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Abstract
Massively parallel architectures offer the potential to significantly accelerate an application rela-

tive to their serial counterparts. However, not all applications exhibit an adequate level of data

and/or task parallelism to exploit such platforms. Furthermore, the power consumption associ-

ated with these forms of computation renders “scaling out” for exascale levels of performance

incompatible with modern sustainable energy policies. In this work, we investigate the potential

for field-programmable gate arrays (FPGAs) to feature in future exascale platforms, and their

capacity to improve performance per unit power measurements for the purposes of scientific

computing. We have focused our efforts on variational Monte Carlo, and report on the benefits

of coprocessing with a FPGA relative to a purely multicore system.
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1 | INTRODUCTION

Quantum Monte Carlo (QMC) encompasses a class of techniques for approximating expectation values to quantum mechanical observables for

many-electron systems.[1] By casting the time-independent Schrödinger equation into integral form, the high-dimensional integration—intractable

through quadrature techniques—can be realized through a stochastic sampling of the many-electron wavefunction.

Relative to deterministic counterparts, QMC offers the potential to combine the favorable scaling of mean-field techniques and the accuracy

of post-Hartree Fock methods.[2] Two forms of QMC in particular have gained traction as popular ab initio methodologies:[3] variational Monte

Carlo (VMC) and diffusion Monte Carlo (DMC). Commonly, VMC is used to variationally optimize free parameters in the wavefunction, with DMC

being subsequently applied to compute production level observables for the molecular system in question.

Prior to the failure of Dennard scaling,[4] application developers were able to indulge in a “free lunch,” whereby they could exploit the contin-

ual increase in processor clock frequencies with new generations of hardware to directly accelerate an application. As on-chip power densities no

longer scale down with transistor density, manufacturers instead look toward heat dissipation technologies in an effort to accommodate Moore's

law.[5] However, such techniques have limitations and eventually require manufacturers to reduce on-chip voltages, forecasted to eventually cul-

minate in an era of “dark silicon.”[6]

To address the unsustainability of frequency scaling, the tendency has been for new generations of hardware to increase the number of paral-

lel compute units on a single chip. As a result, the onus falls onto the software developer to exploit either operations or tasks that can be under-

taken in parallel within an application. Furthermore, with the advent of distributed memory systems and graphical processing units (GPUs) at

contemporary high-performance computing (HPC) facilities, the software developer has an enormous arsenal of hardware solutions for exploiting

parallelism within an application.
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For QMC methodologies, the associated embarrassing parallelism lends itself well to modern parallel architectures. There is a significant body

of work demonstrating the near-linear scaling of performance with respect to the available hardware concurrency.[7,8] More recently, GPUs have

been utilized as coprocessors to deliver impressive performance gains.[9] However, “scaling out” is not a sustainable solution to simulating increas-

ingly complex systems. The power consumption associated with distributed memory systems and GPUs does not align with modern energy poli-

cies. Indeed, a consensus appears to have emerged[10–12] that the power consumption of HPC is one of the most prodigious barriers to attaining

exascale levels of performance.

Field-programmable gate arrays (FPGAs) are appealing candidates as processing units for novel exascale platforms.[13,14] These

devices combine low power consumption with the capacity to exploit both data and task parallelism, and are therefore applicable to a

wider set of applications than solutions relying on data parallelism alone. To date, use of FPGAs in electronic structure theory has been

somewhat limited, although several works demonstrate the power of this platform to accelerate scientific applications within this

domain.[15–17]

In this work, we look to port the compute-intensive portions of a VMC calculation to an FPGA and assess the performance relative to a

CPU-bound application. We elaborate on the optimizations incorporated into our design to optimize the implementation for the purposes of

coprocessing. Finally, we demonstrate that our application benefits from the use of FPGAs in terms of both raw compute performance and

power consumption.

2 | VARIATIONAL MONTE CARLO

The following section is not intended to present an exhaustive exposition of techniques within QMC. Rather, the reader is directed to the excel-

lent review of Foulkes and coworkers[1] for further details.

2.1 | Implementation

Consider a molecular system comprising N nuclei and n electrons, where R and r denote their collective position vectors respec-

tively. The time-independent electronic wavefunction of this system is represented by Ψ(r; R), where the parametric dependence on

R arises from the application of the Born-Oppenheimer approximation. Expanding Ψ(r; R) in terms of the exact (orthonormalized)

eigenfunctions of the molecular Hamiltonian, Ĥ r,Rð Þ, the energy of the system is determined by the expectation value Ĥ r,Rð Þ� �
Ψ. Alterna-

tive (time-independent) physical quantities can be obtained by substituting the molecular Hamiltonian for the appropriate corresponding

operator.

From the variational principle, it can be shown that for any approximate wavefunction, ΨT(r; R), referred to as the “trial wavefunction,” the

expectation value Ĥ r,Rð Þ� �
ΨT
, provides an upper bound to the true energy of the system. Consequently, the variational principle provides an

important metric for quantifying the quality of an approximate trial wavefunction, with lower energies implying a higher quality wavefunction.

Herein, all explicit functional dependencies are omitted unless a new quantity is introduced.

Through the time-independent Schrödinger equation, the energy associated with a particular trial wavefunction can be expressed as

ET ¼
Ð
drΨ*

TĤΨTÐ
drΨ*

TΨT
, ð1Þ

where integration is performed over the 3n electronic degrees of freedom. With some foresight, multiplication by the identity ΨT/ΨT casts this

expression into a form amenable to solution through stochastic methods:

ET ¼
Ð
dr ΨTj j2 ĤΨT

ΨTÐ
dr ΨTj j2

: ð2Þ

The above “importance sampled form” utilizes |ΨT|
2 as a probability density function from which samples of the “local energy,”

EL rð Þ ¼ ΨT
−1ĤΨT, can be drawn. Through Monte Carlo, the resultant average of the local energy over NMC (uncorrelated) samples is asymptotic

to the variational energy of the trial wavefunction:

ET� lim
NMC!∞

1
NMC

XNMC

i¼1
EL r ið Þ
� �

, ð3Þ

where r(i) denotes a sample, and equality emerges in the limit NMC ! ∞.

VMC provides a means for implementing the above stochastic process. Considering an ensemble of “walkers,” each representing a discrete

sample of ΨT with a particular electronic configuration in position space, the simulation proceeds by stochastically propagating each walker

through configuration space. By randomly displacing an electronic configuration, r
0  r, the Metropolis-Hastings algorithm can be invoked to

accept the step according to the transition probability
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P r
0  r

� �
¼ min 1,

ΨT r
0� �

ΨT rð Þ

�����
�����
2

2
4

3
5: ð4Þ

A basic overview of the VMC algorithm follows in Algorithm 1.

Algorithm 1: Variational Monte Carlo.

for iMC ¼ 1,…,NMC do

for iWalker ¼ 1,…,Nw do

for iEl ¼ 1,…, n do

r
0
iEl  riEl + δ

Compute ΨT(r
0
)

if ΨT r
0� �
=ΨT rð Þ�� ��2 > U 0, 1ð Þ then

Compute r2
r0ΨT r

0� �
Update Ψ−1

T r
0� �

Accumulate EL(r
0
)

riEl  r
0
iEl

return ET

2.2 | The trial wavefunction

As the many-electron wavefunction is unknown in closed-form for all but the most trivial of systems, approximations must be invoked. Owing to

the antisymmetry of the fermionic wavefunction, a determinant is a particularly appropriate mathematical form for the trial wavefunction. Subject

to the spin-invariance of the operator whose associated observable is to be computed, the trial wavefunction can be written as the product of

α-spin and β-spin components,

ΨT rα, rβ
� � ¼ det Dα rαð Þ½ � × det Dβ rβ

� �	 

, ð5Þ

where D rð Þ is referred to as the Slater matrix, and rα, rβ denote the set electron position with the appropriate spin. The Slater matrix is composed

of a set of one-particle molecular orbitals, ψ (r),

Dω rωð Þ ¼
ψ1 rω1

� �
… ψnω rω1

� �
..
. . .

. ..
.

ψ1 rωn
� �

… ψnω rωn
� �

2
664

3
775, ð6Þ

where ω symbolizes an arbitrary spin-state. A molecular orbital is constructed as a linear combination of atomic orbitals (LCAO),

ψ i rð Þ ¼
XNAO

j¼1 cijϕj rð Þ, ð7Þ

where ϕ(r) denotes an atomic orbital, NAO is the number of atomic orbitals in the expansion and {cij} are the expansion coefficients for the ith

molecular orbital. The atomic orbital is formed from a linear combination of Np primitive functions,

ϕj rð Þ ¼ f ℓj,mj , jr −Rjj
� �XNp

k¼1djkexp − ζk r −Rj

�� ��2� �

¼ f ℓj,mj, r
� �XNp

k¼1ηjk rð Þ:
ð8Þ

In the above, Rj is the position vector of the atom to which the atomic orbital is centred, ζk is the width of the Gaussian function and djk are

the expansion coefficients for the jth atomic orbital. f(ℓj, mj, r) is a function of the azimuthal and colatitudinal quantum numbers associated with

the atomic orbital, that is, its angular momentum.

It is common practice to multiply the above determinantal form of the wavefunction with a function of inter-particle distances, referred to

as the Jastrow factor, to account for the correlation effects between particles.[18] Although inclusion of the Jastrow factor is one of the power-

ful features of QMC methods in general, we omit discussion of it in our work for the sake of simplicity. Furthermore, the sum of Gaussian func-

tions arising in the expression for the molecular orbital is often substituted for a cubic spline to ease the computational burden of complexity

scaling with the number of atomic orbitals in the system.[19] We avoid the use of these splines to ensure our application remains compute

bound.
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We wish to stress that our resultant implementation is optimized for a subset of VMC capabilities. Rather than claim our results are represen-

tative of all VMC calculations, we hope this work serves to illustrate the potential benefits of using FPGAs, and as such should be considered

exploratory as opposed to all-encompassing.

3 | FPGAS

3.1 | Basics and nomenclature

From the beginning, it is worth clarifying the distinction between latency and throughput, the former being the time taken to traverse a computa-

tional workflow, and the latter being the number of outputs from the workflow per unit time; for the processing of a single data item, these are

just reciprocally related. For multiple data items, pipeline parallelism offers the capacity to increase computational throughput at the cost of

latency. The rationale behind leveraging latency for throughput is best illustrated by example, for which we will refer to Figure 1.

Consider a “stream” of data, x0, x1, …, where the subscript enumerates order. In Figure 1A, we observe an unpipelined implementation of

3 data-dependent modules: f, g, and h, each delivering a result through composition with the preceding modules, that is, f(x), g(x, f ), and h(x, f, g),

where nested parentheses are omitted for clarity. Each module has an associated latency, ℓf, ℓg, ℓh. The latency of this workflow is given by the

longest route through the workflow, so here is simply the sum of the individual module latencies. The maximum frequency at which a clock can

drive the workflow is determined by the propagation delay associated with the longest pathway in the workflow. As the module latencies differ,

allowing multiple elements of the data stream to concurrently reside within the workflow results in improper behavior. The occupancy of data

within modules of the workflow with respect to time is depicted in the right-hand side of Figure 1A.

Figure 1B depicts the same workflow as that in Figure 1A, but with the addition of registers (red boxes and their associated latencies) capable

of storing data, across the workflow. As such, each module effectively inherits its latency from the maximum module latency in the workflow, ℓg

in this case. However, introduction of the registers allows the workflow to process multiple data concurrently. In other words, the data stream

exhibits temporal, or pipeline, parallelism, that is, the task can be executed as a cascade of subtasks.[20] The resultant pipelined implementation

then increases the throughput of the application, at the cost of a delay in processing a single datum.

An FPGA grants the application developer the means to realize a computational pipeline spatially in silicon. The FPGA is a matrix of configur-

able logic blocks (CLBs), fundamental programmable units comprising a lookup table and flip-flop (a logic unit capable of storing a state), among

other logical units depending upon the chip. Signals are routed through the CLBs by a series of programmable switches, theoretically permitting

the transmission of a signal between any 2 CLBs (although in practice one would wish to co-localize the connected CLBs for an optimal configura-

tion). Typically, a number of “hard blocks” (such as digital signal processors (DSPs), dedicated floating point units, static random access memory

[SRAM] blocks, etc.) are also available on the chip for specialized tasks that may be costly to implement directly from CLBs.

A configuration for the FPGA is loaded at runtime into a flash memory. The contents of this memory are used to configure the programmable

switches, routing signals as per the uploaded configuration. For the types of computation considered in this work, the FPGA is able to interact

with a general purpose processing unit through, for instance, a PCIe connection. As the FPGA is configured to perform a specific set of computa-

tions, the overheads associated with general purpose computing (such as scheduling and interrupts controlled by an operating system) are elimi-

nated. Furthermore, as the clock frequency at which an FPGA configuration can be run is dictated by the propagation delay across the chip, the

implementation will be clocked at far lower frequency than a CPU or GPU. These 2 factors result in a dramatic decrease in the power consump-

tion of an FPGA. As a rough indication, an FPGA consumes roughly an order of magnitude less power than a CPU or GPU. As such, FPGAs are

attractive devices for the purposes of low-power computation.

Naturally there are some significant difficulties in the use of FPGAs. The conventional means for programming FPGAs requires knowledge of

low-level unabstracted hardware description languages (HDLs). Use of these languages requires expertize in low-level design, and is therefore typ-

ically inaccessible to application developers from the physical sciences. Consequently, development times for FPGA-based applications are enor-

mously lengthy.

However, there exist a number of tools available to the developer for porting a complex application to FPGAs. High-level synthesis (HLS)

tools, such as those marketed by the major FPGA vendors Xilinx and Intel/Altera, offer the capacity to annotate high-level source code (C/C++

and OpenCL predominantly) with preprocessor directives, subsequently used to construct a HDL implementation of the application. Nevertheless,

high-performance implementations require considerable restructuring relative to a conventional CPU-based alternative to facilitate the inference

of a pipelined implementation by the HLS. Although the level of expertize required by the developer is reduced, a significant understanding of the

platform is imperative.

An alternative approach is to use an embedded domain specific language (EDSL), providing a library for a high-level host language to support

FPGA-based constructs, such as streams of data. The implementation is analyzed to construct an abstract syntax tree, which can subsequently be

used to generate the HDL implementation of the application. An example of such a facility is the extension to java provided by Maxeler Technolo-

gies, of which more will be said later in this work. Similar to HLS, an EDSL requires that the developer write their application in a form amenable

to constructing a FPGA implementation, and consequently still requires knowledge of the platform.
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3.2 | Application overview

Gothandaraman and coworkers[15] have previously ported a VMC application to an FPGA, directing their efforts to potential energy and trial

wavefunction evaluation kernels. Through the use of pipelining and fixed point arithmetic, significant improvements in performance were

obtained relative to a serial multicore implementation. However, their work was limited to bosonic systems, the trial wavefunction consequently

being expressible as a product of functions of pairwise particulate distances, that is, there is no need to invoke a determinantal form for the trial

wavefunction as the system's wavefunction is not subject to the antisymmetry constraints introduced by the Pauli exclusion principle. We have

targeted fermionic VMC, and as a result our implementation requires significant departures from previous efforts.

To fully exploit the reconfigurability of an FPGA, we have chosen to write an in-house VMC code so as to not restrict ourselves to the data

structures and algorithmic workflows utilized in more sophisticated packages.[2,8,21] Rather, we have been able to write the application so as to

optimize computation through coprocessing with an FPGA. It is worth reiterating that we consider here only a subset of VMC functionality; our

implementation is all-electron and Jastrow-free.

We have aspired to optimize our CPU implementation so as to possess a reasonable benchmark. Our VMC code is written in ISO C99, with

all data structures written in a “struct of arrays” (SoA) format to facilitate auto-vectorization and caching through spatial locality of reference. The

application is multithreaded using OpenMP. We have attempted to replicate the benefits of code encapsulation offered by object-oriented

approaches; a struct is utilized as a means for storing data and function pointers. The Ensemble_t struct, for instance, comprises electron posi-

tions, Slater matrices, laplacians, and all other data one may associate with a walker, along with methods for manipulating these data.

Our application foregoes physically motivated data structures to facilitate optimal cache behavior[22] and facilitate auto-vectorization by the

compiler without the need to resort to intrinsics or external libraries. Such optimizations require a significant effort on the part of the developer,

but their implementation can help to ameliorate an application from becoming overly memory-bound. Consider, for instance, a set of n particles,

each described by a position vector in R3. One can conceive of 2 separate data formats: the contiguous dimensions, that is, {x1, …, xn, y1, …, yn,

z1, …, zn}; and the physically motivated triplets, {x1, y1, z1, x2, y2, z2, …, xn, yn, zn}. An example of explicit computation of the unique pairwise

square distances between particles is given in Algorithm 2.

Algorithm 2: Pairwise distances using contiguous or triplet data structures.

#define nAtoms 65 536

#define nDims 3

static float positions[nAtoms*nDims] ;

static size_t xi, yi, zi = 0 ;

static size_t xj, yj, zj = 0 ;

for( size_t iAt = 0 ; iAt < nAtoms; ++iAt) {

#ifdef CONTIGUOUS

xi = iAt; yi = nAtoms + xi ; zi = nAtoms + yi;

FIGURE 1 An application comprising a series of data-dependent modules and its amenability to optimization through pipeline parallelism. A,

Unpipelined 3-module workflow, each module being dependent upon the output of the former in sequence. A single data element must traverse
the entire workflow prior to the entry of the next data element. While the latency is comparatively lower than for a pipelined case, the
throughput is also low. B, Pipelined 3-module workflow, each module being dependent upon the output of the former in sequence. Multiple data
elements are allowed to reside within the workflow simultaneously. The latency of the workflow is higher than the unpipelined case owing to the
necessity that all modules have associated registers to increase the effective module latency to that of the highest module latency. However,
throughput is twice as high as for the unpipelined case, with a new result output every ℓg once the pipeline is filled
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#else /* TRIPLET */

xi = iAt * nDims; yi = xi +1 ; zi = yi + 1;

#endif /* #ifdef CONTIGUOUS */

for(size_t jAt = iAt + 1 ; jAt < nAtoms ; ++jAt ) {

#ifdef CONTIGUOUS

xj = jAt ; yj = nAtoms + xj ; zj = nAtoms + yj ;

#else /* TRIPLET */

xj = jAt * nDims; yj = xj + 1 ; zj = yj + 1 ;

#endif /* #ifdef CONTIGUOUS */

float dx = positions[xi] - positions[xj] ;

float dy = positions[yi] - positions[yj] ;

float dz = positions[zi] - positions[zj] ;

float rSq = dx*dx + dy*dy + dz*dz ;

}

}

As the stride of memory accesses to the positions array in the contiguous format is unity, the compiler is able to automatically vectorize this

loop without issue. However, the stride length of 3 between memory accesses in the triplet format prohibits auto-vectorization, which is a signifi-

cant performance penalty for the wide vector registers available on modern processors. The performance benefits from auto-vectorization are

evident from run times; on a machine with SSE2, the contiguous format is over 3 times faster than the triplet format, as to be expected given the

vector register can process four 32-bit numbers simultaneously.

The number of cache misses is also halved for the contiguous format relative to the triplet format. The contiguous format gives signifi-

cantly improved cache performance as the square distance between particles is computed dimension-at-a-time, that is, one computes

dx, dy, dz in sequence, prior to reduction and computation of the square root. Allowing the compiler to vectorize the code, one finds that the

implementation effectively computes dx between iAt and several jAt concurrently. As the x−degrees of freedom are contiguous, a single fetch is

adequate to serve the vectorized operation. In contrast, for the triplet storage, one finds that a number of elements in the cache are redundant

for the calculation of dx, that is, the y, z degrees of freedom. As such, the cache does not contain all of the required data to serve the vectorized

instruction, resulting in suboptimal caching. Performance can be further improved through the use of techniques such as strip-mining to improve

temporal cache behavior.

In the following section, we adopt the conventional nomenclature “host” and “device” to denote the CPU and the FPGA, respectively

(see Figure 2). The device is connected to the host through PCI express (PCIe), permitting memory transfers to proceed by direct memory

access (DMA), that is, without blocking the CPU. Owing to the fact that VMC is embarrassingly parallel, it should hold that the difference in

performance between a host and a host with device is conserved in a multiprocessing environment, with n hosts and n devices. Our study

then compares single host against single host with device.

Our FPGA implementation is written in the EDSL provided by Maxeler Technologies, London, UK, Maxj. Maxj is an extension to java, providing

functionalities for dealing with sequences of data which are streamed across an FPGA implementation of the application. Such an implementation is

referred to as “dataflow.” Maxj is compiled by the MaxCompiler, the resulting executable constructing a register transfer level (RTL) implementation

of the application. The RTL is subsequently passed to a synthesis tool (supplied by the chip vendor) to construct the FPGA configuration.

4 | IMPLEMENTATION DETAILS

Throughout, we use the MAIA board produced by Maxeler Technologies, possessing an Altera Stratix V FPGA chip and 48 GB of on-board DDR3

DRAM. We are aware that this FPGA is rather out-dated (the Stratix X, recently released by Intel/Altera, has roughly twice the number of

resources as the Stratix V used here), but is the best device at our disposal. Our host processor is an Intel Xeon E5-2640 with 6 physical cores,

clocked at 2.5 GHz. Again, this technology is somewhat out-dated, but has been chosen for a mixture of ease of access and to aid in benchmark-

ing similar semiconductor device fabrications. The molecular system we work with is a lattice of 64 molecules of H2. We choose the STO-6G basis

set for the sake of simplicity, although our described implementation is general enough to utilize an arbitrary basis set.

Evaluating the trial wavefunction and its derivatives is the major computational bottleneck of VMC. For small systems such as Be2, profiling

of our code reveals over 70% of the compute time is localized in the routines which evaluate atomic and molecular orbitals. As the system size

increases, the trial wavefunction routines dominate further: upward of 90% of compute time for the lattice of hydrogen. As such, our target for

offloading to the FPGA is obvious.
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Although the Sherman-Morrison inverse (and determinant) updating routine accounts for a nonnegligible portion of runtime, it has been

noted that the routine is fairly efficient on CPUs[9] as the inverse matrices fit comfortably in cache. We also note that an improved inverse updat-

ing scheme has recently been published.[23] In the future, it may be interesting to incorporate these routines into an FPGA implementation. How-

ever, for the purposes of this work, we concentrate our efforts specifically on the trial wavefunction evaluation kernel.

Throughout, we manually set a clock frequency of 100 MHz for the synthesized design. We avoid maximization of the clock frequency

with which our application is built as it increases the dimensionality of our design space. For instance, an increase in the clock frequency

must be leveraged for other compile-time optimizations, such as depth of pipelines. We do, however, note that preliminary results suggest

our design is capable of meeting timing constraints at significantly higher clock frequencies than used here. These results suggest that addi-

tional performance is available.

4.1 | Workflow outline

The algorithmic workflow outlined in Algorithm 1 serves to illustrate the data dependencies of the individual kernels, and the kernels which must

be serialized. An electron must be displaced, and the trial wavefunction subject to this displacement evaluated. Should the new trial wavefunction

meet the Metropolis criterion, the inverse and laplacian of the trial wavefunction are computed, and the local energy accumulated. Should the trial

wavefunction not meet the Metropolis criterion, the electron is reverted to its position prior to displacement.

There is no scope for task-level parallelism, rendering it difficult to occupy both host and device simultaneously. Simply offloading the

computationally intensive portions of the calculation to the device and blocking the CPU until completion is inefficient from a coprocessing

perspective. The offload cost must be taken into account when benchmarking against a host-bound application. Any savings made by the

coprocessor in calculation time must be adjusted for the overhead associated with the offload.

The embarrassingly data-parallel nature of our application can be used to mask the offload cost. By simply splitting our ensemble into

2 equally sized ensembles, Ensemble_A and Ensemble_B, one can be processed by the host while the other is processed by the device. In

effect, we artificially create pipeline-parallelism through data-parallelism. However, this enforced task-parallelism comes at the price of additional

memory consumption.

Consider momentarily Ensemble_A in isolation of Ensemble_B. At t0, it is offloaded to the DFE, where the constituent electrons are dis-

placed, the Slater matrix differences and laplacians are computed, and subsequently sent back to the host. The host is now holds Ensemble_A at

t1, where all trial moves have speculatively been accepted. Upon proceeding to the Metropolis step on the host, one finds that upon rejection of a

particular move, the data associated with the previous configuration has been overwritten, resulting in the requirement that the host recompute

the data from t0.

Now, consider the case where the data associated with Ensemble_A is double-buffered. The data at t0 is stored in both the ensemble's

buffers. The double-buffer is offloaded to the device which again speculatively updates Ensemble_A to t1, the data for which is subsequently

passed back to the double-buffer. Now, when attempting the Metropolis step, the host has access to data from both t0 and t1, allowing either

rejection or acceptance of a trial move without the need to recompute data.

Finally, let us reintroduce Ensemble_B. Now, while Ensemble_A is being processed by the device, Ensemble_B can undergo the Metropo-

lis step on the host having previously been speculatively updated on the device. The two ensembles can subsequently alternate being processed

by the host and device, resulting in a nonblocking simulation. Furthermore, the host is free to run multithreaded, and the device need never block

the host as memory transfers can proceed through DMA (unless the host is undertaking some memory-intensive task, in which case the memory

transaction hardware will be overfaced). The number of threads that the host uses can be tuned to minimize the amount of idle time and power

consumed. An overview of this workflow is given in Figure 3.

4.2 | Dataflow trial wavefunction evaluation

Owing to the enormous computational efforts associated with hardware synthesis, our main aim the construction of a generic dataflow

implementation for the trial wavefunction kernel. By generic, we mean that the implementation should be able to process a system of

FIGURE 2 Schematic of the host-device architecture. A host is a regular multicore CPU, all processing units having access to some bank of main

memory. The device is able to interact with the host through PCIe. Memory transactions between host and device can take place between the
main memory of the host and the FPGA, which can either utilize the data directly, or route it to device DRAM
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arbitrary complexity (within reason), without the need for resynthesis. Naturally, some constraints must be placed on the FPGA configura-

tion such that it does not simply exhaust all resources on-chip. However, we attempt to minimize these constraints in an attempt to main-

tain freedom in the design space. In evaluating the trial wavefunction, a number of data parallel regions are amenable to either hardware

unrolling or temporal parallelism through the use of stream variables. In constructing a general dataflow solution, our starting point is the

identification of a loop which is bounded by some system-independent parameter. The only such loop is given by Equation (8), the reduc-

tion over primitives to calculate the value of an atomic orbital. For the vast majority of basis sets, the maximum number of primitives asso-

ciated with an atomic orbital is 6. As such, we choose to unroll the loop over primitives in hardware. In doing so, an adder tree is also

required to perform the reduction over primitives.

From Equation (7), a given atomic orbital ϕj(r) is utilized by all molecular orbital LCAOs. Specifically, a fused multiply-add operation is required

to accumulate the atomic orbital multiplied by contraction coefficient onto each molecular orbital accumulation. As the atomic orbital value is

available at the end of the pipeline stage which performs the reduction over primitives, an optimal strategy involves immediate use of the atomic

orbital value, permitting the calculation of the next atomic orbital in sequence. We consequently unroll the molecular orbital accumulators in hard-

ware. We undertake a similar accumulation over second derivatives of the molecular orbitals as there is the scope for significant data reuse. It

should be recognized that unrolling over molecular orbitals and their second derivatives is equivalent to the accumulation of a row of the Slater

matrix and laplacian.

Our choice for temporal unrolling is now enforced: as we accumulate a single row of the Slater matrix and laplacian at a time, a single elec-

tron position vector must be presented to the implementation for NAO consecutive kernel ticks. After this period has passed, the row of the

Slater matrix and laplacian will have fully accumulated. These quantities can be offloaded to external memory, the accumulators reset and the

next electron streamed through, that is, the next row of the Slater matrix and laplacian. As all walkers, and all electrons thereof, must pass

through the kernel in this way, we find that our kernel will be required to run for Nw × n × NAO ticks. Such counter logic can be realized

through 3 nested counters, over walkers, electrons and atomic orbitals.

A number of quantities are fixed over the course of the calculation: atomic position vectors, molecular orbital coefficients, and primitive

parameters. Fast access to these quantities is possible through memory-mapping them to the on-chip ROM of the device from the host.

However, we only have access to a counter over all atomic orbitals arising in the LCAO for random access, which could result in significant

duplication of data should we construct our memory-mapped ROMs in one-to-one correspondence with the atomic orbital counter. In prac-

tice, we utilize a set of decoder ROMs, mapping the atomic orbital counter to the address of quantities corresponding to that atomic orbital

in the memory-mapped ROMs. The size of the decoder elements needs only accommodate the number of bits required to represent the total

number of atomic orbitals, resulting in significant memory savings. For the system dealt with in our work, the memory savings amount to a

factor of 5, but this is system-dependent.

The overall schematic for our implementation is given in Figure 4. An electron is streamed from DRAM and subjected to a random displace-

ment. As the displaced electron position vector is required by the host for computing the change in potential energy contribution to the local

energy, it is streamed back to device DRAM for offload to the host. The vector and square distance between the displaced electron and an atomic

orbital center is computed, with these quantities being used to compute the values of the primitives associated with the atomic orbital under con-

sideration. A reduction among the primitives yields the value of the atomic orbital. The atomic orbital value is subsequently passed onto the

FIGURE 3 Nonblocking implementation of VMC. The dashed line denotes the partition between host (yellow) and device (green) kernels. The

destination of the two ensembles alternates between counter ticks, and can be handled by simple ternary logic (represented by multiplexing)
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molecular orbital accumulators, a fused multiply-add being used to accumulate to the LCAO. Finally, upon complete accumulation, the molecular

orbital values are passed to device DRAM.

Our implementation is reliant upon two key kernels which must also be instantiated within our trial wavefunction implementation: a pseudo-

random number generator is required for the displacement of electrons, and an exponential function is required for the calculation of primitive

values. Our implementation of these two kernels is discussed in detail in Appendices A and B.

4.3 | Numerical precision

Floating point arithmetic (see Figure 5B) involves several sequentially dependent operations. Addition of floating point numbers, for instance,

requires that: the arguments are aligned to the same exponent; the mantissas are summed; the result is normalized (mantissa is shifted and expo-

nent adjusted); and the mantissa is finally rounded to fit within the parameterized bit width. Naturally, these operations can be pipelined, floating

point arithmetic thereby being suitable for the out-of-order, deeply pipelined architectures of modern computers. Furthermore, the integration of

dedicated ICs, such as floating points units (FPUs), into (or sometimes external to) a CPU permits the offloading of these comparatively cumber-

some operations to specialized coprocessing units without stalling the CPU.

The usage of floating point numerics within an FPGA configuration presents two potential issues: ease of implementation and impact on

performance. With regards to the former, a historical obstacle to incorporating floating point numerics into FPGA designs has been the

requirement that implementations are written with HDL. Maxj permits the definition of a floating point data type through a single invocation

FIGURE 4 Wavefunction evaluation dataflow implementation. Red nodes correspond to on-chip memories, yellow nodes to lookup tables. Green

nodes are computational kernels, and arrows denote dataflow between elements of the implementation. The blue node represents an on-board
addressable DRAM block
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of the method dfeFloat(), taking both the integer and mantissa widths of the floating point representation as arguments. The data type

can subsequently be used much like any other data type, with the implementation details handled by the compile-time synthesis.

Concerning the second issue, the impact on performance of the FPGA design as a result of floating point arithmetic, the associated latency

becomes more problematic than for the CPU. Data streams which are to be combined with the result of a particular floating point operation must

be buffered on-chip (as must the actual floating point manipulation stages), so as to accommodate the floating point latency. As a result, logical

resources are exhausted without contributing to throughput. Some vendors facilitate the usage of floating point arithmetic through the inclusion

of DSPs within the fabric of the FPGA. However, such resources are limited, and do not remedy the issues associated with buffering other data

streams. Indeed, the usage of DSPs places additional constraints on the place and route, inevitably leading to potential difficulties in synthesizing

a particular configuration.

One particularly appealing solution is to transition from floating to fixed point arithmetic, the latter being equivalent—in terms of resource

usage—to integer arithmetic (see Figure 5A). One is consequently faced with a number of choices: the width of the representation; whether the

numbers are signed or unsigned (ie, whether 2's-complement arithmetic must be supported); and where the radix point partitions integer from

fractional parts, among other related decisions. To address each of these choices, we must know both the dynamical range and required precision

of the quantities to be manipulated.

There is no native support for fixed point numerics in ISO C99. Nonetheless, it is fairly straightforward to support both fixed point represen-

tations and arithmetic through the use of the signed integer data type. However, writing an application which supports fixed point numerics

throughout is complicated by a number of issues, particularly when multiple fixed point representations are required:

1. Owing to the lack of support for templated functions and operator overloading by the C99 standard, the host code will be bloated and

cumbersome.

2. It is difficult to verify whether an entire application is amenable to fixed point treatment owing to the high-dimensionality of the design space.

Supporting fixed point numerics throughout may consequently be an unproductive use of the developer's time should particular operations

require floating point treatment.

3. Use of fixed point arithmetic relies on the construction of bespoke mathematical routines. One consequently foregoes the efficiency of the C

standard library routines which have benefited from years of optimization.

4. Should the width of the fixed point data type not be byte-aligned, the effective bandwidth of memory transactions will be suboptimal, leading

to poor cache efficiency.

By choosing to use fixed point numerics exclusively in the device code, one is able to circumvent the above obstacles to some degree. One

particularly appealing aspect of this choice is the constraint of our fixed point design space to an, admittedly complex, kernel. Furthermore, Maxj

possesses native support for fixed point numerics, including exception handling for under/overflow of the representation along with the inference

of representation width from a dynamical range of a quantity. As such, the developer is excused from dealing with low level code optimization.

However, the question remains of the interface between host and device, that is, at what point the fixed-to-floating point conversions (and

vice versa) take place. The simplest interface involves the offloading of data from the host to the device DRAM in floating point. Upon streaming

of data into the DFE, all quantities are cast to and manipulated with an appropriate fixed point representation. Finally, the quantities are cast back

to floating point before streaming back to device DRAM. The host is then able to retrieve the data in a natively supported data type.

FIGURE 5 Fixed and floating point numerical representations using 9 bits (for the sake of demonstration, that is, without the implication that

9-bit representations are utilized in our work). Note that these forms are inadequate for intermediary stages in arithmetic operations, where
guard digits are used to prevent overflow of the representation. A, Nine-bit fixed point representation. A single “Sign Bit” is reserved to represent
the signedness of the number. The “Integer Part” and “Fractional Part” are separated by an implicit radix point. B, The decimal representation of

this is given by −1ð Þb8 × b7b6b5:b4b3b2b1b0ð Þ2
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We find this approach somewhat wasteful. Our kernel fully unrolls the Slater matrix and laplacian streams over the dimensionality of the

Slater matrices. Consequently, a large number of casts will be performed concurrently, for both input and output streams. Casting between fixed

and floating point representations consumes significant on-chip logic resources. As such, a sizeable portion of on-chip resources will be devoted

to casting between numerical representations, an overhead associated with the use of the coprocessor. Naturally, such an implementation is best

avoided.

A preferable scheme materializes when considering the means by which data is transferred between host and device DRAM. As the MAIA

card resides on the PCIe bridge of a compute node, all data transactions between host and device proceed through PCIe. The PCIe driver is

instantiated as an IP core in the fabric of the FPGA, requiring data pass through the FPGA over the course of data transactions. Memory transac-

tions which use PCIe are considered a bottleneck of distributed memory systems. The prudent developer of such applications will consequently

minimize memory transactions over the course of computation to obtain an optimized implementation.

As data transfer must take place at some point, and the data must pass through the FPGA, it is reasonable to pass the data streams through

interface kernels, casting the data as it arrives from the PCIe. A free parameter in our implementation is the width of the stream that we cast in the

interface kernels. As the clock frequency of the kernel is known, along with the bandwidth of the PCIe, it is a simple task to evaluate the width of

the data stream which saturates the PCIe transfer, and is therefore optimal. For instance, consider a kernel clocked at 100 MHz. The bandwidth of a

PCIe 2.0 × 16 bridge is 8 GB/s. Then, a stream of width 80 bytes saturates the PCIe transfer, equating to 10 double or 20 single precision numbers.

A final consideration is the storage of the fixed point data in the device DRAM should the representation not be byte-aligned. It is difficult to

find a generic storage width for arbitrary width fixed point data, as DRAM accesses must be burst-aligned. For example, the MAIA card utilized in

this work possesses 6 DDR3 channels, each channel having a width of 64 bits. The DRAM can function with a burst size of 8 or 4, resulting in a

burst width of 384 or 192 bytes, respectively. As the burst width will exceed the PCIe saturated width, data must be buffered in the interface ker-

nel for a number of kernel ticks before offloading the buffer to DRAM. Such a scheme is facilitated by using regular widths for the fixed point

storage. As such, we choose a storage width of 64 bits. This choice naturally reduces the effective DRAM latency, but for the sake of ease of

implementation, we proceed with this parameterization.

5 | RESULTS

5.1 | Fixed point

Use of a single fixed point representation throughout our kernel is not a feasible option. A number of variables possess vastly different dynamic ranges.

Although a single fixed point representation could in principle be found to accommodate all variables, precision of the representation will necessarily be

leveraged for flexibility. As such, our strategy is to track the dynamic range of each variable over the course of a simulation and classify the number of

fundamentally different dynamic ranges that arise. To narrow our design space, we will constrain each representation to the same width. We are conse-

quently able to eliminate degrees of freedom from the design space that are only amenable to systematic optimization strategies.

In ascertaining an adequate fixed point representation, we must consider 3 independent points:

1. Whether 2's complement is required.

2. The dynamic range of the variables, such that the integer width can be determined.

3. The number of fractional bits required to yield a stable calculation.

The first 2 points are easily dealt with through analysis. As a further constraint, we concern ourselves specifically with ensembles which have

undergone a period of equilibration, thereby further restricting the dynamic range of runtime variables. It is, however, difficult to ascertain the

required number of fractional bits without resorting to a full systematic exploration of fractional widths. Our task is complicated all the more given

that in establishing the adequacy of a fractional width, a fully converged VMC calculation is required. Naturally such studies are not feasible when

using a device simulator, meaning individual DFEs must be synthesized for each fractional width, which again is prohibitively expensive.

TABLE 1 Ensemble-averaged local energy (in a.u.) over multiple numbers of walkers for varying fixed width representations. A sign bit and the

number of integer bits have been dictated by the dynamic range of variables. We find that a total width of 38 bits is adequate to reproduce the
ensemble-averaged local energy computed in double precision (final column) to within a tolerance of 5 × 10−4 a.u (column in bold)

Total fixed width

Nw 30 32 34 36 38 40 Double

128 −65.1254 −67.4323 −68.4111 −69.6823 −69.6893 −69.6895 −69.6895

256 −64.2432 −68.1332 −68.0236 −69.7899 −69.7900 −69.7901 −69.7901

512 −54.9473 −63.5421 −64.9021 −69.7523 −69.7892 −69.7894 −69.7894

1024 −63.5443 −61.5423 −66.3427 −69.6912 −69.7899 −69.7899 −69.7899

2048 −67.2313 −68.1998 −69.7712 −69.7652 −69.7893 −69.7895 −69.7895
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As such, we employ a scheme requiring a single Monte Carlo step with the device simulator. The displacement of electrons is deactivated,

and the kernel computes the Slater matrices and associated derivatives for the same Monte Carlo samples residing on the host. Upon passing

these quantities back to the host, we monitor the ensemble averaged local energy and acceptance rate for these dummy moves. If the computed

averaged local energy differs from the original value by less than 5 × 10−4 Hartrees (a.u. hereafter), we deem the implemented fractional bit width

adequate. Table 1 shows such results for a varying number of walkers. We choose this threshold of 5 × 10−4 a.u. as it represents an acceptable

standard error in the Monte Carlo estimate for the energy for the calculation to be considered “well-converged.” It is clear that a total fixed point

width of 38 bits is the appropriate fixed point representation for our calculation.

An interesting optimization which could be undertaken in the future centers around the work of Ceperley and Dewing,[24] where a penalty

function is applied to random walks with noisy data. We have no reason to assume that truncating a numerical representation introduces a bias

into the resultant calculation, and so it appears that one might be able to utilize a shorter fixed width representation and utilize the reported pen-

alty method to compensate for the resulting imprecision. While the acceptance rate will decrease, one can in principle leverage the inefficiency in

the Monte Carlo for potential accelerations deriving from the use of a shorter fixed width representation. We plan to investigate the application

of the penalty method to this end in the near future.

5.2 | Performance

The final resource utilization of our FPGA implementation is given in Table 2. While our synthesized design is moderately light on consumption of

logic and dedicated arithmetic units, the on-chip memory proves to be a limiting factor to increasing the complexity of our design. Both the LUTs

of our exponential units and the on-chip storage of trial wavefunction parameters, particularly the molecular orbital expansion coefficients, are

culpable for such high utilization. However, given the form of our trial wavefunction, avoiding such overheads is difficult. It is possible to force

the MaxCompiler to not pipeline sections of the application, thereby reducing on-chip memory consumption, but at the cost of increased difficulty

in the design meeting timing constraints. The DSP blocks are effectively only used for multiply-accumulate operations in constructing the LCAOs,

hence the low consumption of these particular resources.

Our final results correspond to the overall performance of our application relative to a purely host-bound implementation. We consider a

number of ensemble sizes propagated for a fixed number of Monte Carlo steps. In the lower pane of Figure 6, we plot the accelerations relative

to the multithreaded host benchmark for a variable number of threads running on the host while the device computes the trial wavefunction. For

small ensemble sizes, we observe a reduction in the performance relative to larger ensemble sizes owing to the overhead associated with using

the coprocessor. However, for ensemble sizes of 256 walkers and above, we see the improvement in performance converges toward an overall

acceleration of roughly 30× relative to the multithreaded host implementation. Across all ensemble sizes, we note that the host needs only instan-

tiate 3 or 4 threads of execution to tend toward peak performance. An interesting additional result is some metric quantifying the comparative

power consumptions of the 2 calculations. While Maxeler Technologies provide a command line utility to query the power consumption of a

board, we are not entirely clear on the resolution or accuracy of this quantity. However, in-house testing on a small board with power readings

taken at the power outlet reveals the command line utility is in good agreement with the outlet readings. For the MAIA board, we observed a peak

power consumption of 27.6 W throughout.

It is, unfortunately, a little more difficult to establish a power consumption of the host. The operating system is ultimately in control of sched-

uling, so the overhead associated with other general purpose tasks must be accounted for. A further difficulty is what to include in the power con-

sumption for the host. Typically, only thermal design powers (TDP) are reported by chip manufacturers, which are reported to be in poor

correspondence with power consumption at peak operation (peak power consumptions equating to roughly 1.5× that of the reported TDPs.[25]).

The TDP of the Intel Xeon E5-2640 is reported to be 95 W. Furthermore, it is unclear whether the power consumption of RAM chips and other

peripherals are to be considered.

Rather than attempt to speculate on such matters, we compose a metric given the limited data at our disposal:

E ¼ Pbenchmark × S
Pcoprocessing

ð9Þ

where Pbenchmark is the power consumption of the multithreaded host implementation, Pcoprocessing is the power consumption of the device plus

that of the number of threads utilized by the coprocessing implementation.[26] S is the speedup of the coprocessor relative to the multithreaded

host, and E is then the performance-adjusted reduction in power consumption offered by the coprocessor. E is plotted in the upper pane of

TABLE 2 Resource utilization of our final synthesized FPGA configuration for the MAIA

Component Number available Utilization (%)

Logic 262 400 51.36

18 × 18 multipliers 3926 32.32

DSP blocks 1963 36.37

On-chip memory (M20K) 2567 98.64
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Figure 6. Given that the performance of our application begins to converge to some peak acceleration when the host runs with upward of

3 threads, it is unsurprising that the performance-adjusted power consumption is larger for fewer threads than more.

6 | CONCLUSION

We have ported the computationally expensive trial wavefunction evaluation kernel from a VMC application to an FPGA platform. Through

coprocessing with a multicore host, we have established that our implementation offers significant benefits in terms of raw compute performance

and reduced power consumption. While our VMC is minimal from the perspective of complexity of trial wavefunction, we hope that this work

acts to instigate further investigation.

Developer time and on-chip resources remain significantly limiting factors in the use of FPGA coprocessing for complex scientific applications.

However, these limitations are forecasted to become decreasingly problematic with significant effort being directed toward alleviation. The new

Intel/Altera Stratix X, for instance, possesses roughly twice the number of on-chip resources as the Stratix V used in this work.

Work within our group is currently being directed toward adding further complexity to our implementation, including support for Jastrow fac-

tors and localized orbitals. We are also looking to support a DMC application, requiring the first derivative of the trial wavefunction, in addition to

support for an FPGA-based Sherman-Morrison inverse updating kernel. We hope that such endeavors will aid in the porting of scientific applica-

tions to forecasted exascale platforms.
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APPENDIX: PSEUDORANDOM NUMBER GENERATION

The Mersenne Twister (MT) is a pseudo-random number generator (PRNG) whose period is given by 2z − 1, z being a Mersenne prime.[27] The

most common realization of the PRNG is parameterized by z = 19 937, hereafter referred to by MT19937. The period of the resultant
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pseudorandom sequence is therefore adequately long that repetition will not be observed, even over cosmological periods of time with an output

frequency of 1fs−1.

The recurrence of a sequence is a commonly invoked metric for ascertaining the quality of a random number sequence. The MT19937 is k-

distributed to 32-bit accuracy, 8(1 ≤ k ≤ 623), establishing it as a superior PRNG. The pseudorandom sequence output by a MT is given by the

recurrence relation

xk + n ¼ xk + m� xukkxlk + 1

� �
A, ðA1Þ

where � and k denote the bitwise XOR and concatenation, respectively, and n is the recurrence of the sequence. We have utilized vector notation

to emphasize that the random numbers are each composed of w-bits; xu and xl are then the upper and lower bit segments of x. The length of these

segments is ascertained by a single parameter, r: xu corresponds to the upper w - r bits of x, and xl denotes the lower r bits of x. Finally, A is a

matrix, termed the “twist-transformation.” The twist-transformation matrix is of rational normal form,

A ¼ 0 I

aw −1 a

� �
, ðA2Þ

where I 2 Zw × w is the identity matrix and a is a w−bit number, aw − 1 being the highest-order bit of a. This form is most convenient for computa-

tion, as one is able to evaluate the vector-matrix product of Equation (A1) through simple bitwise operations, without having to explicitly form

and store A,

xA ¼ x � 1

x � 1ð Þ�a


if x0 ¼ 0

if x0 ¼ 1
ðA3Þ

where� is the right-shift operator, and x0 denotes the lowest-bit of x.

To improve the k-distribution of the MT, a “tempering” is used for the output pseudorandom numbers, accomplished through application of a

tempering matrix, T. As with the twist-transformation matrix, we are spared from explicitly forming/storing the matrix T through enforcing that it

satisfy a set of pipelined operations:

y0  x� x� uð Þ ðA4Þ

y1  y0� y0 � sð Þ & bð Þ ðA5Þ

y2  y1� y1 � tð Þ & cð Þ ðA6Þ

y3  y2� y2 � lð Þ ðA7Þ

where u, s, t, l are tempering bit shifts, and b, c are tempering bit masks. The ampersand is used in the conventional sense to denote bitwise AND.

The process we have just outlined is most amenable to FPGA implementation. The recurrence relationship of Equation (A1) lends itself to

realization with a “linear feedback shift register” (LFSR), where the output of the register containing an initial sequence of (x0, x1, …, xk − 1) is simul-

taneously fed to the back of the LFSR to construct xk, and so on. Furthermore, the pipelined operations outlined in the tempering steps of Equa-

tions (A4)-(A7) are suitable for cascaded operations in the fabric of the FPGA. The MT is then a natural candidate as a PRNG for FPGAs, and is

our choice for on-chip pseudorandom number generation.

APPENDIX: THE EXPONENTIAL FUNCTION

Transcendental functions, by definition, cannot be computed exactly in a finite number of algebraic steps. As such, algorithms which implement tran-

scendental functions must employ some approximation, leveraging speed of convergence for an increase in operational complexity. The exponential

function pervades quantum chemistry owing to its utility in simplifying the integrals arising in deterministic methodologies. While useful integral

properties are an irrelevance for QMC techniques, linear combinations of exponentials are still commonly used to construct atomic orbitals, as stated

in Equation (8). As such, in order that our FPGA implementation of the trial wavefunction evaluation routines be as efficient as possible, we have

chosen to construct an exponential function which can be queried as rapidly as possible, while consuming minimal on-chip resources.

Historically, the CORDIC algorithm[28] has been utilized on FPGAs for trigonometric and hyperbolic functions. The identity cosh(x) + sinh(x) = exp

(x) can subsequently be used to approximate the exponential function. As CORDIC is composed entirely of adds and shifts, it leads to a significant

reduction in complexity relative to polynomial approximations which require explicit multiplication. However, iterative nature of the CORDIC algorithm

renders it suboptimal for our purposes—the data dependency between iterations is unsuitable for the dataflow implementation we seek to create.

We have instead utilized a lookup table (LUT) approach.[29,30] While such implementations are memory-intensive, modern FPGA chips have

significant amounts of on-chip RAM (of the order of megabytes), and so the cost of storing a few thousand floating point numbers is fairly incon-

sequential. In order to utilize a LUT-based approach to approximating the exponential function, one must manipulate the identity

exp xð Þ ¼ 2 log 2 eð Þ
� �x

¼ 2x log 2 eð Þ: ðB1Þ
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We proceed to define xlog2(e) = yi + yf, where yi and yf are the integer and fractional parts, respectively, of the original argument scaled by

log2(e). We consequently arrive at the expression

exp xð Þ ¼ 2 yi + yfð Þ ¼ 2yi × 2yf : ðB2Þ

A similar partitioning can be undertaken to split yf down into smaller pieces. Performing this additional partitioning of the fractional part, we

can split the approximation down into a series of independent lookups and multiplication of each returned value. The optimal lookup table size is

8 K words—partitioning the fractional part into 3 concurrent lookups and multiplication of the 3 returned quantities gives a maximum error of

10−12 in the approximation to the exponential function. This error is more than adequate given the numerical representations used in this work.

Our most accurate fixed point representation, for instance, is Q1.36, which has an associated roundoff error of 10−11.
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