏
d=1

G
(
xnd|µkd, σ2

kd

)
=

D∏
d=1

1

σkd

D∏
d=1

φ

(
xnd − µkd

σkd

) (24)
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where φ (u) is the standard one-dimensional Gaussian
PDF defined by

φ (u) =
e−

1
2u

2

√
2π

(25)

We can reduce the implementation cost of the Gaussian
PDF evaluation unit by considering the properties of stan-
dard one-dimensional Gaussian PDFs. First, the standard
Gaussian PDF φ (u) is even. We only need to approximate
the positive part of φ (u). For all u < 0, we compute φ (−u)
instead. Second, 99.7% of the observations fall within three
standard deviations of the mean in theory , and only a
small fraction of observations (0.3%) lies outside this range.
Therefore we only need to compute a relatively accurate
value when 0 ≤ u ≤ 3 where σ = 1 in our cases.

Besides, approximating the Gaussian PDF evaluation
units with other functions can further reduce the computa-
tional cost. When choosing the right approximation function
units, we are following the basic two guidelines:

• Minimize the complexity of the design. The polyno-
mial functions tend to be less expensive than the hy-
perbolic tangent. The nonpolynomial functions can
also be replaced by piecewise linear approximations
without losing the benefits of nonpolynomial func-
tions [29].

• The error between the two functions can be cal-
culated through symmetric Kullback-Leibler diver-
gence [30].

Thus, taking into account all these guidelines, we pro-
pose a method to approximate the standard Gaussian PDF
using piecewise linear approximation. We design our ap-
proximation function φ̂ (x) according to the following two
main design strategies:

• φ̂ (x) should be as accurate as possible when 0 ≤ x ≤
3. For all x > 3, we may manually set φ (u) to be a
small positive constant. This is to keep the statical
fidelity of the algorithm.

• The computations involved in φ̂ (u) should be as
simple as possible. For a piecewise linear function,
the cost of logic resources are highly related to the
number of pieces in the function.

To balance the trade-off between the two properties
and keep the error as small as possible, we choose to use
the following piecewise linear function to approximate the
standard one-dimensional Gaussian PDF.

φ̂ (u) =


−0.0781u+ 0.4041, 0 ≤ u < 0.4053
−0.2183u+ 0.4609, 0.4053 ≤ u < 1.8340
−0.0568u+ 0.1647, 1.8340 ≤ u ≤ 3.0

φ̂(3.0), u > 3.0
(26)

It can be observed from Fig. 5 that the piecewise linear
approximation fits the real Gaussian PDF well. Notes that
inaccurate Gaussian PDF value may not lead to negative
results in GMM-based systems if the error is properly con-
trolled [31]. Therefore we consider our function approxima-
tion accurate enough as the absolute error is below 0.005

u
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Fig. 5. Approximate one-dimensional Standard Gaussian PDF

for most of the input value. Moreover, the function involves
only three multiplication operations, which is inexpensive
in terms of resource consumption on most reconfigurable
platforms. We will further show the accuracy of the approx-
imation function when applying it to test cases in section
7.

5.2 Precision control with shifting

Consider the product of standard one-dimensional Gaussian
PDF value in Equation 24

H (xn|µk, σk) =

D∏
d=1

φ

(
xnd − µkd

σkd

)
(27)

This product may become a very small positive value
when D is large. More specifically, for a data instance xn in
a D-dimensional space, the maximum possible value of this
product is

pmax (D) = maxH (xn|µk, σk)

=
D∏
d=1

1√
2π

= (2π)
(−D/2)

(28)

The function decreases exponentially towards zero. We
aim to control the value of pmax (D) to be a constant for
the ease of allocating a proper number of bits to represent a
result. Note that if we shift each result of one-dimensional
Gaussian PDF evaluation to the left by h bits, the corre-
sponding maximum value is

p
′

max (D) = 2hD · (2π)
−D/2

= 2(h−1/2)D · π−D/2 (29)

Take logarithm on both sides with base 2, we have

log2 2(h−1/2)D + log2 π
−D/2 = log2 p

′

max (D) (30)

To control the maximum value of this function, we may
set p

′

max = 1 to build constant shifting scheme regardless
of the value of D. More specifically, by taking p

′

max = 1,
Equation 30 can be simplified as
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(
h− 1

2

)
D − D

2
log2 π = 0 (31)

Note that D can be canceled as D > 0. We can then solve
the equation with respect to h

h0 =
1

2
(log2 π + 1) (32)

Note that h0 ≈ 4
3 , which means that shifting 4 bits in

3 evaluations could be an approximation solution. we con-
sider shifting 2 bits every 3 evaluations and 1 bit otherwise.
Let ht be the number of bits shifted in the t-th Gaussian PDF
evaluation, then

ht =

{
2, if mod (t, 3) = 1
1, otherwise (33)

Taking this shifting scheme, the maximum value of the
product is controlled to be less than 1.5 when D ≤ 20.

6 EXPANDING COMPONENTS AND DIMENSIONS

Gaussian mixture model (GMM) is widely used in different
applications. In some applications like image segmentation,
the major challenge is to feed the high-dimensional obser-
vations to the EM-GMM algorithm, while other applications
like handwriting recognition are targeting clustering a large
number of components. It is highly important that our
pipeline-friendly algorithm on reconfigurable platforms is
able to support different kinds of real applications.

However, the limited logic resources are the major ob-
stacles when mapping EM-GMM with large dimensions
and components on hardware platforms. Even if applying
our customized Gaussian PDF evaluation function in fixed
points representation, which dramatically reduces logic
units, our design can only support observations with D=6
and K=6 at the same time. In this section, we propose our
methods to support a wide range of components (K) and
dimensions (D) of pipeline-friendly EM-GMM on reconfig-
urable platforms in order to provide a unified solution to
real-world applications.

6.1 Expanding components (K)
For configurations where all components and dimensions
cannot be mapped to the hardware, we have to trade
off between performance and resources. According to the
profiling result mentioned in section 3, the evaluation of
Gaussian PDFs costs most of the logic units. Moreover, it is
proportional to the number of components directly as we
can see from the EM-GMM algorithm (Fig. 4).

In order to achieve the throughput goal of one datum
per cycle, the loop is unrolled. It does so at the expense of
logic consumption, where the loop body logic, is replicated
for every Gaussian component. However, when the number
of Gaussian components turns large, the required logic re-
sources may exceed the maximum resources on one FPGA.
We propose a supplement to the fully pipelined-friendly
algorithm in Fig. 4 in order to deal with the situations where
the number of Gaussian components, K, is quite large.

Figure 6 shows the approach to scale the number of
components in hardware. Instead of cascading all Gaussian

1: procedure PIPELINED-FRIENDLY EM-GMM-2
2: while stop condition not met do
3: for n← 1 to N do
4: ρ← 0, τ ← 0
5: s← 0
6: j ← 1
7: while j ≤ K do
8: for k ← j to j + h do
9: gk ← wkG(xn|µk,Θk)

10: s← s+ gk
11: j ← j + h

12: for k ← 1 to K do
13: r ← gk

s
14: ηk ← ηk + r
15: for d← 1 to D do
16: ρkd ← ρkd + rxnd
17: τkd ← τkd + rx2

nd

18: for k ← 1 to K do
19: wk ← ηk

N
20: for d← 1 to D do
21: µkd ← ρkd

ηk

22: σ2
kd ←

τkdηk−ρ2kd

η2
kd

23: Θk ←diag
(
σ2
k

)
24: end procedure

Fig. 6. A Pipelined-friendly EM-GMM algorithm dealing with the circum-
stance when the Gaussian components K is quite large. A tiling alike
approach is designed to make a tradeoff between the performance and
logic resources.

probability density function evaluation units of different
Gaussian components into FPGA all at once, only a fixed
number (h) of them are deployed and reused for different
components. For the simplicity of explanation, we assume
that

K = h · l (34)

When a data instance xn is transferred to the data flow
engine, it takes l cycles to evaluate K Gaussian PDFs, with
each cycle collecting hGaussian PDFs simultaneously. In the
first 1 to l−1 cycles, the logics for updating η, ρ, τ (from line
12 to 17 in Fig. 6) are idle because the sum of all the Gaussian
PDFs (denoted as s at line 10 in Fig. 6) is not ready yet.
These logic units work every l cycles when the dependency
is satisfied.

In theory, h and l can be set to any value as long as
the equation is satisfied. The correctness of the design is
guaranteed. However, the value of h stands for the num-
ber of Gaussian probability function evaluation units work
simultaneously each cycle, thus it greatly influences the
overall performance of the hardware design. The larger the
value of h is, the more efficient of the design is. Generally,
we suggest that h should be set as the largest possible value
supported by the available hardware resources.

6.2 Expanding dimensions (D)
For some applications which need high dimensional data,
the design has to handle situations when it cannot hold
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1: procedure ABBREVIATED EM-GMM
2: for n← 1 to N do
3: for k ← 1 to K do . compute each PDF
4: gk ← wkG(xn|µk,Θk)

5: s =
k∑
k=1

gk . sum PDFs

6: for k ← 1 to K do . update η, ρ, τ
7: update η, ρ, τ
8: end procedure

Fig. 7. Abbreviated EM-GMM algorithm

all dimensions of data when calculating the Gaussian PDF.
So, in this subsection, we discuss how to configure a fixed
number of dimensions and reuse the logic to iterate through
all dimensions.

The operations on each data instance in the pipelined-
friendly EM-GMM algorithm (Fig. 4) can be abbreviated to
three steps: 1) compute each Gaussian PDF, 2) sum all PDFs,
3) update η, ρ, τ .

Step 1 and Step 2 correspond to the E-Step and Step 3
corresponds to the M-step of the EM-GMM algorithm. The
dimension (D) is accessed both in E-step and M-step. We
also see from abbreviated EM-GMM algorithm (Fig. 7) that
the two references of D are not continuous. This is the major
challenge in scaling D on FPGAs. When evaluating gk, each
data instance with its dimensionsD = {d1, d2, . . . , dn} have
to be scanned at the same cycle according to equation 24. It
is impossible to split D-dimensional data to multiple pieces,
streaming only part of D = {d1, d2, . . . , dn/2} in the first cy-
cle, then streaming the rest of D = {dn/2+1, dn/2+2 . . . , dn}
in the second cycle.

If D is extremely large, we need to decrease k inevitably
as the logic resources in one FPGA are limited. Performing
such kind of operation goes to the opposite side of the
expanding K optimization described in the last subsection.

6.2.1 Case 1: k = 1

In order to illustrate the idea of expanding D, we first
discuss a simple case where the number of clusters is 1.
Assuming that logic resources in one FPGA can only sup-
port the EM-GMM algorithm with the maximum dimension
D to 3, but the input data instances are of dimension D of 9.
By changing the order of E-step and M-step, the evaluation
of Gaussian PDF g can be decomposed to multiple cycles.
Equation 35 explains the basic philosophy.

g1 = w1

9∏
d=1

φ

(
xnd − µ1d

σ1d

)

= w1

3∏
d=1

φ

(
xnd − µ1d

σ1d

)
·

6∏
d=4

φ

(
xnd − µ1d

σ1d

)

·
9∏
d=6

φ

(
xnd − µ1d

σ1d

)
(35)

Figure 8 shows how each 9D input data instance is
split into three 3D ones. In this design, limited logic

g

cnt % 3 == 0

data

X

N

delay

Update 
η, ρ, τ 

X

Y

,

,

,

ω 

Fig. 8. Scale dimensions (D) when k = 1

resources contributes to the mathematical calculation of
i+2∏
d=i

φ
(
xnd−µ1d

σ1d

)
, which is repeatedly used 3 times for a 9D

data instance. In each cycle, the intermediate result of each
product is stored in BRAM of FPGA. In this example, we
follow the following steps:

• compute g(1)
1 = w1

3∏
d=1

φ
(
xnd−µ1d

σ1d

)
, and store g(1)

1

into BRAM.

• compute g(2)
1 = g

(1)
1

6∏
d=4

φ
(
xnd−µ1d

σ1d

)
, where g(1)

1 is

read from BRAM in this cycle. we then put g(2)
1 back

to BRAM.

• compute g(3)
1 = g

(2)
1

9∏
d=7

φ
(
xnd−µ1d

σ1d

)
, where g(2)

1 is

also read from BRAM in this cycle. Now we have
s = g

(3)
1 . In this cycle, we also evaluate η, ρ, τ when

s is ready.

6.2.2 Case 2: k > 1

Now we discuss a more complex situation where the num-
ber of clusters k is greater than one and the dimension of
the data instances is still quite large. The solution of this
situation is a combination of the last two points.

• for k ≥ 1, we follow the ideas in section 6.1 by
calculating a fixed number of clusters in a single
cycle in FPGA and repeat this operation in multiple
cycles to iterate through all clusters.

• for a large dimension D, we follow the ideas in
section 6.2.1. From the view of the algorithm, we
reorder the calculation sequence by updating the s
in the last step. Then we can configure the FPGA to
calculate part of the dimensions of the data instances
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and store the intermediate results in BRAM. At the
cycle while iterating all dimensions and s is ready,
we update the parameters η, ρ, τ .

7 EXPERIMENT

We choose the Maxeler Data Flow Engine (DFE) as our
primary reconfigurable platform for its programming flexi-
bility and performance [32].

The simplest and most widely used initialization strate-
gies, the random initialization, are employed to generate
data for our experiments [33] [34]. More specifically, we pick
K-cluster data points randomly as mode means followed by
initializing the individual covariance as the covariance of
the input data. To further maximize the likelihood, we re-
peat the initialization process multiple times from different
random positions and select the solution maximizing the
likelihood among those runs [33].

One of the restrictions in our design is the form of the di-
agonal covariance matrix. However, the effect of using a set
of full covariance matrix Gaussians can be equally obtained
by using a larger set of diagonal covariance Gaussians [6].
Therefore, our pipelined EM-GMM design can overcome the
restriction in some degree if it is able to train GMM parame-
ters from data sets with large dimension (D) and component
(K). We generate and test 12 cases with the dimension (D)
ranging from 6 to 96 and the component (K) ranging from
2 to 256. 106 data instances are sampled for each test case.
In each test case, we run the EM-GMM algorithm for 10
iterations and compare the accuracy, performance, power
consumption, etc. with the CPU and GPU platforms.

Our design is able to support test cases with much
larger D and K configurations. However, the GPU-based
EM implementation in [16] whose source code is available
at [35] can only support at most 96-dimensional data due
to the limited shared memory on the latest GPUs. So we
also restrict D to 96 in order to have a fair performance
comparison.

7.1 Accuracy Results

We test the accuracy of three implementations: (1) a CPU
implementation of the original EM-GMM algorithm; (2)
a CPU implementation of the pipeline-friendly EM-GMM
algorithm; (3) an FPGA implementation of the pipeline-
friendly EM-GMM algorithm.

The accuracy of a system is described by the average
log-likelihood value [36] of the estimated parameters with
respect to the data set. Larger log-likelihood value suggests
better accuracy. Using the same data set and same initial
parameters, we take the GMM parameters estimated by
the three implementations after each iteration and compute
the average log-likelihood respectively. Experimental results
about accuracy are plotted in Fig. 9. As the differences in
the accuracy between the two CPU implementations are too
small to be visible, they are plotted as a single curve in each
plot.

We can observe from Fig. 9 that our solution on recon-
figurable platforms and the CPU-based solutions lead to
similar accuracy after the same iteration for the same data

set. The similarity on the accuracy suggests that the approx-
imate Gaussian PDF evaluation unit is reliable. Moreover,
our solution sometimes generates more accurate results than
the CPU-based ones. We consider it very interesting as we
do not expect a system involving approximations to be
more accurate than the original one. We do not know the
underlying reason behind this observation but it is probably
because we use a small constant for small PDF value instead
of zero, which may prevent the algorithm from premature
convergence. Similar observations can be found in Monto
Carlo localization in robotics [37].

7.2 Performance Results and Comparisons
7.2.1 CPU Performance
The performance is described by the number of data in-
stances processed in every second. A data instance is con-
sidered to be processed in an iteration when all the compu-
tations related to the data instance are done in that iteration.
We first test the performance of two CPU implementations,
the standard EM-GMM algorithm, and our fully pipelined
EM-GMM algorithm. In order to get comparable results,
both methods are implemented in C++ and are highly
optimized. The optimization strategies include the highest
compiler optimization flags (-fast, -O3, -openmp) in the Intel
compiler (icpc, version 2013.sp1), the vectorization, and the
multi-thread executions with OpenMP.

The two CPU implementations are deployed on an Intel
Xeon E5645 server, which has 6 physical cores running at
2.4GHz and 24GB DDR3 memory. As the server is virtu-
alized to 12 logical cores, we run the parallel EM-GMM
algorithms with 1 to 12 threads and collect the best result
as the performance future comparisons.

The performance result of the two CPU implementation
is shown in Table 1. The performance of the standard EM-
GMM algorithm and the pipelined one are recorded by
“EM” and “PL-EM” respectively, and the speedup of P-EM
over EM is recorded by “SUC”. The pipelined EM-GMM
algorithm achieve better performance than the standard
one on the CPU platform, as we predicted in Section 4.3.
The performance gain of the pipelined EM-GMM algorithm
mainly comes from two aspects. Firstly, the customized
PDF evaluation units eliminate the evaluation of compli-
cated math arithmetics such as exp. The multiplication-
addition evaluation form in our customized PDF facilitates
the use of SIMD instructions. Secondly, the workflow of the
pipelined EM-GMM algorithm merges four loops iterating
each data instance into only one loop, which enables each
data instance to isolate from others, resulting in better cache
utilization because of the data locality.

7.2.2 GPU Performance
We also compare the systems with a GPU implementation
described in [16]. We select it because the source code is
available at [35] and the authors demonstrated that [16]
outperforms other reference implementations. In addition,
[16] is more suitable to work with data sets configured with
large dimensions and components compared with the GPU
implementation described in [11] because the latter stores
the K × D × N matrix completely into the GPU memory



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2712152, IEEE
Transactions on Computers

11

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-14.65

-14.6

-14.55

-14.5

-14.45

-14.4

-14.35

FPGA
CPU

(a) Case #1 (D=6, K=2)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-19.5

-19

-18.5

-18

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

FPGA
CPU

(b) Case #2 (D=6, K=4)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-15.3

-15.2

-15.1

-15

-14.9

-14.8

-14.7

-14.6

FPGA
CPU

(c) Case #3 (D=6, K=6)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-61

-60

-59

-58

-57

-56

-55

-54

FPGA
CPU

(d) Case #4 (D=16, K=8)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-64

-62

-60

-58

-56

-54

-52

FPGA
CPU

(e) Case #5 (D=16, K=16)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-64.2

-64.1

-64

-63.9

-63.8

-63.7

-63.6

FPGA
CPU

(f) Case #6 (D=16, K=32)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-250

-200

-150

-100

FPGA
CPU

(g) Case #7 (D=32, K=8)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-300

-280

-260

-240

-220

-200

-180

-160

FPGA
CPU

(h) Case #8 (D=32, K=16)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-360

-340

-320

-300

-280

-260

-240

-220

-200

-180

FPGA
CPU

(i) Case #9 (D=32, K=32)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

-600

FPGA
CPU

(j) Case #10 (D=96, K=64)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-1700

-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

FPGA
CPU

(k) Case #11 (D=96, K=128)

Iteration
1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 L

o
g

 l
ik

e
lih

o
o

d

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

FPGA
CPU

(l) Case #12 (D=96, K=256)

Fig. 9. Accuracy Results (Average Log-Likelihood)

at once in the M-step, which is not always feasible for large
data set. Note that the GPU implementation we use is not
pipelined [16].

Although [16] can work in both diagonal covariance
matrices and full covariance matrices, we configure it to
work only for the diagonal covariance to form a fairer
comparison because the full-covariance mode needs more
computations. Moreover, we compile and run the GPU
implementation in [16] on two platforms, the Nvidia Kepler
K40C and the Nvidia Pascal TITAN-X, which is the state-of-
art and the most powerful GPU currently. Apart from the
“-O3” optimization flag, we also add the compilation flags
“-arch sm 35” for Kepler K40C and “-arch sm 50” for Pascal
TITAN-X to maximize the performance of the latest GPUs.
Note that as the Pascal TITAN-X is a dual-GPU design, both
GPUs are used in our tests.

The GPU-based performance results of Kepler K40C and
Pascal TITAN-X are recorded by “K40C” and “TITAN-X”
in Table 1 respectively. The Pascal TITAN-X GPU can run
2.3-2.7 times faster than the Kepler K40C due to the higher
clock frequency, more computing cores and higher memory
bandwidth. The GPU implementation uses shared memory
to cache covariance matrices, but the shared memory is
the limited resource. The number of dimensions that the
GPU-based implementation supports is restricted by the
size of the shared memory of the GPUs. It supports 24-
dimensional data in [16] and in our cases, we can support

96-dimensional data. Note that although the Pascal TITAN-
X GPU owns 96KB shared memory which is twice as large
as the Kepler K40C, each sub GPU in TITAN-X owns 48KB
shared memory due to its dual-GPU design.

7.2.3 FPGA Performance

We deploy the FPGA implementation on two different plat-
forms. One is a Maxeler MAX3 acceleration card with a
Xilinx Virtex-6 FPGA chip running at 150MHz and 24GB
DDR3 onboard memory. The other is on a Maxeler MAX4
acceleration card with an Altera Stratix-V FPGA running at
200MHz to 250MHz and 48GB DDR3 onboard memory.

Experimental results are recorded in Table 1. The per-
formance on Virtex-6 and Stratix-V platforms are denoted
by “Virtex-6” and “Stratix-V” respectively. On each FPGA
platform, we compare the performance of pipelined EM-
GMM algorithm with those on the CPU and GPU platforms.
“SUP ” denotes the speedup of FPGA over the pipelined
EM-GMM algorithm, which is denoted by “PL-EM” on
the CPU platform, while “SUK” and “SUT ” represent the
speedup over the Kepler K40C and Pascal TITAN-X GPU
platforms respectively. It shows that our FPGA-based solu-
tion is significantly more efficient than other systems at least
in our tested cases.

In the first experiment, the FPGA is running at 150MHz
for all test cases. In the first three test cases where D =
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TABLE 1
Performance results (Instance per Seconds) of the pipelined EM-GMM algorithm on CPU, GPU and FPGA platforms

CPU Nvidia GPU Maxeler FPGA: Max3(Virtex-6) and Max4(Stratix-V)
Clock Freq 2.4GHz 745MHz 1.4GHz 150MHz 200Mhz - 250MHz
Memory 24GB 12GB 12GB 24GB 48GB

D K EM PL-EM SUC K40C TITAN-X Virtex-6 SUP SUK SUT Stratix-V SUP SUK SUT

6 2 4.17E6 4.86E6 1.17× 2.66E7 7.15E7 1.49E8 31× 6× 2× 2.48E8 51× 9× 3×
6 4 2.12E6 2.48E6 1.17× 1.69E7 4.02E7 1.49E8 60× 9× 4× 2.48E8 100× 15× 6×
6 6 1.45E6 1.70E6 1.17× 1.20E7 2.67E7 1.49E8 88× 12× 6× 2.48E8 146× 21× 9×
16 8 4.15E5 4.85E5 1.17× 3.47E6 8.12E6 3.70E7 76× 11× 5× 9.15E7 188× 26× 11×
16 16 2.05E5 2.39E5 1.17× 1.77E6 4.04E6 1.85E7 77× 10× 5× 4.57E7 191× 26× 11×
16 32 1.01E5 1.19E5 1.18× 8.23E5 1.98E6 9.25E6 78× 11× 5× 2.28E7 191× 28× 12×
32 8 1.98E5 2.32E5 1.17× 1.16E6 2.77E6 1.85E7 80× 16× 7× 4.57E7 196× 39× 16×
32 16 9.70E4 1.14E5 1.17× 5.77E5 1.39E6 9.25E6 81× 16× 7× 2.28E7 200× 40× 16×
32 32 5.01E4 5.89E4 1.18× 2.82E5 7.01E5 4.63E6 79× 16× 7× 1.14E7 193× 40× 16×
96 64 8.04E3 9.47E3 1.18× 2.08E4 5.17E4 7.70E5 81× 37× 15× 1.90E6 200× 91× 37×
96 128 3.97E3 4.69E3 1.18× 1.01E4 2.55E4 3.85E5 82× 38× 15× 9.50E5 202× 94× 37×
96 256 1.93E3 2.28E3 1.18× 4.94E3 1.23E4 1.92E5 84× 39× 16× 4.74E5 207× 96× 39×

TABLE 2
The speedup of the EM-GMM algorithm on the GPU and FPGA
platforms over the CPU platform in terms of energy efficiency.

Power 80W 235W 250W 22.4W 26.2W
D K PL-EM K40C TITAN-X Virtex-6 Stratix-V
6 2 1 1.9× 4.7× 109× 156×
6 4 1 2.3× 5.2× 215× 305×
6 6 1 2.4× 5.0× 313× 445×
16 8 1 2.4× 5.4× 272× 576×
16 16 1 2.5× 5.4× 276× 584×
16 32 1 2.4× 5.3× 278× 585×
32 8 1 1.7× 3.8× 285× 601×
32 16 1 1.7× 3.9× 290× 611×
32 32 1 1.6× 3.8× 281× 591×
96 64 1 0.7× 1.7× 290× 613×
96 128 1 0.7× 1.7× 293× 618×
96 256 1 0.7× 1.7× 301× 635×

6, we can see that the throughput of the solution keeps at
a constant level at around 1.5 × 108 instances per second.
The performance suggests that the system handles a data
instance per cycle without being confronted with memory
bottlenecks.

In other test cases, the performance decreases signifi-
cantly because the logic resources on an FPGA chip are not
able to support quite large D and K configurations. We
follow the strategy in Section 6 to map a fixed D and K
configuration and process each instance in multiple cycles.
Configuring the Viertex-6 FPGA board with D = 8 and
K = 4, four cycles are required to process one instance with
D = 16 and K = 8. Similar configurations can be derived
in the following test cases.

We also applied the same data set on a newer reconfig-
urable platform, the Maxeler MAX4 acceleration card with
an Altera Stratix-V FPGA. Compared to Xilinx Virtex-6,
the Altera Stratix-V FPGA owns much more resources and
runs at a higher frequency. The Strativ-V FPGA are able to
support processing data instances with D = 8 and K = 8 in
one cycle, which is twice as fast as the Xilinx Virtex-6 FPGA
if they are running at the same clock frequency. In the first
three cases where D and K are small, the FPGA runs at the
clock frequency of 250MHz, while for the rest of the cases,
it runs at 200MHz.

The computing complexity of the pipelined EM-GMM
design on reconfigurable platforms is O(DK), as it is indi-

cated in the performance results. The computing complexity
of the current GPU implementation is (D2K) because it
is designed for both diagonal-covariance GMM and full-
covariance GMM [16]. Although this can be refined to
O(DK), the GPU implementation also has the restriction
of scaling dimension (D) because of the limited shared
memory on GPUs.

In the best case, our solution on the Virtex-6 FPGA
platform achieves 84 times speedup over a fully optimized
CPU solution running on 6 cores, and 39 times speedup
over the Nvidia K40C GPU solution, and 16 times speedup
over the latest GPU platform, the Pascal TITAN-X. The
Altera Stratix-V FPGA runs 1.67 to 2.46 times faster than
the Virtex-6 FPGA in our cases, and we obtain promising
speedups over the CPU and GPU platforms, which is 207
times over the CPU solution, and 96 times over the Kepler
K40C GPU solution, and 39 times over the Pascal TITAN-X
GPU solution.

Table 2 shows the speedup of the EM-GMM algorithm
on GPU and FPGA platforms over the CPU platform in
terms of energy efficiency, which is calculated by Equation
36,

E =
IpS

P
(36)

where IpS is the number of instance processed per second
and P is the power of each platform. In the best case, our
solutions on the Virtex-6 and Stratix-V FPGA platform are
301 and 635 times more energy efficient than the CPU-
based platform respectively. We also notice that the GPU
implementation on K40C is less energy efficient than the
CPU implementation in some cases with large dimension
configurations. This is because the the computing complex-
ity of the GPU implementation is higher than the CPU
implementation, which is mentioned before.

We believe the reason behind the high speedup of our
solution is that the fixed-point arithmetic and customized
PDFs save hardware resources on the reconfigurable plat-
form. The customized PDFs and the pipelined EM workflow
can also be applied on CPU or GPU platforms. However,
it is not feasible to perform fixed-point optimization on
CPUs and GPUs. If we have higher logical resources on
the reconfigurable platform, we can deploy an even larger
number of Gaussian PDF evaluation units to enable more
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TABLE 3
Coefficients for equation 37 with 95% confidence

Coeff LUTs FFs BRAMs DSPs
p00 951.9 1795 -0.2857 0
p10 -73.34 -95.58 1.8 0
p01 1578 3091 0.4286 0
p11 4730 8377 2 16
p02 4.069 12.15 0.1429 0

TABLE 4
Error of Cost model of different logic units

D K LUTs FFs BRAMs DSPs
8 2 0.0373% 0.2415% 0.9519% 0
8 3 0.0108% 0.0724% 1.9906% 0
8 4 0.0137% 0.0441% 0.1404% 0
8 5 0.0567% 0.0185% 0.1702% 0
8 6 0.0226% 0.0680% 0.9829% 0
8 7 0.0632% 1.0105% 0.6448% 0
8 8 0.0347% 1.0370% 0.2008% 0

complicated data with larger D and K to be processed by
the system. The corresponding acceleration would be more
significant.

7.3 Cost and performance model

Selecting good D and K values improves the performance
a lot on reconfigurable platforms. Generally, the larger D,K
values of a design are, the better performance it will gain.
However, for a given reconfigurable platform with limited
logic resources, what is the largest D and K values that can
be supported? For a given D and K, what is the best strategy
to decompose D and K into smaller value? Dinechin et al.
[29] propose an architecture generator to output the syn-
thesizable description given the specification of a function
as input. When targeting our specific problem, we expect a
simpler and more dedicated approach to quickly estimate
the hardware cost and the performance according to the D
and K values.

A generalized multivariate cost function is introduced
in equation 37, where the variable x, y denote D,K and
f(x, y) denotes specific logic usage. In order to derive
the coefficients, we collect different logic resource (LUTs,
FFs, BRAMs and DSP) usage from 42 test cases, with
D = {2 . . . 7},K = {2 . . . 8}. Machine learning methods
or similar regression algorithms can be applied to derive
the coefficients from these 42 samples. In this case, the
coefficients in Table 3 are derived by learning from the
existing 42 samples.

f(x, y) = p00 + p10x+ p01y + p11xy + p02y
2 (37)

Equation 37 and the coefficients in table 3 are the util-
ities for users to analyze the possible resource usage and
potential performance gain for a specific configuration. We
also set up another 7 test cases proving the representativity
of equation 37. Table 4 shows the errors in percentage
between the real measured logic resources and evaluated
from our equation. It turns out that the DSPs fit perfectly in

observation and evaluation. LUTs, FFs, and BRAMS also fit
in a very good manner, which can be used as an evidence to
prove the validity of our resource estimation equation.

8 CONCLUSION AND FUTURE WORK

This paper presents a high-performance engine for
Expectation-Maximization for Gaussian Mixture Models
(EM-GMM) targeting reconfigurable platforms. By trans-
forming the original EM-GMM algorithm, we first design
a fully pipelined EM-GMM algorithm. A customized Gaus-
sian PDF evaluation unit with reliable results but inexpen-
sive resource consumption is then proposed. In order to
meet the configuration requirements of real-world applica-
tions, we further extend our scheme to support a wide range
of dimensions and components. We also derive a cost and
performance model that estimates necessary logic resources
quickly. Finally, we map our design on two different FPGA
platforms to verify the correctness and performance, achiev-
ing a maximum of 207x speedup over a fully optimized
CPU solution running on 6 cores and 96x speedup over a
Kepler K40C GPU-based solution, and 39x speedup over a
Pascal TITAN-X GPU-based solution. It provides a practical
solution for real applications to train and explore better
parameters for GMM with hundreds of millions of high
dimensional input instances in a couple of hours, which
would be impractical for most applications if it takes hun-
dreds of hours to run.

In the future, we may integrate our solution into specific
applications such as object tracking, speech recognition and
data visualization to maximize their performance. We are
also planning to explore the potentials of other important
but computationally demanding machine learning algo-
rithms on reconfigurable platforms.
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