
CJS: Custom Jacobi Solver
Andreea-Ingrid Cross
Imperial College London

London, UK
andreea.funie09@imperial.ac.uk

Liucheng Guo
Imperial College London

London, UK
liucheng@tg0.co.uk

Wayne Luk
Imperial College London

London, UK
w.luk@imperial.ac.uk

Mark Salmon
Cambridge University

Cambridge, UK
mhs39@cam.ac.uk

ABSTRACT
The classic Jacobi method, widely used for solving linear systems,
is slow, especially when dealing with large matrices. This paper
proposes a Custom Jacobi Solver (CJS) for large-scale linear sys-
tems. It is based on a column-wise Jacobi step operation which
allows for increased dependence distance, enabling deep pipelining.
Our solver allows customisation at run time between the classic
Jacobi method and its more convergence efficient-counterpart, the
weighted Jacobi method. It can be dynamically scaled to multiple
FPGAs by appropriately partitioning the matrix data among the FP-
GAs. After evaluating our solver on a number of different datasets,
CJS proves to be up to 71 times faster when comparing an 8-FPGA
solution with a 12-core CPU C++ implementation.
ACM Reference Format:
Andreea-Ingrid Cross, Liucheng Guo, Wayne Luk, and Mark Salmon. 2018.
CJS: Custom Jacobi Solver. In The 9th International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART 2018), June
20–22, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3241793.3241802

1 INTRODUCTION
Solving linear systems of equations is a common problem encoun-
tered in many scientific and engineering fields, such as: finance
(e.g. portfolio optimization [1]), machine learning (e.g. regulariza-
tion), energy load flow, etc. Nowadays we have access to abundant
computational resources, allowing the scientific computing prob-
lems to grow both in size and complexity. Methods such as Jacobi,
Gauss-Seidel, Conjugate Gradient, Multigrid or Steepest Descent
are some of the most used across industrial and scientific applica-
tions. Among all of those, the Jacobi method is relatively simple,
but stable.

One advantage of the Jacobi method is that rounding errors
would not be accumulated as they are restricted just to the previous
operation, however, this method is very time-consuming for large-
scale linear systems. Its solving time usually dominates the total

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HEART 2018, June 20–22, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6542-0/18/06. . . $15.00
https://doi.org/10.1145/3241793.3241802

computing time, thus accelerating the solving process becomes of
great importance. The Jacobi method has huge parallelism potential.
For example, O’Leary and White [2] introduce the multi-splittings
of the coefficient matrix parallel scheme which is used on many
different architectures. Due to the algorithm’s highly parallelizable
nature, we could linearly scale the parallelism performance with
the number of available cores, however the more cores used - the
more expensive and the less-energy efficient the cluster becomes.

We are interested in achieving a trade-off between speedup,
usability and energy-efficiency. Thus we will further show what
has been achieved using tools such as GPUs and FPGAs. There are
some examples from the state of art research performed on GPUs
[3, 4], achieving 5 times to 74 times speedup over an equivalent
CPU solutions. Some studies using FPGAs have shown more than
37 times speedup when compared to similar CPU solutions [5, 6].

Our study focuses on designing and implementing an efficient
pipelined Jacobi method on the FPGA which targets large linear-
systems and preserves accuracy. One issue technologies like FPGAs
and GPUs have is their limited onboard memory. Our study ad-
dresses this by allowing the algorithm to dynamically scale to mul-
tiple FPGAs by appropriately partitioning the matrix data among
them. We also address the convergence challenges when solving
large linear systems by allowing the user to select at run-time be-
tween the classic Jacobi and the weighted Jacobi method. The latter
highly improves the convergence rate of the algorithm, making
it more usable in large-scale data-set scenarios. Finally, the last
challenge addressed is energy efficiency: solving large scale linear-
systems can lead to high power consumption when using CPUs
and even GPUs, however, our solution proves to be approximately
57 times more energy efficient than its CPU counterpart. The main
contributions of our research are:

• A novel linear system solver, CJS, based on column-wise
Jacobi step operation to increase dependence distance, en-
abling deeply pipelined implementations;

• The first deeply pipelinedWeighted Jacobi design for FPGAs;
• Customization of CJS at run-time, allowing users to select
the classic Jacobi method or the weighted Jacobi method
and choose other respective parameters such as the weight
parameter or the convergence rate threshold;

• Run-time scalability which enables the use of multiple FP-
GAs, providing maximum parallel efficiency and allowing
the solution of a large linear system (> 94 ∗ 109 matrix coef-
ficient elements);

https://doi.org/10.1145/3241793.3241802
https://doi.org/10.1145/3241793.3241802
https://doi.org/10.1145/3241793.3241802

HEART 2018, June 20–22, 2018, Toronto, ON, Canada Andreea-Ingrid Cross, Liucheng Guo, Wayne Luk, and Mark Salmon

• Experimental results showing the speedup and energy mea-
surements when compared with the one-core/multi-core C++
CPU based implementation.

2 BACKGROUND
2.1 The Classic Jacobi Method
The Jacobi algorithm is used to solve linear algebraic systems of
“n" equations with “n" unknowns which are diagonally dominant
and stable. The method works as follows: an initial approximate
solution x0 is selected and through an iterative solver the algorithm
attempts to find the real solution x . The iterative method terminates
when the algorithm reaches the actual solution (if one exists), or
when the predefined number of iterations have been exhausted [7].
To describe the method more mathematically, let us consider an
algebraic system described by as singlematrix equation Ax=b, where
A is the matrix of coefficients, x is the solution of the system and b
is the column-matrix with the constant terms respectively. To solve
Ax=b iteratively, the algorithm tries to follow the classic approach
of solving a quadratic equation in which the next value xk+1 is
computed as a function of the current value xk , i.e.xk+1 ⇐ f (xk)
The Jacobi iteration point form is:

xk+1i ⇐
1
aii

[bi −

j=n∑
j=1;j,i

ai j ∗ x
k
j] (1)

where xk+1i represents the jacobian form at iteration i. The classic
Jacobi method converges slower than other similar techniques, such
as Gauss Seidel or Successive over Relaxation and its convergence
is only guaranteed for weakly diagonally dominant matrices. We
do not analyze convergence in this paper, but only improve it by
introducing an optimized Jacobi algorithm, the weighted Jacobi.

2.2 The Weighted Jacobi
The classical Jacobi method has high parallel efficiency; however
it does not always show great improvement because of the rather
poor convergence rate. Therefore, in order to improve the quality
of the classic Jacobi solver, we introduce an improvement of the
Jacobi method, which is known as a weighted-Jacobi type method
or preconditioner.

This method is also called the damped Jacobi method or the
relaxed Jacobi method and its point form becomes [8]:

xk+1i ⇐ (1 − ω) ∗ xkj + ω ∗
1
aii

[bi −

j=n∑
j=1;j,i

ai j ∗ x
k
j] (2)

where ω ϵ R is called the weight parameter, with ω = 2/3 being
the usual choice [8]. The algorithm is similar to the classic Jacobi
algorithm, but now a weight parameter is used as well when con-
structing the residual value in between iterations.

2.3 Hardware-based Jacobi Methods
Because of the feature of Jacobi Methods, researchers have used
hardware to accelerate them, such as GPUs and FPGAs. Some ex-
amples from the state of art research performed on GPUs are:Wang
et al. [3] present a GPU-based solution for the Jacobi method in
which the performance of their tool scales linearly with the matrix
size, achieving 5 times better than an equivalent CPU solution. Lin

et al. [4] implemented an GPU-based Jacobi method which achieves
a 10.2 times speedup over an equivalent CPU solution.

Some studies using FPGAs are:Morris et al. [5] have implemented
the first FPGA version of a deeply pipelined classic Jacobi algorithm.
It shows a 37 times speedup over its CPU counterpart. Ruan et al. [6]
has implemented a pipelined friendly FPGA-based Jacobi algorithm
eliminating the data dependence between iteration steps, which
is 115 times faster than a similar CPU solution. Due to the lack
of details in the paper such as, how the matrix is constructed, the
exact size of the matrix, or how the CPU implementation is built,
we cannot properly compare our work to theirs - as we will further
see in the evaluation section, matrices with different characteristics
show different results in terms of performance. However, to under-
stand better the performance of our solution compared to other
existent GPU and FPGA ones, we provide a comparison table in
Section 5 of some of the most efficient solutions.

3 CUSTOM JACOBI SOLVER DESIGN
In this section we exploit the high level of internal parallelism
which can be achieved with the use of FPGA-based technology
(in our case, a MAIA dataflow engine (DFE) containing an FPGA
and DRAM), to accelerate the Jacobi method. We show how our
design can be extended to take advantage of larger commercial
chips, where multiple parallel processing pipelines can be deployed
concurrently to speedup the computation further. Our design can be
used for numerous iterations as a standalone linear systems solver
as well as dynamically scale with the number of FPGAs available,
while preserving accuracy and achieving a throughput of one add
per clock cycle.

The accelerator model targeted by our design is represented
by a CPU based system which connects via a slow interconnect
to an FPGA accelerator. Most of the computation is performed
on the FPGA. Both CPU node and FPGA acceleration board have
large on-board memory available, of which we make use, as the
transfer speed from on-board memory is much faster than via the
interconnect. All data are residing initially in the CPU DRAM.

We make the following choices as part of our design and imple-
mentation characteristics: 1) We verify that the matrix is weakly
diagonal dominant on the CPU before sending it to the FPGA; 2)
Because we perform a column-wise summation instead of a row-
wise one, in order to improve pipeline efficiency on the FPGA, we
transpose the matrix on CPU beforehand and send its transpose to
the accelerator DRAM; 3) For the weighted Jacobi scenario we use
the popular value of ω = 2

3 for the weight parameter [8], to reduce
the computation overhead needed to pre-compute the eigenvalues
on CPU beforehand; 4) We guess the initial solution X0 as being
the null vector; 5) Matrix coefficients, the initial solution values as
well as the constant terms column-matrix b are single precision
floating point values on DRAM input; 6) The maximum number of
iterations to run the Custom Jacobi Solver for is another popular
choice of 2 ∗ n ∗ n [7], where n is equal to the number of equations
and unknowns of the linear system to solve.

The system needed to be evaluated, is modeled in a linear algebra
form on CPU and its components are then transferred to the FPGA
for the Jacobi iteration to be computed. CJS allows for the following
parameters to be customised by the user: number of FPGAs, number

CJS: Custom Jacobi Solver HEART 2018, June 20–22, 2018, Toronto, ON, Canada

of pipes that each FPGA uses, iteration number, weight parameter,
convergence rate threshold, Jacobi method type and the row and
column dimensions of the matrix.
Single Iteration of theCustom Jacobi Solver For an FPGApipeline-
friendly version of the Jacobi method we introduce a new vector,
Diaд which consists of each element from the main diagonal of the
coefficient matrix. We replace the main diagonal elements from the
matrix with 0s, so they do not add any value when included into
the partial adder computation performed on the FPGA.

Our single iteration Jacobi solver design is: 1) Load coefficient
matrix A as an array, together with the constant-terms column-
matrix b, the initial solution x0 and the main-diagonal elements
vector Diaд, to accelerator DRAM; 2) Load scalar value JacobiType
onto FPGA BRAM, with a 0 value for the weighted Jacobi method
and a 1 value for the classic Jacobi method; load all other scalar
values (weight parameter, threshold value); 3) Compute the classic
or weighted Jacobi iteration as in Equation 1 or Equation 2, and
write new x1 vector solution to accelerator DRAM by overlapping
the old x0; 4) Read new x1 vector solution from accelerator DRAM
and output results to CPU.
Parallelism and Pipelining. We can parallelise the design effi-
ciently as long as sufficient coefficients need to be used in the
Jacobi computation. Hence, we further improve the performance of
the proposed design by implementing multiple parallel processing
pipelines on-chip (pipes). Each pipe is a computation architecture
as presented below. Multiple blocks of rows — up to p pipes can
be evaluated in parallel, substantially reducing the overall compu-
tation time. This is an efficient method to take advantage of the
high degree of fine grained parallelism on the FPGA: at each point
in time a number of floating point elements equal to the number
of matrix coefficients in the row blocks are used to achieve one
equation solution result per row.

In our design we perform a column-wise Jacobi step operation
instead of a row-wise one. This is achieved by transposing the
original coefficient matrix and sending it to the FPGA in this form.
When doing a column sum in thismanner, each iteration of the inner
loop is not dependent on the previous iteration of the inner loop,
as it is in a row-wise computation, but it is instead dependent on
the previous iteration of the outer loop. This increased dependence
distance allows us to push a different sum with each input into the
adder pipeline every tick, as we have plenty of time for the results
to come back round from the adder output. Thus, for summation
column-wise, each iteration depends on a value fromm iterations
earlier, so the dependence distance ism - width of array. Figure 1
describes best the parallelism present in our design.

 FPGA

DRAMDRAM

Pipe1

CPU

DRAM

Pipe2 Pipe3

Figure 1: CJS using Multiple Pipes on One FPGA

Our design consists of a binary reduction tree, a subtraction unit,
a divider and some control units organized in processing elements.
Firstly each matrix diagonal element aii and each constant-term bi
are fed into the divider, respectively the subtraction unit. We then
ingest the coefficient matrix A column elements together with the
vector xk . The elements we add every tick at iteration k + 1 are of
the form ai jx

k
j and the binary tree reduces the inputs to produce

the sum
∑j=n
j=1;j,i ai j ∗ x

k
j . We use a multiplexer to chose between

computing the classic Jacobi or the weighted Jacobi method, accord-
ing to the value of the scalar input JacobiType (a 0 value picks the
weighted Jacobi, while a 1 value chooses the classic Jacobi method).
Using the processing element JacobiStep we feed the produced sum
together with the respective bi element into the subtraction unit
to produce a value interim equal to bi −

∑j=n
j=1;j,i ai j ∗ x

k
j . This

interim value and the appropriate aii value, enter the division unit
which delivers the vector xk+1, one value per clock cycle. To com-
pute the weighted Jacobi method, we use the processing element
WeightedJacobiStep. In this unit we feed the value produced by the
JacobiStep processing element to a multiplier, together with the
weight parameter ω and obtain ω ∗ 1

aii [bi −
∑j=n
j=1;j,i ai j ∗ x

k
j]. We

then feed the result into an adder, together with a multiplier whose
result corresponds to xkj ∗ (1 − ω). This then delivers the vector
xk+1, one value per clock cycle, according to Equation 1.

We introduce readEnable delay units to ensure that the correct
Diaдi and bi values are applied to the division and subtraction
units when needed. We ensure that the term aii ∗ xi is ignored by
introducing a 0 value for the aii term existent in the coefficient
array A saved on DRAM.
Multiple Iterations Jacobi Solver Model We can compute mul-
tiple iterations of the Jacobi algorithm, using a hybrid CPU-FPGA
tool. To allow for convergence checking we implement an extra
processing element DidConverge. This is computed on FPGA in the
same time with the ClassicJacobiStep or the WeightedJacobiStep.
and at the end of the iteration outputs the result back to the CPU
as an integer value, namely 0 (false - convergence not reached) or 1
(true - convergence reached). This DidConverge processing element
feeds in the new xk+1j value and the old xkj value to a subtraction
unit. The subtraction result is compared to a preset threshold (i.e.
eps = 1.0e-4) and if it is below the threshold then we can assume we
reached convergence (i.e. send a 1 value to CPU).
Custom Jacobi Solver Model on Multiple FPGAs As described
previously, we are bound to the available DRAM memory size
of each FPGA. To solve this, we calculate the number of bytes
required for our linear system to be computed, knowing that we
save everything on accelerator DRAM as single precision floating-
point. We attempt to split the data to be stored, equally between
the FPGAs, such as if we have a matrix of n × n andm available
FPGAs, we would split the matrix inm matrices with n

m rows and n
columns each. If an equal split is not possible, we attempt to fill as
many FPGAs as possible with blocks of rows as follows: we get the
quotient of n

m and this is how many full FPGAs we can fill, each
with a matrix of n

m rows and n columns each. The remainder data
goes on a final FPGA. Each 1U unit contains 8 DFEs (each with
an FPGA and DRAM). If we need to use more than 8 FPGAs, we

HEART 2018, June 20–22, 2018, Toronto, ON, Canada Andreea-Ingrid Cross, Liucheng Guo, Wayne Luk, and Mark Salmon

would need to manage communication between 1U units to avoid
bottlenecks. We leave this as further work.

Due to the nature of our hardware design and implementation,
we need to check for convergence on every submatrix to see that the
whole matrix converges. After each iteration, we read the current
iteration x solution vector from each of the accelerator’s DRAM,
as now each FPGA will provide a solution vector with a size equal
to 1

m of the original x solution vector one, corresponding to the
matrix size computed. After all partial x solution vector results are
read from all DFEs, we need to reconstruct the whole current x
solution vector and re-write it back to the same location in each of
the FPGA’s DRAM. If convergence has been reached, we need to
output it back to the CPU as the main linear system solution. Thus,
the start of every iteration is depending on when the update of the
new x vector is finished. The CPU controls the computing process
on all DFEs and maintains their synchronization.

4 HARDWARE IMPLEMENTATION
The accelerator system consists of a Maxeler MPCX node with a
Maia DFE containing a Stratix V 5SGSMD8N1F45C2 FPGA and 48
GB of DRAM. It is connected to a CPU node with a Dual Intel Xeon
E5-2640 via Infiniband through a Mellanox FDR Infiniband switch.
FPGA Implementation Most accelerator configurations have a
reduced bandwidth between the host CPU and the accelerator card
in comparison to the memory bandwidth. In our design most of the
input values will be reused for each iteration of CJS. As such these
will be stored in DRAM and only incur the transfer penalty over
the slow interconnect between the CPU and FPGA once. The only
values that change are the values of the x solution vector - hence,
we write those values on DRAM as they are computed. We read the
x value from DRAM only when convergence was reached.

Each of our FPGA has 48GB of DRAM which equals to a storage
of approximately 12 ∗ 109 single precision floating-point (4 bytes)
values or 6 ∗ 109 double precision floating-point (8 bytes) In our
case, we need to store on DRAM the new x solution vector values,
as well as the B constant-term column-matrix elements, the main
diagonal elements Diaд, alongside with the corresponding array of
coefficients for the matrixA. Thus, we restrict ourselves to a matrix
with a smaller number of elements, due to the additional storage
required for the remaining arrays. With a total of 8 FPGAs available
(all 8 FPGAs are accommodated in a single 1U node), we are able
to increase the restriction of the matrix size further, by scaling up
and splitting the matrix to be computed between multiple FPGAs.
In the next section we show the performance of our system when
computing the Jacobi method on different size dense and sparse
matrices, using one FPGA as well as multiple ones.
CPU Implementation The CPU implementation is built using
C++11, parallelised using OpenMP and compiled using g++ 4.9.2
with flags -O3 -march=native -fopenmp to enable general perfor-
mance and architectural optimisations for the Intel XEON and the
use of multi-threading. The CPU code is parallelised in a similar
manner to the hardware implementation, by dividing the matrix by
groups of rows/columns. To efficiently parallelise the Jacobi algo-
rithm, the devised schemes should achieve data locality, minimize
the number of communications, and maximize the overlapping

between the communications and the computations. The distribu-
tion of the cells can be performed in a row-wise or a column-wise
fashion. The row-wise approach is preferable for the software im-
plementation as it makes better use of data locality. By assuming,
for simplicity, that the number p of threads divides exactly the di-
mension n of the n × n matrix A and the vectors x and B, blocks of
m = n/p rows of the matrix A are distributed to the threads, while,
vectors x and b are scattered in the same way.

Table 1 shows our CPU implementation’s scalability with the
number of threads for a 107, 520 × 107, 520 matrix. We present the
average time taken to perform one Jacobi iteration on CPU after 10
independent runs. We choose to disable HyperThreading and only
use 6 threads per CPU therefore preventing the CPU implemen-
tation from scaling sub-linearly. We notice close to linear scaling
for the CPU implementation of one iteration. These are expected
results given that our parallelisation strategy requires minimal com-
munication between threads. For multiple Jacobi iterations however,
communication overhead will be introduced by waiting for each
thread to compute its result before reconstructing the x vector and
copying it back to each thread for the next Jacobi iteration.

Table 1: CPU scalability results for up to 12 threads and one
Jacobi iteration for a 107, 520 × 107, 520 matrix

Threads 1 2 4 8 10 11 12
CPU Time (s) 457.31 240.69 117.26 57.89 46.66 42.66 39.66

Speedup 1 1.9 3.9 7.9 9.8 10.7 11.5

5 EVALUATION
We evaluate the software results on the CPU node attached to the
MPCX node, namely a Dual Intel Xeon E5-2640 with 6 cores. The
Stratix V FPGA node adopts a 28nm transistor technology, while
the Dual Intel Xeon E5-2640 adopts a 22nm transistor technology.

Our FPGA implementation runs at a clock frequency of 190MHz.
All run times are measured using the
chrono::high_resolution_clock::now() high resolution clock
which is part of the C++11 standard library. We perform different
tests to evaluate CJS:

(1) A large scale linear system benchmark which consists of a
matrix randomly generated that has the following properties:
1) n × n matrix; 2) n + 1 on the diagonal and 1 elsewhere; 3)
the constant-term elements of the column matrix b are all
equal to 2 ∗ n. We use those properties for testing purposes,
such that we know that the exact solution at convergence
x will be a vector of ones. We show speedup of CJS for one
iteration andmultiple iterations of the Jacobi method.We use
just 9 iterations results for the purpose of this paper, as this
is how long it takes for our algorithm to reach convergence
when using the weighted Jacobi method.

(2) Predicting the price of a house sale.
(3) Numerous speedup results on different sparse matrices.

The accuracy of the CPU and FPGA versions are checked for all
the tests performed and they are very similar.
Resource Usage Table 2 shows the FPGA total resource usage
expressed as a percentage of the total available resource on the chip
for the single precision floating- point implementation based on 1, 8
and 16 pipes. The resource usage is shown for the manager and

CJS: Custom Jacobi Solver HEART 2018, June 20–22, 2018, Toronto, ON, Canada

Table 2: FPGA total resource usage for single precision
floating-point arithmetic implementation

Pipes LUTs FFs BRAMs DSPs of use
1 3.96% 4.13% 15.35% 0.00% by manager
1 1.37% 0.82% 8.65% 0.15% by kernels
1 11.97% 8.44% 28.01% 0.15% total resources
8 6.32% 5.38% 27.97% 0.00% by manager
8 8.82% 5.07% 16.24% 1.22% by kernels
8 21.91% 13.97% 48.23% 1.22% total resources
16 6.14% 5.45% 28.75% 0.00% by manager
16 27.16% 15.48% 26.80% 4.89% by kernels
16 40.04% 24.45% 59.56% 4.89% total resources

kernels of our design, as well the total design resource usage which
is represented by the kernels resource usage and the IO resource
usage. The kernels provide an environment concentrated around
data flow and arithmetic. The manager provides an interface to the
kernels which incorporates the configuring connectivity between
kernels and external I/O, as well as the build process control.
Energy and Power Consumption Table 3 shows that solving a
linear system with 107,520 unknowns and 107,520 equations using
the Stratix V FPGA, proves to be up to 57 timesmore energy efficient
than its CPU counterpart implementation on a Dual Intel Xeon
E5-2640. The matrix was randomly generated using the method
described earlier and each FPGA uses 16 pipes for computation.

Table 3: Energy and Power Consumption for CPU and FPGA
technology for a 107, 520 × 107, 520matrix

Technology 12-core CPU 1 FPGA 8 FPGA
Power (Watt) 90.00 16.40 124.80

Energy (Joules) 34,189.2 598.60 667.68
Energy Efficiency 1x 57x 51x

5.1 Performance Results and Discussion
For simplicity, we ignore all initial CPU-DRAM transfer time. We
thus show speedup obtained just by measuring the execution times
of both the CPU and FPGA implementations. We note that even
platforms with large amounts of DRAM will likely require in an
order of tens of seconds at most to re-load data (loading 48GB over
an Infiniband 2GB/s connection). The CPU-DRAM transfer issue
can be addressed efficiently either by increasing problem sizes (and
using adequate input distribution) – the DRAM transfer overhead
becomes negligible compared to the savings in execution time, or
by tighter integration between CPU and FPGA, such as Intel’s new
Xeon/Altera CPUs to reduce CPU to FPGA transfer time. Since these
points correspond to trends in industry at the moment of writing,
we believe we can safely ignore the initial CPU-DRAM transfer
time for the time being and focus on the actual execution times.

5.1.1 Single FPGA Parallel Jacobi. Table 4 shows speedup obtained
when comparing one as well as multiple iterations (i.e. our method
reaches convergence in 9 iterations) of the Jacobi method, imple-
mented on a single FPGA across a different number of pipes. The

performance is evaluated against a 12-thread C++ implementation.

Table 4: Single FPGA results for 107,520 x 107,520 Matrix

of pipes 1 4 8 16
of iterations 1
CPU Time (s) 39.66 39.66 39.66 39.66

FPGA Time (s) 60.90 15.28 7.68 3.84
FPGA Speedup 0.69 2.60 5.16 10.33
of iterations 9
CPU Time (s) 379.88 379.88 379.88 379.88

FPGA Time (s) 552.31 141.89 72.75 36.50
FPGA Speedup 0.69 2.68 5.22 10.41

Our FPGA runs at 190MHz, a much lower clock frequency than
that of our CPU processor of 2.60GHz. Hence, the multi-threaded
CPU implementation outperforming the single pipe FPGA doesn’t
come as a surprise. We further make some comparisons which are
not present in the table: 1) if we were to compare a single-core
C++ implementation against a single pipe on the FPGA then the
FPGA would prove 7.51 times faster; 2) if we were to compare an
equal number of CPU threads implementation to an equal number
of pipes, then an 8-pipe FPGA solution would prove 7.54 times
faster than an equivalent 8-threads C++ implementation. From our
tables it is also clear that the more parallelism inside the FPGA,
the greater the performance achieved. A considerable increase in
the performance is also noticed with an increase in the number of
iterations needed for the Jacobi method to converge.

5.1.2 Multiple FPGAs Parallel Jacobi. Table 5 shows the potential
speedup when comparing one as well as multiple iterations of the
Jacobi method, implemented across multiple FPGAs, each of them
using 16 pipes and evaluated against a 12-thread C++ implemen-
tation. The CPU controls the computing process on all DFEs and
maintains their synchronization. All multi-FPGA performance re-
sults include synchronization time. We notice a linearly increase in
the speedup with the number of FPGAs used when compared to
the CPU implementation. We observe a peak of 71 times speedup
when comparing an 8-FPGA system versus a 12-core CPU one.

Table 5: Multi-FPGAs results for 107,520 x 107,520 Matrix

of FPGAs 1 2 4 8
of iterations 1
CPU Time (s) 39.66 39.66 39.66 39.66

FPGA Time (s) 3.84 1.96 1.00 0.56
FPGA Speedup 10.33 20.23 39.66 70.82
of iterations 9
CPU Time (s) 379.88 379.88 379.88 379.88

FPGA Time (s) 36.50 18.54 9.54 5.35
FPGA Speedup 10.41 20.48 39.84 70.97

Table 6 shows how CJS is able to scale to make use of all 8-
available FPGAs by splitting the original matrix of sizen×n (rowSize
by colSize) in sub-matrices, each with a corresponding size ofm×n,
wherem = n/8 (in our case, each FPGA will evaluate a 38,400 x

HEART 2018, June 20–22, 2018, Toronto, ON, Canada Andreea-Ingrid Cross, Liucheng Guo, Wayne Luk, and Mark Salmon

307,200 matrix). Each of the FPGAs will use 16-pipes, in order to
achieve great parallelism.We only show the 8-FPGA system because
we generated a matrix (restricted to 48GB) that will not fit into the
DRAM of one FPGA only, but it will fit into 8 FPGAs. Hence, with
our design we could solve a fairly large-scale linear system (a matrix
with over 94 ∗ 109 coefficient elements), in under 37 seconds. We
are unable to provide a comparison with the CPU implementation,
since the matrix does not fit within our CPU’s DRAM.

Table 6: 8-FPGA System for 307,200 x 307,200 Martix

Number of iterations 1 9
FPGAs Time (s) 3.91 36.97

FPGA Energy (Joules) 487.97 4,613.86

5.1.3 Predicting the Price of a House Sale. The House Prices chal-
lenge was introduced by Kaggle and it includes 79 explanatory
variables describing aspects of residential homes in Ames, Iowa,
from 2006 until 2010, for a total of 2930 observations, as a Boston
dataset [9] extension. The problem reduces to a multiple linear
regression which aims to forecast the final price of each home and
is solved using the Least Squares method. This problem reduces to
solving the linear system β̂ = (X ′X)−1X ′Y , where ’ is the transpose
of the matrix, -1 is the matrix inverse, matrix X is the feature matrix
(i.e.characteristics of residential homes) and vector y is the response
value (i.e.price of a home). This can we rewritten as ŷ = X β̂ and we
use CJS, to find the vector of β̂ values. Table 7 shows that with one
FPGA we are able to achieve a 20 times speedup when compared
to our own fully optimized software implementation.

Table 7: Performance Results Comparison

Study Accelerator (Threads/Pipes) Speedup

CJS Intel E5-2640 (12) 1x
CJS Altera Stratix V(1) 1.26x
CJS Altera Stratix V(16) 19.68x

5.1.4 Speedup Results for Different Sparse Matrices. We apply the
Least Squares method using CJS on some sparse matrices from the
Suite Sparse Matrix Collection [10]. Our design is not optimized for
sparse matrices, but we show some speedup in Table 8. The results
are provided after an average of 10 runs of one iteration of CJS
when comparing the 12-core CPU implementation and one FPGA.

Table 8: Performance Results Comparison

Matrix Speedup

Maraдal6 (21, 255 × 10, 152) 3.05x
Maraдal7 (46, 845 × 26, 564) 3.16x
Maraдal8 (33, 212 × 75, 077) 3.31x

Qualitative Comparisons. Table 9 shows speedup obtained by
our work and other different Jacobi solutions implemented on GPU
and FPGA. All the different technologies, parameters, operating
frequencies and implementations used make it difficult to obtain an
exact view on the performance. In the future, we plan to compare
our current work’s efficiency by extrapolating the clock frequency
of the other available solutions tested on older technologies.

Table 9: Performance Results Qualitative Comparison

CPU(Threads) Accelerator(#) Size Speedup

[11] Intel i7-3960x(1) Stratix IV(1) 1024 155.28x
[12] Intel i7-960(8) Nvidia C2070(1) 1024 73.50x
[13] AMD 4200(4) Nvidia 8800GT(1) 10242 31.74x
CJS Intel E5-2640(12) Stratix V(8) 11.6 ∗ 109 70.97x

6 CONCLUSION AND FUTUREWORK
In our study we show the effectiveness of FPGAs in accelerating
both the classic Jacobi and the weighted Jacobi method. Using
both our deeply-pipelined single floating-point implementation
and the multiple FPGA scalable solution, we show that one of
the most computationally intensive tasks associated with solving
large-scale linear systems of equations, the Jacobi algorithm, can
be accelerated substantially by exploiting the massive amounts of
on-chip parallelism available on commercial FPGAs.

When evaluating CJS on around 11.56 ∗ 109 values, our floating-
point precision multiple FPGAs system proves to be up to 71 times
faster and 57 times more energy efficient when compared to a
corresponding multi-threaded C++11 implementation running on
two six-core Intel Xeon E5-2640 processors. We have also tested our
system on a real-world application with various sparse matrices,
achieving a considerable speedup.

Future work includes supporting mixed precision formats, opti-
mizing for sparse matrices, and computing multiple iterations on
chip. We also plan to apply CJS to well-known applications, such
as market portfolio optimization [1].

ACKNOWLEDGMENTS
The support of the United Kingdom EPSRC (grant numbers
EP/P010040/1, EP/L00058X/1 and EP/N031768/1), European Union
Horizon 2020 Research and Innovation Programme (grant number
671653), Intel, Maxeler, and China Scholarship Council is gratefully
acknowledged.

REFERENCES
[1] D. Leon, et al., Clustering algorithms for Risk-Adjusted Portfolio Construction,

ICCS, 2017.
[2] D.P. O’Leary, R.E. White, Multi-splittings of matrices and parallel solution of linear

systems, SIAM J. Algebr. Discrete Methods, 6(4), pp. 630-640, 1985.
[3] T. Wang, et al.,Implementation of jacobi iterative method on graphics processor unit,

Proceeding of IEEE ICIS, 3, pp. 324-327, 2009.
[4] J. Lin, et al., Design and Implementation of Jacobi Algorithms on GPU, AICI, 2010.
[5] G R. Morris, et al., An FPGA-Based Floating-Point Jacobi Iterative Solver, ISPAN ’05

Proceedings of ISPAN, pp. 420-427, 2005.
[6] H. Ruan, et al., Jacobi-Solver:A Fast FPGA-based Engine System for Jacobi Method,

Res. J. Appl. Sci. Eng. Tech., 6(23), pp. 4459-4463, 2013.
[7] M. Oieshanskii, et al., Iterative Methods for Linear Systems : Theory and Applications,

Society for Industrial and Applied Mathematics, 2014.
[8] A. Imakura, et al. A parameter optimization technique for a weighted Jacobi-type

preconditioner, JSIAM Letters, 4, pp. 41-44, Japan Society for Industrial and Applied
Mathematics, 2012.

[9] D. De Cock, Ames, Iowa: Alternative to the Boston Housing Data as an End of
Semester Regression Project, Journal of Statistics Education, 19(3), 2011.

[10] Suite Sparse Matrix, https://sparse.tamu.edu.
[11] M. Torun, et al., FPGA, GPU, and CPU implementations of Jacobi algorithm for

eigenanalysis, JPDC, 96(C), pp. 172-180, 2016.
[12] M. Torun, et al., Novel GPU implementation of Jacobi algorithm for Karhunen-

LoÃĺve transform of dense matrices, CISS, 2012.
[13] R. Amorim, et al., Comparing CUDA and OpenGL implementations for a Jacobi

iteration, HPCS, 2009.

	Abstract
	1 Introduction
	2 Background
	2.1 The Classic Jacobi Method
	2.2 The Weighted Jacobi
	2.3 Hardware-based Jacobi Methods

	3 Custom Jacobi Solver Design
	4 Hardware Implementation
	5 Evaluation
	5.1 Performance Results and Discussion

	6 Conclusion and Future Work
	Acknowledgments
	References

