
Enhanced Heterogeneous Cloud:
Transparent Acceleration and Elasticity

Jessica Vandebon∗, José G. F. Coutinho∗, Wayne Luk∗, Eriko Nurvitadhi† and Mishali Naik†

∗Imperial College London, United Kingdom

{jessica.vandebon17, gabriel.figueiredo, w.luk}@imperial.ac.uk
†Intel Corporation, San Jose, USA

{eriko.nurvitadhi, mishali.naik}@intel.com

Abstract—This paper presents ORIAN, a fully-managed
Platform-as-a-Service (PaaS) for deploying high-level applications
onto large-scale heterogeneous cloud infrastructures. We aim to
make specialised, accelerator resources in the cloud accessible to
software developers by extending the traditional homogeneous
PaaS execution model to support automatic runtime manage-
ment of heterogeneous compute resources such as CPUs and
FPGAs. In particular, we focus on two mechanisms: transparent
acceleration, which automatically maps jobs to the most suit-
able resource configuration, and heterogeneous elasticity, which
performs automatic vertical (type) and horizontal (quantity)
scaling of provisioned resources to guarantee QoS (Quality of
Service) objectives while minimising cost. We develop a prototype
to validate our approach, targeting a hardware platform with
combined computational capacity of 28 FPGAs and 36 CPU cores,
and evaluate it using case studies in three application domains:
machine learning, bioinformatics, and physics. Our transparent
acceleration decisions achieve on average 96% of the maximum
manually identified static configuration throughput for large
workloads, while removing the burden of determining configu-
ration from the user; an elastic ORIAN resource group provides
a 2.3 times cost reduction compared to an over-provisioned group
for non-uniform, peaked job sequences while guaranteeing QoS
objectives; and our malleable architecture extends to support
a new, more suitable resource type, automatically reducing the
cost by half while maintaining throughput, and achieving a 23%
throughput increase while fulfilling resource constraints.

Index Terms—FPGA, PaaS, heterogeneous clouds, transparent
acceleration, heterogeneous elasticity

I. INTRODUCTION

In the last decade, cloud computing has shaped the in-

formation technology landscape, with increasing numbers

of businesses, governments, and researchers offloading their

computation needs to third-party data centres to drastically

reduce their operating costs. In order to serve computationally

intensive workloads, including High Performance Computing

(HPC) and Artificial Intelligence (AI), cloud providers offer

specialised accelerator resources, such as GPUs (Graphics

Processing Units) and FPGAs (Field Programmable Gate

Arrays), to tenants. However, this embrace of heterogeneity

is mostly found in cloud IaaS (Infrastructure-as-a-Service)

systems, such as Amazon EC2 [1], where tenants can request

virtual machines (VMs) with access to hardware accelerators. In

this context, tenants are still responsible for manually managing

their provisioned resources.

To reduce the above effort, Platform-as-a-Service (PaaS)

systems automatically manage cloud resources. PaaS offers

a simplified cloud infrastructure model in which a pool of

computation units, acting as autonomous workers (e.g. Dynos in

Heroku [2] or EC2 instances in Amazon Elastic Beanstalk [3]),

execute tasks from a stream of incoming requests. Within this

model, tenants are still responsible for identifying the size

(capacity) of the worker that can meet their performance and

cost requirements. PaaS offers transparent execution, which

ensures that tasks are automatically balanced across provisioned

workers, and elasticity, which automatically adjusts the number

of workers to match incoming traffic in order to satisfy

performance objectives while avoiding over-provisioning.

While this PaaS execution model is well suited for CPU-

based resources, it translates poorly to heterogeneous platforms

that support hardware accelerators. This is because the PaaS

model assumes that all incoming tasks can be satisfied by

a single type of worker. With traditional PaaS, if a specific

task type is more demanding, we simply increase the worker’s

capacity (e.g. amount of memory and/or number of CPU cores).

However, in a heterogeneous compute environment, we observe

that each type of compute resource works best for specific types

of workloads, and this mapping is not obvious. For instance,

smaller workloads may perform faster on CPUs since data

movement and offload overheads would dominate otherwise,

while sufficiently large streaming and data-parallel workloads

may perform better on FPGAs and GPUs, respectively. Data-

types and numerical representations may also drastically affect

their relative performance, for instance, FPGAs tend to excel

with integer-based operations, while CPUs and GPUs are

designed to work with double-precision operations. The key

challenge is finding a general process that allows these runtime

mapping decisions to be made effectively and transparently

with the smallest overhead possible.

In this paper, we present an enhanced PaaS execution model

designed to optimise applications for large-scale heterogeneous

cloud platforms, while making them accessible to software

developers with no expertise in specialised hardware acceler-

ators. For this purpose, we focus specifically on the runtime
mechanisms that manage heterogeneous compute resources

automatically and support transparent heterogeneous execution

and elasticity, which we consider to be the current bottleneck in

leveraging hardware accelerators in the cloud. In this context,

162

2019 International Conference on Field-Programmable Technology (ICFPT)

978-1-7281-2943-3/19/$31.00 ©2019 IEEE
DOI 10.1109/ICFPT.2019.00027

cloud applications are linked with our runtime system which

manages libraries of optimised implementations targeting CPU

and FPGA devices. Future work will include the management

of arbitrary user code by introducing compile-time development

tools, and supporting more accelerator types such as GPUs.

We believe that our work is novel in two ways. First,

we extend traditional PaaS mechanisms to support hardware

accelerators. In particular, we employ multiple worker types,

as opposed to a single type of worker, to leverage different

capacities and capabilities suited to different types of workload.

We support transparent acceleration, with a task scheduler
that analyses incoming tasks and maps them to the most

profitable available worker, and we develop an auto-scaler that

implements heterogeneous elasticity by adjusting the quantity

and type of workers based on accrued historic data and subject

to user-supplied rules. As far as we know, our proposed

PaaS is unique in that it combines vertical (worker type) and

horizontal (worker quantity) auto-scaling by design. Second, we

develop an offline method that automatically identifies a fixed

set of worker types that provide the best trade-offs in terms

of performance and cost, significantly reducing the runtime

overhead of the auto-scaler.

The main contributions of this paper are as follows:

1) A resource management architecture for a heterogeneous

cloud PaaS system designed to support transparent

acceleration and heterogeneous elasticity (Section II);

2) The implementation of a PaaS prototype with the above

architecture (Section III);

3) An evaluation of our prototype on a platform with 28

FPGAs and 36 CPU cores targeting three application

domains (machine learning, bioinformatics, and physics),

showing the benefits of our transparent acceleration and

elasticity on a heterogeneous cloud platform (Section IV).

Related work is described in Section V, while Section VI

concludes this paper and presents future work.

II. THE ORIAN APPROACH

A. Motivation

The traditional PaaS execution model targets mostly homo-

geneous, CPU-based workers. Our goal is to support new types

of workloads in cloud computing platforms, such as HPC and

AI, by leveraging heterogeneous compute resources, such as

specialised hardware accelerators. We aim to make accelerators

accessible to software developers that have no experience

working with them. For this purpose, we extend the current

PaaS execution model to support transparent acceleration and

elasticity (auto-scaling) for heterogeneous resources.

There is no panacea when it comes to a compute device

(e.g. CPU, FPGA, or GPU) that outperforms others for all

workload types and sizes. This is demonstrated by the example

in Fig. 1, showing performance models for a sequencing

alignment application [4] executed on different FPGA and

CPU configurations. Each configuration corresponds to a

number of devices of a specific type, hence (8, FPGA)

corresponds to a configuration employing eight FPGAs. In

Fig. 1: Performance models for a sequencing alignment application executed
on different CPU and FPGA resource configurations.

this example, each configuration achieves a different maximum

throughput, and the throughput achieved by each varies with

problem size. No single configuration achieves the highest

throughput for every problem size. For example, while all

FPGA configurations achieve a larger maximum throughput

than any CPU configuration, all CPU configurations outperform

the FPGA configurations until ∼ 102 reads, at which point

(2, FPGA) becomes more effective. Furthermore, although

the (8, FPGA) configuration achieves the greatest maximum

throughput, it is not until ∼ 106 reads that it becomes more

effective than the (4, FPGA) configuration. When other factors,

such as cost, are also considered, decisions become more

complex since the most performant configuration may not

be the most cost effective. This lack of a universal ‘best’

configuration motivates the need for an automated process that

maps tasks to the most suitable configuration at runtime.

The above explains in part the current lack of support for

heterogeneity in PaaS. In particular, the complexity of runtime

management increases with heterogeneity, since in addition to

balancing task requests horizontally across multiple workers

to service as many requests as possible in parallel, it becomes

necessary to scale requests vertically according to the device

type that is best suited to service it (see Fig. 1). Another

issue is that the computing landscape changes very rapidly

every year, with new accelerators appearing in the market with

more advanced architectures and runtime systems. This requires

management logic to be flexible and generic, otherwise it needs

to be constantly redesigned to support legacy and new devices.

Effective management of heterogeneous resources requires

knowledge about the suitability of each resource to different

workloads, but acquiring and maintaining such knowledge is

challenging, particularly as platforms grow.

In the following, we describe the key components of ORIAN,

our proposed heterogeneous PaaS, and explain how we address

the above challenges.

B. ORIAN PaaS Architecture

Fig. 2 illustrates the proposed ORIAN PaaS architecture. The

architecture has two key components: the Application Manager
and the Resource Manager. The Application Manager works on

behalf of cloud tenants, providing an interface for submitting

applications and requirements (objectives and allocation rules).

Once submitted, the Application Manager creates an execution

environment for running the application (a CPU-based VM).

To leverage hardware accelerators, applications explicitly

163

Fig. 2: The ORIAN heterogeneous PaaS architecture.

instruct ORIAN to execute managed tasks. Managed tasks

(tasks for short) are calls to predefined library functions

belonging to a specific application domain, abstracting users

from implementation and resource management details. To

execute a task, users need only to specify the function name and

supply the corresponding input data. In turn, the Application
Manager submits tasks to the Resource Manager for execution.

The Resource Manager works on behalf of the cloud provider

to manage provisioned resources and task execution. It contains

two main components: a Task Scheduler and an Auto-scaler.

Both components operate on a heterogeneous Worker Group,

consisting of currently provisioned worker instances. We define

a worker as a resource configuration instance comprised by a

computing device, such as a CPU or an FPGA, and a specific

quantity (i.e. (3, CPU)). In our current definition, we assume

that accelerator workers (e.g. (n, FPGA)) use a CPU to drive

input and output data to accelerators and back, but the CPU

computation is negligible since DMA is used. Our model could

be easily extended to more complex workers using CPUs and

accelerators in parallel (e.g. ([n,m], [CPU, FPGA])).

A key challenge in our approach is identifying the most

profitable worker types within a budget of computing devices.

For instance, as illustrated in Fig. 3, with a budget of 3 FPGAs,

we can employ three workers of type (1, FPGA) , or one

(1, FPGA) and one (2, FPGA), or even a single (3, FPGA)

to execute any given task. Identifying which type of worker to

use and how many of them to employ may have implications

in terms of latency (how fast a single request is processed) as

Fig. 3: Identifying the right quantity and type of workers from provisioned
resources allows the proposed platform to optimise the application in terms of
latency, throughput, and cost.

well as throughput (how fast a group of requests are serviced

per unit of time).

Once the worker types have been automatically identified by

ORIAN, the Auto-scaler is responsible for setting up the initial

Worker Group with the appropriate quantity and type of workers,

and scaling this group if necessary (elasticity) according to

the user allocation rules. The Auto-scaler is constrained by the

Resource Pool which defines the budget of computing devices

that can be provisioned during the life-cycle of the application.

The Resource Pool is defined by user-supplied allocation rules,

which specify the minimum and maximum number of devices

of each type (e.g. CPU or FPGA) and performance (QoS)

objectives (see Section II-D). The Task Scheduler, on the other

hand, is responsible for transparent acceleration, mapping each

submitted task to the most suitable available worker in the

Worker Group.

To guide mapping and scaling decisions, the Resource
Manager employs a database of task implementations and

corresponding models characterising the performance of each

implementation for different workloads. In particular, we

employ a library-based system where each supported function

may have multiple implementations in the database targeting

different workers. By maintaining a library of curated, opti-

mised, and reusable accelerator functions, we enable non-device

experts to access accelerators without requiring a high-level

programming framework. Supporting user-defined accelerator

functions and their compilation process is beyond the scope of

this paper, but we plan to introduce them in future research.

Note that, as will be explained in Section III and illustrated in

Fig. 8, our resource management architecture can be organised

as a hierarchy of smaller Resource Manager instances, each

targeting a specific cloud resource, and governed by the

same ORIAN API. Having a uniform interface allows us to

build a complex resource management system from simpler

ones, and to match the system with the underlying hardware

infrastructure. For simplicity, in this section we only consider

a single Resource Manager instance. More details about our

proposed resource management process, including transparent

acceleration and heterogeneous elasticity, are described below.

C. Transparent Acceleration

To support transparent acceleration, our platform operates in

two modes: offline and online. When offline, implementations

are profiled, and performance models are empirically derived

164

Fig. 4: ORIAN offline performance modelling.

for each. When online, these models are used by the Task
Scheduler to automatically select the worker in the Worker
Group expected to minimise execution time and/or cost for a

submitted task (f(x)). In particular, the Task Scheduler selects

the worker instance expected to minimise execution time if

no performance objective is specified. Otherwise, the Task
Scheduler selects the cheapest worker that meets the specified

objective. For this purpose, a cost model for the available

resources needs to be defined by the cloud provider. This

model can be based on a number of factors, including power

consumption and supply and demand considerations, and can

be customised and updated at runtime.

Performance Modelling. Access to performance models

is vital for ORIAN to make transparent mapping decisions

at runtime. In order to automate the modelling process, we

use a generic method to collect samples for an arbitrary,

black-box function. The method is based on the following

two assumptions: (1) the throughput will eventually saturate

(stop changing) as we increase problem size, and (2) the

implementation domain is known (i.e. the minimum, maximum,

and granularity of valid problem sizes). The modelling process

is illustrated in Fig. 4. Profiles are collected starting at the

minimum problem size. Increments between sampled problem

sizes are increased as the change in the throughput between

subsequent samples decreases (analogous to a negative second

derivative of a continuous function). Fewer profiles are collected

as problem sizes approach saturation (throughput values change

less). This ensures enough profiles are collected to derive

an accurate model without performing an exhaustive search.

Once profiles have been collected, samples are cleaned using

common data-processing techniques to remove outliers, and

models are derived using least-squares regression.

Dynamic Reconfiguration. While our transparent acceler-

ation approach is designed to support arbitrary accelerator

types, dynamic reconfiguration must be taken into account

when considering FPGAs. Allocated FPGAs are reconfigured

whenever they need to execute a new implementation during

the life-cycle of an application. Each time there is a context

switch (from implementation X to Y), there is a reconfiguration

cost involved. Since we target HPC-based applications, FPGAs

are often assigned to perform computationally intensive large

tasks, therefore the sub-second reconfiguration cost is negligible

compared to the computation time.

D. Heterogeneous Elasticity

Elasticity refers to automatic scaling of allocated compute

resources to match incoming workload. By automatically

adapting to traffic in order to maintain the minimum cost
resource set required to satisfy QoS objectives, elastic systems

(a) Traditional PaaS Elasticity (b) ORIAN Heterogeneous Elasticity

Fig. 5: ORIAN vs. Traditional PaaS Elasticity.

aim to reduce tenant costs. In the absence of elasticity, a

tenant may provision N workers required to satisfy a QoS

objective at peak traffic hours, but they are forced to pay for

these N workers at off-peak times when fewer workers would

be sufficient. Elasticity is a key PaaS feature to support non-

uniform and/or unpredictable traffic without forcing tenants

to over-provision. ORIAN’s heterogeneous elasticity supports

automatic scaling of heterogeneous worker groups.
As depicted in Fig. 5, traditional PaaS platforms scale

resources by replicating a single worker type, increasing or
reducing compute capacity linearly. Instead, our proposed
heterogeneous elasticity system supports multiple worker types,
in which we identify the appropriate quantity and type of
workers according to incoming workload. To support our
heterogeneous Auto-scaler, we rely on user-supplied resource-
agnostic allocation rules:

(1) The minimum and maximum number of processing elements
that can be allocated (e.g. 1-3 CPUs, 0-2 FPGAs)

(2) To increase and decrease action thresholds (e.g. add a new
worker if score > 50%, remove a worker if score < 30%)

(3) The window size, N (e.g. auto-scaling event every N jobs)
(4) A QoS objective (e.g. complete a job in 1.2s)

Configuration. First, ORIAN determines the Resource Pool
defining the budget of cloud resources that constrains scaling

decisions. Specifically, the minimum and maximum number of

each processing element (allocation rule (1)) are used to set

the quantity and types of resources in the pool (e.g. 3 CPUs,

2 FPGAs). Next, a list of Candidate Worker Types, (n,PE) ,

is derived using the Resource Pool, performance models, and

QoS objectives (rule (4)). To determine this list, a graph of

Fig. 6: The most effective workers for different problem sizes and a fixed time
objective. This example considers 4 workers (W1, W2, W3, W4), and concludes
that 3 of them should be candidate workers (W1, W2, W3). Note that the ‘best’
worker for each size is that with the minimum cost × compute time product.
Although W4 is always the most performant (fastest compute time), it is never
the most cost effective for the given objective, and thus it is not considered.

165

Fig. 7: An example of a dynamically changing worker group and resource pool, described in Section II-D.

predicted execution times for all possible worker types that

can be selected from the Resource Pool is produced to identify

the most effective worker types (see Fig. 6). The resulting list

of worker types is therefore designed to cover all problem

sizes for a particular managed task and Resource Pool, while

meeting the given objective with the minimum cost.

Worker Group Scaling. At runtime, while the Task Sched-
uler selects the best worker instance from the Worker Group to

execute a task, the Auto-scaler determines the best candidate

worker types for each task using performance models and

the QoS objective. In particular, the Auto-scaler maintains a

score for every candidate worker type, incremented whenever

it is deemed to be the best. Periodically, as specified by the

window size (rule (3)), the Auto-scaler compares the score

for each candidate worker type to the increase and decrease

thresholds (rule (2)), and adds or removes workers to/from

the Worker Group as appropriate, subject to availability in the

Resource Pool. We currently define the window size between

auto-scaling events by a number of jobs, but this could be

extended to support time windows as well.

Consider the example in Fig. 7, illustrating how a Worker
Group scales with variations in traffic. Two candidate workers

and task types are considered: A tasks suited to (2,�) workers,

and B tasks suited to (3,�) workers. The increase and decrease

thresholds are both set to 50% for simplicity, and the task

sequence shows a spike in type B traffic between mostly A
tasks. The worker group begins with one (2,�) . In the first

window, the majority of tasks are type A, and therefore the

(2,�) score is greater than the 50% increase threshold. As

such, a new (2,�) is introduced. In Window 2, there are

50% type A and 50% type B tasks. Both worker types will

have scores that meet the increase threshold (50%), so the

Auto-scaler attempts to introduce a new worker of each type.

However, since there are no available �s in the resource pool,

only a (3,�) is added. In Window 3, there are majority B
tasks. The score for (3,�) is greater than the 50% increase

threshold, so a new (3,�) is introduced, while the score for

(2,�) is less than the 50% decrease threshold, so a (2,�)
is removed. In Window 4, both worker types have scores that

meet the increase threshold (50%). A (2,�) is introduced but

a new (3,�) cannot be since there are no available �s in the

Resource Pool. Note that the thresholds define how aggressive

the scaling is in response to incoming traffic variations.

Fig. 8: Our current ORIAN prototype contains four types of resource managers:
cluster, heterogeneous node, DFE, and CPU.

III. IMPLEMENTATION

We validate our PaaS approach by developing a prototype

(Fig. 8) that targets a hardware infrastructure with two heteroge-

neous nodes: Node1 has access to 12 CPU cores and 24 Max4

DFEs [5], while Node2 has access to 24 CPU cores and 4 Max3

DFEs [6]. A DFE (Dataflow Engine) is a complete compute

device system developed by Maxeler [7], which contains an

FPGA as the computation fabric, RAM for bulk storage, the

necessary logic to connect the device to a CPU host, interfaces

to other buses and interconnects, and circuitry to service the

device. A DFE provides an abstraction for executing dataflow

programs, which operate on streams of data and deep pipelined

designs. DFEs have been successfully used for accelerating

HPC applications.

Our prototype currently employs four ORIAN Resource

Managers that respectively handle: a cluster, a heterogeneous

node, DFEs, and multi-core CPUs. We employ a micro-

service architecture of hierarchically arranged modular resource

managers organised to reflect the levels of complexity of a

hardware infrastructure. Each manager operates in an isolated

Docker [8] container to ensure isolation of services, and

managers communicate with one another via the ORIAN API.

Because resource managers share the same interface, managers

can be introduced, replaced, or updated while allowing the rest

166

(a) AdPredictor (b) Exact Align (c) NBody

Fig. 9: Performance models for each case-study function implementation.

TABLE I: Case-study implementation lines of code (LOC) and problem size
definition.

Case Study CPU LOC DFE LOC Problem Size Definition

AdPredictor 51 131 # of ad impressions
Exact Align 96 323 # of reads to align
Nbody 24 289 # of particles to simulate

of the system to work as designed, enabling the architecture

to grow with the underlying hardware platform.

Our prototype currently supports Python user applications,

which interface with the Application Manager. In turn, the Ap-
plication Manager connects directly to any Resource Manager
in the hierarchy using the ORIAN API, accessing the resources

that lie underneath (i.e. if connected to the cluster manager,

the user application can access CPU cores and DFEs on all

available heterogeneous nodes, while if directly connected to a

heterogeneous node manager, the user application can access

CPU cores and DFEs only on that node). Auto-scaling and

task scheduling decisions are made in the top-level Resource
Manager, and tasks are forwarded through the hierarchy for

execution on the selected compute resources.

IV. EVALUATION

A. Case Study Applications

Our current prototype supports three functions in different

domains: (i) AdPredictor [9] (advertisement click prediction:

machine learning), (ii) Exact Align [4] (sequence alignment:

bioinformatics), and (iii) NBody (particle simulation: physics).

These case studies are examples of HPC applications that

are not currently well supported by cloud platforms. Various

optimised multi-CPU and multi-DFE implementations for each

are available. The CPU implementations are programmed in

C++, while the DFE implementations are programmed in MaxJ,

a Java DSL used to describe dataflow programs. The LOC (lines

of code) for each application’s CPU and DFE implementations

are included in Table I. With ORIAN, all implementation code

for each device as well as the logic to manage their resources

are replaced by a single task invocation.

Performance models for each available implementation are

derived using the method explained in Section II-C. These

models are presented in Fig. 9. To evaluate the accuracy of the

derived models, observed compute times for each configuration

were recorded and compared to predicted times. The models

are observed to be accurate, with an average error across all

functions and workers of 3.5% in the saturation regions.

TABLE II: ORIAN and maximum static config. throughput discrepancy.

Case Study
Average Discrepancy

ThresholdSmall Workloads Large Workloads

AdPredictor 12% 5% 1 million impressions
Exact Align 51% 4% 1 million reads
Nbody 22% 3% 30 thousand particles

Average 28% 4% n/a

B. Transparent Acceleration

To evaluate transparent acceleration, we compare the through-

put achieved by ORIAN-managed configuration selections to

various static configurations for problem sizes spanning the

domain of each task. For these experiments, we consider only

resources from Node1, hence the Application Manager is con-

figured to connect directly to the Heterogeneous Node Resource
Manager (see Fig. 8). The complexity of the algorithm used to

make decisions is O(worker group size), so the overhead is

constant for a given worker group. In our experiments, decision

making takes ∼20ms.

Observed throughputs for ORIAN-managed configuration

selections and static configurations are displayed in Fig. 10.

ORIAN’s performance is close to the maximum throughput in

all cases. The average discrepancies between ORIAN-managed

configuration throughputs and the maximum static configuration

throughputs are included in Table II, where the threshold

between small and large workloads is noted in the table for

each case study.

Not surprisingly, the decision-making overhead is more

noticeable for smaller workloads, but has less effect on larger

workloads that take longer to execute. For large workloads, the

average discrepancy between the ORIAN-selected configuration

throughput and the maximum static throughput is very low,

only 4%. For small workloads, the discrepancy is higher: 28%

average across all applications, and up to 51% for Exact Align.

However, small workloads complete in sub-second times, and

therefore even with a 51% discrepancy, the order of magnitude

of compute times for such workloads is unchanged.

C. Heterogeneous Elasticity

To evaluate heterogeneous elasticity, we compare the total

cost and objective hit rate of an elastic versus an over-

provisioned worker group. For our experiments, we consider

the Exact Align application on a single heterogeneous node

(Node1). We assign a cost of 3 units to 1 DFE and 1 unit to 1

CPU core (this pricing model is arbitrary, and in practice

depends on factors such as supply and demand). Fig. 11

167

(a) AdPredictor (b) Exact Align (c) NBody

Fig. 10: ORIAN transparent acceleration vs. static configuration throughput for each application.

shows the graph derived using our performance models and

a latency objective of 8s for all problem sizes. From this

graph, ORIAN determines two candidate worker types: CPU1:

(1,CPU) and DFE1: (1,DFE) . We choose problem sizes

SizeS={500...5000} and SizeL={50,000...5,000,000} suited to

CPU1 and DFE1 workers, respectively. Note that although a

CPU1 worker costs a third as much as a DFE1 worker and may

meet the objective for a SizeL task, the cost × compute time

product will be less with a DFE1. For example, for problem

size 50,000 CPU1 will complete execution in ∼1s, costing ∼1

unit overall, whereas DFE1 will complete execution in ∼0.01s

costing ∼0.03 units.

We consider the following task sequences and worker groups:
Task Sequences

• Uniform S: 60 SizeS tasks
• Uniform L: 60 SizeL tasks
• Non-Uniform SLS (peak): 20 SizeS, 20 SizeL, 20 SizeS tasks
• Non-Uniform LSL (dip): 20 SizeL, 20 SizeS, 20 SizeL tasks

Worker Groups
• Over-provisioned: 3xCPU1 and 2xDFE1 workers (fixed)
• Elastic: (1..3)xCPU1 and (0..2)xDFE1 workers

(allocation rules: 1–3 CPU, 0–2 DFE; window: 5 jobs;
increase threshold: 50%; decrease threshold: 30%)

The total cost and objective hit rate for each group and

sequence are included in Table III. Total cost is the product of

the time to run the task sequence and the average cost of the

resources used in the Worker Group throughout.

For uniform traffic, our experiments show that using an

elastic group is either comparable or better than using an

over-provisioned group. For the Uniform S sequence, using

the elastic group is significantly (∼2.5 times) less costly than

using the over-provisioned group since the elastic group will

Fig. 11: Best worker types for Exact Align with a latency objective of 8s.

TABLE III: Total cost and objective hit rate for each worker group and task
sequence (objective hit rate in parentheses).

Task Sequence Over-provisioned Elastic

Uniform S 6.28 (100%) 2.45 (100%)
Uniform L 2021.90 (77%) 2330.18 (83%)

Non-Uniform SLS 273.25 (90%) 119.01 (90%)
Non-Uniform LSL 371.58 (85%) 324.16 (87%)

never include the more costly DFE1 workers. Both groups

meet objectives 100% of the time for SizeS jobs. For the

Uniform L sequence, the elastic group is comparable to the

over-provisioned group both in terms of cost and objective

hit rate. In practice, over-provisioning is used in the absence

of elasticity in order to ensure support for maximum traffic

(e.g. spikes at peak times). The Uniform L sequence represents

constant maximum traffic, so the comparability of the results is

due to the elastic group mimicking the over-provisioned group

by including all workers to support the maximum traffic.

In general, elasticity is most desirable for unpredictable, non-

uniform traffic with occasional peaks in traffic, represented

by the SLS sequence. In our experiments, the elastic group is

more cost efficient than the over-provisioned group for both

non-uniform sequences, and in both cases the groups have

comparable objective hit rates. However, the cost reduction

provided by the elastic group is highest for peaked non-uniform

traffic (SLS), as observed by the 2.3 times reduction in cost,

when compared with the over-provisioned group. The SLS

sequence represents a common scenario with mostly off-peak

traffic, with occasional peak spikes, offering the most cost-

effective solution when compared to over-provisioning.

D. Extending the Architecture

So far, in previous experiments, we considered only Node1
resources. In this experiment, we include resources from

Node1 and Node2 in order to increase both the type and

quantity of available resources. For this purpose, we configure

the Application Manager to connect to the Cluster Resource
Manager which handles both heterogeneous nodes (Fig. 8).

Applications are now able to access two types of DFEs:

Max4 DFEs on Node1 and Max3 DFEs on Node2. With more

resources at hand, we increase the optimisation space. In this

context, we consider two scenarios, S1 and S2, where S1 only

considers Node1, and S2 considers both Node1 and Node2.

With an arbitrary latency objective of 3s, ORIAN identifies

two candidate worker types for each scenario, listed in Table IV

168

TABLE IV: Derived candidate workers and the cost of executing AdPredictor
with 50 million impressions and time objective 3s.

Scenario Candidate Workers Cost

S1 (Node1)
(1,DFEmax4) for ≤ 25 million impressions

10.4
(4,DFEmax4) for > 25 million impressions

S2 (Node1+2)
(1,DFEmax4) for ≤ 25 million impressions

5.2
(2,DFEmax3) for > 25 million impressions

TABLE V: Derived candidate workers and throughput of executing AdPredictor
with 50 million impressions and resource constraint ≤ 2 DFEs.

Scenario Candidate Workers Throughput (Kimp/s)

S1 (Node1)
(1,DFEmax4) for ≤ 25 million impressions

15,549
(2,DFEmax4) for > 25 million impressions

S2 (Node1+2)
(1,DFEmax4) for ≤ 25 million impressions

19,062
(2,DFEmax3) for > 25 million impressions

and derived from Fig. 12. Worker types (2,DFEmax3) and

(4,DFEmax4) achieve similar throughput for large jobs (50

million impressions), therefore such jobs executed in S2 achieve

the same performance as in S1 but at half the cost (see Table IV).

With a resource constraint (instead of a time objective) of 2

DFEs maximum, the candidate workers identified by ORIAN

are included in Table V. (2,DFEmax4) achieves a lower

throughput than (2,DFEmax3) , and thus large jobs in S2

execute 23% faster at the same cost as S1 (see Table V).

Hence, the ability to easily extend the platform to include

new types and numbers of resources allows the platform to

automatically adjust and optimise performance and/or cost.

V. RELATED WORK

Unlike ORIAN, existing cloud PaaS frameworks have limited

or no support for heterogeneous resources. For instance,

Google’s PaaS AppEngine [10] and Microsoft Azure App

Services [11] do not support GPU- or FPGA-enabled VMs. On

the other hand, AWS Elastic Beanstalk [3] supports instances of

any type, including those with hardware accelerators. However,

accelerator-optimised instances still require resource-aware

applications programmed for specialised resources.

In addition, state-of-the-practice PaaS elasticity approaches

are limited to homogeneous horizontal scaling. The auto-scalers

used in each of the cloud platforms mentioned above are

based on replication of homogeneous instances. For example,

PaaS platform Heroku’s auto-scaler [2] monitors incoming

traffic and changes the number of Dynos in order to maintain

a user-specified response time. ORIAN PaaS, on the other

hand, combines vertical and horizontal scaling, automatically

allocating (and releasing) heterogeneous compute resources -

covering both device type and quantity - to match incoming

traffic and QoS requirements.

Various state-of-the-art research projects focus on the provi-

sioning, sharing, and programming of specialised heterogeneous

cloud resources. For instance, the HARNESS project [12] offers

a heterogeneous cloud platform, exposing compute, storage and

communication devices as first-class cloud resources. The work

in [13] proposes a modular hardware stack with interchangeable

layers and an example heterogeneous communication layer for

the orchestration of FPGA and CPU cloud clusters based on

high-level user descriptions. Unlike ORIAN, neither project

supports heterogeneous elasticity.

The work of [14] virtualises cloud FPGAs to enable sharing

by mapping accelerators to regions of FPGAs managed

Fig. 12: Best worker types for AdPredictor with time objective of 3s.

by runtime managers on local processors. FPGAVirt [15]

proposes a hardware/software co-design framework focused on

abstraction, sharing, and isolation using an overlay dividing

FPGAs into ‘virtual functions’ with a management service

that maps submitted functions to available regions. ORIAN

currently targets dedicated (non-shared) resources, but our work

can be directly applied to virtualised resources if they offer

appropriate support for performance isolation.

VI. CONCLUSION

We propose the ORIAN heterogeneous resource management

architecture for a cloud PaaS system, extending the traditional

homogeneous PaaS model to support heterogeneous worker

types. ORIAN’s key novelties are its support for transpar-
ent acceleration on large-scale heterogeneous infrastructures,

allowing resource-oblivious applications to automatically tap

on to specialised resources, and heterogeneous elasticity, the

automatic scaling of heterogeneous cloud resources vertically

and horizontally to match incoming workload and reduce cost.

To evaluate our approach, we developed a prototype targeting

three application domains (machine learning, bioinformatics,

and physics), on a platform with a combined computational

capacity of 28 FPGAs and 36 CPU cores. Our transparent

acceleration decisions achieve on average 96% of the maximum

manually identified static configuration throughput for different

types of workloads, while removing the burden of determining

configuration from the user. We also demonstrate that an elastic

ORIAN resource group provides a 2.3 times cost reduction

compared to an over-provisioned group for non-uniform,

peaked job sequences while guaranteeing QoS objectives;

and our malleable architecture extends to support a more

suitable compute resource type reducing the cost by half

while maintaining throughput, and achieving a 23% throughput

increase while fulfilling resource constraints.

Current and future work includes the support of a compilation

path to allow user-defined computations to be managed, as

well as targeting other HPC application domains and hardware

accelerators, such as GPUs and application-specific devices.

ACKNOWLEDGEMENT

The support of the United Kingdom EPSRC (grant

numbers EP/L016796/1, EP/N031768/1, EP/P010040/1 and

EP/L00058X/1), Maxeler and Intel is gratefully acknowledged.

169

REFERENCES

[1] “Amazon EC2.” [Online]. Available: https://aws.amazon.com/ec2/
[2] Heroku, “Scaling Your Dyno Formation.” [Online]. Available:

https://devcenter.heroku.com/articles/scaling
[3] “AWS Elastic Beanstalk.” [Online]. Available: https://aws.amazon.com/

elasticbeanstalk/
[4] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging FPGAs

for Accelerating Short Read Alignment,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 14, no. 3, pp. 668–677,
May 2017.

[5] “Maxeler MPC-X Series.” [Online]. Available: https://www.maxeler.com/
products/mpc-xseries/

[6] “Maxeler MPC-C Series.” [Online]. Available: https://www.maxeler.com/
products/mpc-cseries/

[7] “Maxeler Technologies.” [Online]. Available: https://www.maxeler.com/
[8] Docker, “Docker,” https://www.docker.com/.
[9] T. Graepel, J. Q. n. Candela, T. Borchert, and R. Herbrich,

“Web-scale Bayesian Click-through Rate Prediction for Sponsored
Search Advertising in Microsoft’s Bing Search Engine,” in ICML.
USA: Omnipress, 2010, pp. 13–20. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3104322.3104326

[10] “Google App Engine.” [Online]. Available: https://cloud.google.com/
appengine/

[11] “Azure App Service.” [Online]. Available: https://azure.microsoft.com/
en-gb/services/app-service/

[12] J. Coutinho, M. Stillwell, K. Argyraki, G. Ioannidis, A. Iordache,
C. Kleineweber, A. Koliousis, J. McGlone, G. Pierre, C. Ragusa,
P. Sanders, T. Schütt, T. Yu, and A. Wolf, The HARNESS Platform: A
Hardware- and Network-Enhanced Software System for Cloud Computing,
2017.

[13] N. Eskandari, N. Tarafdar, D. Ly-Ma, and P. Chow, “A Modular
Heterogeneous Stack for Deploying FPGAs and CPUs in the Data Center,”
in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2019, pp. 262–271.

[14] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized
Execution Runtime for FPGA Accelerators in the Cloud,” IEEE Access,
vol. 5, pp. 1900–1910, 2017.

[15] J. Mbongue, F. Hategekimana, D. T. Kwadjo, D. Andrews, and C. Bobda,
“FPGAVirt: A Novel Virtualization Framework for FPGAs in the Cloud,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), July 2018.

170

