
remote sensing

Article

A Real-Time Tree Crown Detection Approach for
Large-Scale Remote Sensing Images on FPGAs

Weijia Li 1,2,† , Conghui He 3,4,†, Haohuan Fu 1,2,*, Juepeng Zheng 1,2,5, Runmin Dong 1,2,
Maocai Xia 1,2, Le Yu 1,2 and Wayne Luk 6

1 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
Tsinghua University, Beijing 100084, China; liwj14@mails.tsinghua.edu.cn (W.L.);
1351177@tongji.edu.cn (J.Z.); drm17@mails.tsinghua.edu.cn (R.D.); xiamc16@mails.tsinghua.edu.cn (M.X.);
leyu@tsinghua.edu.cn (L.Y.)

2 Joint Center for Global Change Studies (JCGCS), Beijing 100084, China
3 Department of Computer Science, Tsinghua University, Beijing 100084, China; heconghui@sensetime.com
4 SenseTime Group Limited, Shenzhen 518000, China
5 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
6 Department of Computing, Imperial College London, London SW7 2RH, UK; w.luk@imperial.ac.uk
* Correspondence: haohuan@tsinghua.edu.cn; Tel.: +86-010-62798365
† These authors contributed equally to this work.

Received: 28 March 2019; Accepted: 22 April 2019; Published: 30 April 2019
����������
�������

Abstract: The on-board real-time tree crown detection from high-resolution remote sensing images is
beneficial for avoiding the delay between data acquisition and processing, reducing the quantity of
data transmission from the satellite to the ground, monitoring the growing condition of individual
trees, and discovering the damage of trees as early as possible, etc. Existing high performance platform
based tree crown detection studies either focus on processing images in a small size or suffer from
high power consumption or slow processing speed. In this paper, we propose the first FPGA-based
real-time tree crown detection approach for large-scale satellite images. A pipelined-friendly and
resource-economic tree crown detection algorithm (PF-TCD) is designed through reconstructing
and modifying the workflow of the original algorithm into three computational kernels on FPGAs.
Compared with the well-optimized software implementation of the original algorithm on an Intel
12-core CPU, our proposed PF-TCD obtains the speedup of 18.75 times for a satellite image with a
size of 12,188 × 12,576 pixels without reducing the detection accuracy. The image processing time for
the large-scale remote sensing image is only 0.33 s, which satisfies the requirements of the on-board
real-time data processing on satellites.

Keywords: tree crown detection; high-resolution satellite images; field-programmable gate array
(FPGA); real-time processing

1. Introduction

The automatic tree crown detection from high-resolution remote sensing images has been an
important research topic with wide attention for decades [1,2]. The distribution and the number
of trees in a plantation area are valuable information for predicting the yield of trees’ fruitage,
understanding the growing situation or survival rate of trees after plantation, and planning the
irrigation or fertilization, etc. [3,4]. Owing to the rapid development of satellite, Unmanned Aerial
Vehicle (UAV), and airborne remote sensing technology, the large-scale and high-resolution remote
sensing images become increasingly abundant [5,6]. Various approaches for automatic tree crown
detection have been proposed in many remote sensing studies.

Remote Sens. 2019, 11, 1025; doi:10.3390/rs11091025 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-1838-9176
https://orcid.org/0000-0003-3115-2042
http://www.mdpi.com/2072-4292/11/9/1025?type=check_update&version=1
http://dx.doi.org/10.3390/rs11091025
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 1025 2 of 20

In general, existing methods for automatic tree crown detection can be summarized into the
following three categories. The first category is traditional image processing-based methods [7,8],
more specifically, the image binarization [9], the template matching [10], the local maximum filter
based methods [2], etc. The second category is traditional machine learning based methods, including
maximum likelihood [11], support vector machine [12], extreme learning machine [13], random
forest [14], etc. The third category is deep learning based methods, which are based on the convolutional
neural networks [4,15–17]. Although supervised machine learning and deep learning based methods
usually achieve relatively high accuracy, these methods require a large number of manually labeled
training samples [14,18], which are still very limited for tree crown detection in large-scale areas.
For traditional image processing based methods, the local maximum filter based method often achieves
similar or higher detection accuracy compared with other traditional methods (e.g., template matching
and binarization based methods) [4,9]. Moreover, no manually labeled dataset for tree crown detection
is required for this method. For these reasons, we select the most widely used local maximum filter
based method (proposed in [2]) as the prototype of the tree crown detection approach proposed in
this study.

Due to the increasing quantity of remote sensing data and the growing speed of data acquisitions,
many efforts have been made towards the on-board remote sensing data processing, which is not
only aimed at avoiding the delay between data acquisition and data processing but also reducing
the quantity of data transmission from the satellite to the ground [19–21]. Among various high
performance platforms (e.g., multi-core processors [22], many-core processors [23], Graphics Processing
Units (GPUs) [24]), the Field Programmable Gate Arrays (FPGAs) have become one of the most popular
platforms for on-board remote sensing data processing for the following reasons. First, FPGAs have
relatively smaller size and weight compared with clusters of computers, multi-core processors and
many-core processors, etc. [25]. The second advantage is that FPGAs require significantly lower power
consumption compared with GPUs, which is a great benefit considering the limited power budget of the
satellites [26]. Moreover, different from ASICs, FPGAs have the inherent ability to be reprogrammed
when their functionality needs to be updated during the lifetime of the satellite [27]. Owing to
above reasons, FPGA-based platforms have been broadly used for accelerating many on-board data
processing tasks, including hyperspectral image processing (e.g., classification, anomaly detection,
unmixing, etc.) [28,29], cloud detection [30], vehicle detection [31], tree crown detection [32], etc.

Many of the FPGA-based on-board data processing studies are aimed at hyperspectral image
processing. For instance, González et al. [25] developed an algorithm for automatically detecting
anomaly targets in remotely sensed hyperspectral images on FPGA, achieving 4.6 times speedup for a
614 × 512 image over the serial implementation on CPU. Wang et al. [28] presented a scalable dataflow
accelerator on FPGA for real-time SVM classification of hyperspectral images, achieving 14 times
speedup for a 145 × 145 image over the implementation on a 12-core CPU. Moreover, in some studies,
the FPGA has been applied to real-time on-board object detection for high resolution remote sensing
images. For instance, Shan et al. [30] proposed an optimized architecture for real-time automatic
cloud detection using the spectrum and texture analysis combination (STAC) approach, obtaining 3
times speedup compared with the standard STAC approach. Tang et al. [31] proposed an FPGA-based
moving target detection system for UAV in real-time, obtaining 2.28 times speedup over the serial CPU
for a 640 × 480 image. These existing FPGA-based studies often focus on on-board remote sensing
image processing in a small scale.

In recent years, there have been several studies about accelerating tree crown detection algorithms
on high performance platforms, which contribute to monitoring the growing condition of individual
trees in real time and discovering the abnormal situations (e.g., the damage or cutting down of trees)
as early as possible. The on-board tree crown detection from satellite images also enables that only
a small quantity of tree crowns’ coordinates is required to be transmitted from the satellite to the
ground instead of a large quantity of remote sensing images. Duncanson et al. [33] developed an
efficient tree crown delineation algorithm on 32-core CPUs. Although the proposed method is nearly

Remote Sens. 2019, 11, 1025 3 of 20

32 times faster than the serial implementation, it still takes 90 and 30 min to process two LiDAR
datasets. Jiang et al. [34] developed a GPU-accelerated tree detection method for UAV images using a
scale-space filtering method. It achieves 44.77 times and 28.54 times speedups for two testing images
with a size of 4000 × 3000 pixels. The processing time of each image is less than 1 s, which satisfies the
real-time processing requirement. However, the high power consumption of GPU makes it difficult
to satisfy the limited power budget of satellites for on-board data processing [26]. Chen et al. [32]
developed a parallel processing approach of the multi-level morphological active contour algorithm
for tree crown detection on FPGA. The experimental results indicate that the proposed architecture
could provide around 31% acceleration for an image with only 454 × 424 pixels compared with the
simple implementation in Matlab. To the best of our knowledge, there is no related research about
the tree crown detection algorithm used in our study (proposed in [2]) on FPGAs or any other high
performance platforms.

In this paper, we design and implement an FPGA-based approach for automatic tree crown
detection from large-scale remote sensing images, which satisfies the power, latency and performance
requirements of the practical scenarios of on-board data processing. It is the first high performance
design of the original tree crown detection algorithm used in this study (proposed in [2]). As one of
the most classical tree crown detection algorithms for optical remote sensing images, the algorithm
proposed in [2] has been widely used and cited in over three hundreds studies for decades. Experiment
results show that our proposed design can provide a high performance solution for processing a
large-scale remote sensing image of 12, 188× 12, 576 pixels in 0.33 s, archiving 18.7-times speedup over
the well-optimized software implementation on 12-core CPU. Our main contributions are summarized
as follows.

• The direct mapping of the original tree crown detection algorithm to FPGAs results in high
resource utilization and each pixel requires to be streamed for multiple times. Through
reconstructing and modifying the original workflow into three computational kernels on FPGAs,
we design a pipelined-friendly tree crown detection approach (PF-TCD) so that each pixel of the
image can be streamed for only once.

• Through optimizing and adjusting the local maximum filtering, transact sampling, and minimum
distance filtering algorithms of the tree crown detection approach, the utilization of different
resources (look-up tables (LUTs), flip-flops (FFs), digital signal processor blocks (DSPs), and block
random access memory (BRAMs)) is reduced significantly and well balanced, avoiding any of
them becoming the performance bottleneck.

• We propose a complete FPGA-based framework for processing the large-scale remote sensing
image in real time, which provides a high performance solution for tree crown detection from the
raw remote sensing images to the final detection results. The proposed framework can process
the satellite image of 12,188 × 12,576 pixels in 0.33 s, achieving 18.7-times speedup over the
well-optimized software implementation on 12-core CPU.

The rest of the paper is organized as follows. Section 2 describes the workflow of the original tree
crown detection algorithm. Section 3 introduces the study area and data of this research. Section 4
presents the overall framework of the tree crown detection approach on FPGAs and the algorithm
design of the three computational kernels. Section 5 analyzes the experimental results of our proposed
approach. Section 6 discusses the performance of our proposed approach and other related studies.
Section 7 presents the main conclusions and the future work of this study.

2. Background

The original tree crown detection algorithm developed in this study is based on the method
proposed in [2], which has been one of the most widely used tree crown detection algorithm for
optical remote sensing images for decades. Figure 1 shows the overall process of this algorithm,
including image pre-processing, non-overlapping local maximum filtering, transect sampling,

Remote Sens. 2019, 11, 1025 4 of 20

circular-window-based local maximum filtering, and minimum distance filtering. The details of
these phases are described from Sections 2.1–2.3.

2.1. Image Pre-Processing and Non-Overlapping Local Maximum Filtering

To enhance the distinctiveness of tree crown apex, an image pre-processing method is undertaken
for each pixel to calculate an index from its original band values that can best identify the tree crown
from other types of pixels. Several calculation methods can be applied to obtain the index. Based
on the existing studies [35] and our experiment tests, we find that the best index for remote sensing
images with only Red, Green and Blue bands and those with Red, Green, Blue and Near Infrared
(NIR) bands can be obtained according to Equation (1), where nband is the number of bands of the
input image; Ri, Gi and Ni are the values of Red, Green and NIR band of pixel i, respectively; Pi is the
calculated index of pixel i. After this phase, the multi-band remote sensing image will be converted
into a single-band image, as shown in Figure 1a,b.

Pi =

{
(Gi − Ri)/(Gi + Ri), nband = 3
|Ni − Ri|, nband = 4

(1)

After image pre-processing, a non-overlapping local maximum filter is applied to the single-band
image to find the initial coordinates of potential tree crowns. The window width of each local maximum
filter (denoted by w) should not be larger than the average diameter of each tree crown in the image.
The moving distance in each step is equal to the window width for the non-overlapping local maximum
filter. For the jth window (denoted by Wj) in the image with a size of W ×W pixels, the calculation
process can be summarized according to Equations (2)–(5), where Pk is the value of the kth pixel in a
window; M(Wj) is the maximum pixel value of Wj; I(Wj) is the index of M(Wj) relative to the window
Wj; X(Wj) and Y(Wj) are the X and Y coordinates of M(Wj) relative to the whole image. The number
of windows in the whole image is denoted by N. The result obtained after this phase is shown in
Figure 1b, in which each black point denotes the local maximum of each window.

(a) (b)

(d)

(c)

(e) (f)

Figure 1. The overall process of the original tree crown detection algorithm. (a) The input image;
(b) Image pre-processing and non-overlapping local maximum filtering; (c) Transect sampling; (d)
Circular-window-based local maximum filtering; (e) Minimum distance filtering; (f) The output results
of the tree crown detection algorithm.

M(Wj) = max{Pk : k ∈Wj} (2)

Remote Sens. 2019, 11, 1025 5 of 20

I(Wj) = argmax{Pk : k ∈Wj} (3)

X(Wj) = (j%(W/w))× w + I(Wj)%w (4)

Y(Wj) = (j/(W/w))× w + I(Wj)/w (5)

2.2. Transect Sampling and Circular-Window-Based Local Maximum Filtering

In this phase, we adjust the initial coordinates of potential tree apexes obtained in the former
phase to new positions based on the transect sampling strategy and the circular-window-based local
maximum filtering strategy, as shown in Figure 1c,d. In the phase of transect sampling, we find the
radius with the maximum change of pixel value for each transect and calculate the average radius of
all transects. Figure 1c shows some examples of the transects using the black lines.

The process of the transect sampling strategy is described in Algorithm 1. Nw, Nt and nt denote
the number of windows, the number of transects, and the number of pixels in a transect, respectively.
∆r is the change of radius in each step. xq′ , yq′ and Iq′ are the x coordinate, the y coordinate, and the
index of the current pixel (q) or the next pixel (q + 1), all of which are relative to the whole image. Cq is
the change of pixel value between two neighboring pixels. Rp is the radius with the maximum change
of pixel value for the pth transect. Rj is the average radius of all transects.

In the phase of circular-window-based local maximum filtering, Rj is used as the radius of
the circular window. For each local maximum‘s coordinate obtained in Section 2.1 (denoted by the
black points in Figure 1d, we find the new local maximum’s coordinate within the corresponding
circular window (denoted by the blue circles in Figure 1d). The process of circular-window-based
local maximum filtering is similar to the one of non-overlapping local maximum filtering described in
Section 2.1. The updated tree apexes (denoted by black points in Figure 1e) might be out of the former
windows used in non-overlapping local maximum filtering.

Algorithm 1 Transect sampling

for all j ∈ {0, 1, ..., Nw − 1} do
for all p ∈ {0, 1, ..., Nt − 1} do

for all q ∈ {0, 1, ..., nt − 1} do
for all q′ ∈ {q, q + 1} do

xq′ = X(Wj) + q′ × ∆r× sin(
2π

nt
× p)

yq′ = Y(Wj)− q′ × ∆r× cos(
2π

nt
× p)

Iq′ = xq′ + yq′ ×W
end for

Cq = P(Iq+1)− P(Iq)
end for

Rp = argmax{Cq : q ∈ {0, 1, ..., nt − 1}} × ∆r
end for

Rj =
∑Nt−1

p=0 Rp

Nt
end for

2.3. Minimum Distance Filtering

In the phase of minimum distance filtering, we average a group of local maximum’s coordinates
into one coordinate if the distances between these coordinates are smaller than the allowed physical
structure of a tree (the black points within the red circles in Figure 1e). The process of this phase is
described in Algorithm 2. Xsum and Ysum are the sum of coordinates of a group of local maxima. Nmerge

is the number of local maxima in a group. X
′
(Wj) and Y

′
(Wj) are the local maximum’s coordinates of

Remote Sens. 2019, 11, 1025 6 of 20

the jth window obtained in Section 2.2. Sj and Sjj are the status of the local maximum’s coordinate of
the jth and the jjth windows, in which the False indicates the coordinate has been removed while the
Truth indicates the coordinate still exists. djj is the Euclidean distance between the local maximum’s
coordinates of the jth and the jjth windows. dmin is the minimum allowed distance between two tree
apexes. Xavg and Yavg are the average coordinates of a group of local maxima. After this phase, we can
obtain the final tree crown detection results. The final tree crown coordinates are denoted by the black
points in Figure 1f.

Algorithm 2 Minimum distance filtering

for all j ∈ {0, 1, ..., Nw − 1} do
if Sj == True then

Xsum = 0, Ysum = 0, Nmerge = 0

for all jj ∈ {0, 1, ..., Nw − 1} do

djj = dist((X
′
(Wj), Y

′
(Wj)), (X

′
(Wjj), Y

′
(Wjj)))

if (Sjj == True)&(djj < dmin) then

Xsum += X
′
(Wjj), Ysum += Y

′
(Wjj), Nmerge += 1, Sjj = False

end if
end for

Xavg =
Xsum

Nmerge
, Yavg =

Ysum

Nmerge
end if

end for

3. Data

The remote sensing data used in this research is a large-scale Quickbird satellite image collected
from the south of Malaysia on 21 November 2006, as shown in Figure 2. There are different land
cover types in this study area, e.g., oil palm plantation areas, grassland, forests, buildings, bare land,
etc. The Quickbird satellite image has four spectral bands (Red, Green, Blue, and NIR) with a size of
12,188 × 12,576 pixels and a spatial resolution of 0.6 meters. Six regions are selected from the whole
study area (denoted by red squares in Figure 2, each with a size of 600× 600 pixels and various land
cover types) for evaluating the detection accuracy of our proposed approach on FPGAs.

In our study area, most of the regions are covered by the oil palm trees, which are one of the most
vital economic crops in Malaysia and other tropical countries [36]. The palm oil produced by the oil
palm trees is the most consumed vegetable oil all over the world [16]. The automatic detection of oil
palm trees from the high-resolution satellite image is an important research issue for understanding
the growing situation of oil palms, improving the resource utilization, and other essential aspects of
the precision agriculture of oil palms [3]. The crown diameter of a mature oil palm is about ten meters
(i.e., 15–17 pixels in the Quickbird image).

Moreover, many oil palm mapping studies have published regional or worldwide oil palm
plantation maps [36,37], which can be combined with the tree crown detection algorithm for optimizing
the oil palm detection results. In this study, We select the 0.6-meter-resolution oil palm plantation
maps (https://github.com/dongrunmin/oil_palm_data/blob/master/segmentation_map) published
in [38] (with the same spatial resolution as the Quickbird image used in this study) for further
optimizing the oil palm detection results obtained from the tree crown detection algorithm.

https://github.com/dongrunmin/oil_palm_data/blob/master/segmentation_map

Remote Sens. 2019, 11, 1025 7 of 20

Figure 2. The Quickbird satellite image of the whole study area (left) and a local area of
accuracy evaluation regions (right). The red squares denote the selected regions for evaluating the
detection accuracy.

4. Methods

In this section, we introduce the design of our proposed PF-TCD algorithm on FPGAs. The overall
framework of PF-TCD algorithm will be described in Section 4.1. The three computational kernels will
be described from Sections 4.2–4.4.

4.1. Overall Framework of Tree Crown Detection for Large-Scale Remote Sensing Images on FPGAs

In this paper, we propose a framework of tree crown detection that uses reconfigurable
platforms such as FPGAs to process the large-scale remote sensing images in real-time on satellites.
The framework is shown in Figure 3. We use FPGAs as the ideal processing units as they not only
meet the limited power and weight budget of satellites but also provide high performance and
real-time computation. As FPGAs are much more efficient than general processing units, we offload
as many tasks as possible to FPGAs in order to squeeze every bit of performance, including image
pre-processing, non-overlapping local maximum filtering, transect sampling, circular-window-based
local maximum filtering and minimum distance filtering. In order to further improve the performance,
we propose a complete set of customized mechanisms on FPGAs for the tree crown detection algorithm
from the raw remote sensing images to the final detection results.

The direct mapping of original tree crown detection algorithm to FPGAs results in a very naive
design, which suffers from high resource utilization as well as requiring each pixel to be streamed for
multiple times. In order to solve these problems, we propose a pipeline-friendly tree crown detection
algorithm (PF-TCD) by reconstructing and modifying the original workflow. In our proposed PF-TCD
algorithm, we only use 1/3 of the total resources and each pixel can be streamed for only once,
leading to a pipeline-friendly and resource-economic design of the tree crown detection algorithm.
The proposed PF-TCD algorithm consists of three computational kernels: (1) Transect sampling radius
calculation and local maximum filtering; (2) Transect sampling radius based local maximum filtering;
(3) Minimum distance filtering. The details of each kernel will be described from Sections 4.2–4.4.

To further reduce and balance the utilization of different resources, the large-scale image is
partitioned into smaller image blocks. Multiple image blocks are then streamed into three PF-TCD
kernels and processed in parallel. As image blocks contain overlaps with their neighbours to guarantee

Remote Sens. 2019, 11, 1025 8 of 20

that each tree crown can be completely included in at least one image block, smaller image blocks will
increase the total number of image blocks and duplicated pixels. On the other hand, smaller image
blocks often require fewer resource utilization so that more image blocks can be processed in parallel.
So we adjust the size of the image block to maximize the overall performance. As multiple image
blocks are processed in parallel, the bandwidth between the PCIe and FPGAs becomes the bottleneck.
In order to avoid this issue, we first load the raw images to the off-chip memory on FPGAs before
streaming the images into PF-TCD algorithm.

Satellite images

FPGA

*+

+ *
+

FPGA

*+

+ *
+...

Local max filter

Transect sampling

Min dist filter

Pre-processing

PCIe

DRAM

Blocking

SatelliteHost

FPGA Kernel 1:
Transect sampling
radius calculation,
Local max filtering

Kernel 2:
Transect sampling
radius based local
maximum filtering

Kernel 3:
Minimum distance

filtering

Figure 3. The overall framework of the tree crown detection for large-scale satellite images on FPGAs.

4.2. Kernel 1: Transect Sampling Radius Calculation and Local Maximum Filtering

In the original tree crown detection algorithm proposed in [2], the non-overlapping local
maximum filtering is applied to the whole image in order to find the local maximum’s coordinates
for each window. Then the transect sampling scheme is applied to each local maximum in order to
find the radius with the maximum change of pixel value for each transect. It is a challenging task
to search for the local maximum’s coordinates of each window from the large-scale remote sensing
images on FPGAs, resulting in several problems if we directly map the original algorithm to FPGA
platform. First, to search for the local maximum’s coordinates of a w× w window in each cycle, we
need to access the streams of all pixel values in the window, which requires a large amount of on-chip
buffer with a size of W × w + w (W denotes the width of the image). Second, it takes w× w cycles
to slide through a w× w window during the local maximum filtering phase. In w× w cycles, only
the result of one cycle is useful while the results of the other (w× w− 1) cycles are ignored. Third, it
requires a lot of resources for the utilization of mathematical functions (e.g., sin, cos, and sqrt) during
the transect sampling phase.

In our proposed PF-TCD algorithm, we design and implement a set of strategies to address the
problems mentioned above. First, a carefully tuned blocking scheme is used to reduce the buffer size.
Second, we avoid the utilization of sin and cos functions by choosing special angles such as 45◦ and
90◦, which also generates correct results. We approximate the sqrt function using piece-wise linear
function inspired from [39]. Moreover, we design a search-in-time strategy in Kernel 1 to replace
the search-in-space scheme used in the original algorithm in order to increase the data utilization
and decrease the resource usage. Details of the search-in-time strategy in Kernel 1 are introduced
as follows.

Remote Sens. 2019, 11, 1025 9 of 20

Figure 4 shows the basic process of Kernel 1. We modify the processing workflow of the original
algorithm. In each cycle, the first step is to calculate the average radius of all transects for the current
input stream, and the second step is to update the local maximum value M, its X and Y coordinates,
and the transect sampling radius R of its corresponding window. The above mentioned problems can
be effectively solved in our proposed design of Kernel 1.

M

R

X

Y

Input data stream Transect Sampling Updating of M, R, X and Y

max value

Figure 4. The basic process of Kernel 1.

In the first step of Kernel 1, the moving stride of each transect direction (Sp) can be defined as (6),
where p is numbered in clockwise direction. The change of pixel value (Cp(i)) between the current
stream (Pi) and the stream in the pth transect direction (Pi+Sp) can be defined as Equation (7). For each
pixel in the pth transect direction, the change of pixel value between two neighbouring pixels (Cp(q))
can be defined as Equation (8) and the corresponding radius (rp(q)) can be defined as Equation (9).
The radius with the maximum change of pixel value can be defined as Equation (10). The average
radius of all transects for P(i) can be defined as Equation (11).

Sp = {−W,−W + 1, 1, W + 1, W, W − 1,−1,−W − 1}, p ∈ {0, 1, 2, . . . , Nt − 1} (6)

Cp(i) = Pi+Sp − Pi (7)

Cp(q) = P(i + (q + 1)× Sp)− P(i + q× Sp), q ∈ {0, 1, . . . , nt − 1} (8)

rp(q) =

{
q + 1, q ∈ {0, 2, 4, 6}
(q + 1)× 1.41, q ∈ {1, 3, 5, 7} (9)

Rp = rp(argmax{Cp(q), q ∈ {0, 1, . . . , nt − 1}}) (10)

Ri =
∑Nt−1

p=0 Rp

Nt
(11)

In the original algorithm, we need to save the streams of all pixel values of a w× w window
in an array in order to find the local maximum in each cycle. In the second step of our proposed
Kernel 1, we compare the value of the current stream with its corresponding window’s maximum, and
update the maximum when meeting the updating condition. For an input stream Pi, its corresponding
window index j can be calculated according to Equation (12), where xi and yi are the coordinates of Pi.
The local maximum of Pi’s corresponding window is denoted by M(Wj). If Pi is larger than M(Wj),
then M(Wj), X(Wj), Y(Wj) and R(Wj) will be replaced by Pi, xi, yi and Ri; Otherwise, M(Wj), X(Wj),
Y(Wj) and R(Wj) will remain their previous values. After this step, we obtain the pixel value, the x
and y coordinates, and the average radius of transect sampling for each window’s local maximum.
Consequently, we need four arrays to save and update the above four types of values. The size of each

Remote Sens. 2019, 11, 1025 10 of 20

array equals to the number of windows in the image. In each cycle, only the current stream need to be
accessed and no offset is required for this step.

j = (yi/W)× (W/w) + (xi%w) (12)

4.3. Kernel 2: Transect Sampling Radius Based Local Maximum Filtering

In the original algorithm described in Section 2, after obtaining the local maximum and the
transect sampling radius of all windows, a circular-window-based local maximum filtering strategy
is applied in order to find the new local maximum within the transect sampling radius. Similar to
the previous phase, there are several problems if we map the original algorithm directly to FPGAs.
On the one hand, only the result of one cycle in w× w cycles is valid and useful, while the results
of the other (w × w − 1) cycles are ignored. On the other hand, in each cycle, it requires a large
size of on-chip buffer to store the pixels of previous cycles in order to access all pixels within the
circular window (with transect sampling radius). The value range of the required offset in each cycle is
[−nt ×W − nt, (w + nt)×W + (w + nt)]. In order to solve these problems, we reconstruct the original
circular-window-based local maximum filtering so that the local maximum is searched across cycles
instead of spaces. For our pipeline-friendly design of this phase, only the current stream needs to be
accessed and no offset is required in each cycle.

Figure 5 shows the basic process of Kernel 2. In each cycle, we need to determine whether the
current stream Pi can be the new local maximum of any window. For j ∈ {0, 1, . . . , Nw − 1}, the
squared Euclidean distance between the coordinate of the current stream (Pi) and the coordinate of
its corresponding window’s local maximum (M(Wj)) can be calculated according to Equation (13).
For the new local maximum of window Wj, its pixel value, x coordinate and y coordinate are denoted
by M′(Wj), X′(Wj), and Y′(Wj), respectively. If the value of Pi is larger than M(Wj), and the squared
Euclidean distance between the coordinates of Pi and M(Wj) is smaller than or equal to the squared
average radius of Wj, then M′(Wj), X′(Wj), and Y′(Wj) will be replaced by Pi, xi, and yi; Otherwise,
M′(Wj), X′(Wj), and Y′(Wj) will remain their previous values (i.e., M(Wj), X(Wj), and Y(Wj)). After
this phase, we can obtain the coordinates of the updated local maximum of each window.

Kernel 1

Kernel 3

Kernel 2

Y

N
YN

Figure 5. The basic process of Kernel 2.

d2
ij = (xi − X(Wj))

2 + (yi −Y(Wj))
2 (13)

4.4. Kernel 3: Minimum Distance Filtering

In the last phase of the original tree crown detection algorithm, the minimum distance filtering
is applied to the updated local maximum in order to merge the group of identified tree apexes’
coordinates into one coordinate if their distance is smaller than a user-defined value, as shown in

Remote Sens. 2019, 11, 1025 11 of 20

Algorithm 2. Algorithm 3 defines the process of the improved minimum distance filtering of our
proposed PF-TCD algorithm. The inputs of Kernel 3 are the updated local maximum’s coordinates
of each window obtained in Kernel 2. For each cycle, we need to calculate the Euclidean distance
between the current input stream (X′(Wj), Y′(Wj)) and all updated local maximum’s coordinates
(X′(Wjj), Y′(Wjj)). MGjj is used to record whether (X′(Wjj), Y′(Wjj)) should be merged with
(X′(Wj), Y′(Wj)), in which values 1 and 0 indicate the two coordinates should or should not be
merged. Sjj is used to record whether (X′(Wjj), Y′(Wjj)) is existing (Sjj equals True) or has been
merged (Sjj equals False). Moreover, (X

′′
(Wjj), Y

′′
(Wjj)) is used to record all coordinates that should

be merged with (X′(Wj), Y′(Wj)). Nmerge denotes the total number of coordinates that should be
merged with the current stream (X′(Wj), Y′(Wj)). Xavg and Yavg denote the average coordinates of
(X
′′
(Wjj), Y

′′
(Wjj)), which are the final tree crown detection results of our proposed PF-TCD algorithm.

Algorithm 3 Minimum distance filtering on FPGA

for all jj ∈ {0, 1, ..., Nw − 1} do

djj = dist((X
′
(Wj), Y

′
(Wj)), (X

′
(Wjj), Y

′
(Wjj)))

if Sj == True & Sjj == True&djj < dmin then

X
′′
(Wjj) = X

′
(Wjj), Y

′′
(Wjj) = Y

′
(Wjj), MGjj = 1, Sjj = False

else

X
′′
(Wjj) = 0, Y

′′
(Wjj) = 0, MGjj = 0

end if
end for

Nmerge =
Nt−1

∑
jj=0

MGjj

Xavg = (Nmerge 6= 0)?
∑Nt−1

jj=0 X
′′
(Wjj)

Nmerge
: 0

Yavg = (Nmerge 6= 0)?
∑Nt−1

jj=0 Y
′′
(Wjj)

Nmerge
: 0

To implement our proposed Algorithm 3 on FPGAs, we need to use an array in the length
of NW in order to record the (X′(Wjj), Y′(Wjj)) coordinate and the status Sjj for each window
(for jj ∈ 0, 1, ..., NW). For each cycle, we need to read and update the value of Sjj according to
whether (X′(Wjj), Y′(Wjj)) should be merged, which results in a loop dependency of 4 in our case.
Consequently, we have to read a value every other four cycles and only 1/5 of the cycles produce useful
results. In order to solve the above problem, we propose and implement a strategy for improving
the design of Kernel 3 on FPGAs. We create an array in the length of 5× NW so that the positions
of reading and writing are different to avoid the loop dependency, as shown in Figure 6. The logic
resource (LUTs and FFs) usage of this implementation is almost the same as using one array in the
length of NW . The only extra overhead is the space (i.e., BRAM) of the extra length of the array, which
is only a small percentage of the whole resource usage. In this way, we do not need to use the idle
cycles for array writing and the results can be generated in each cycle.

Remote Sens. 2019, 11, 1025 12 of 20

A1

Cycle 1

A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3

+

+

+

+

+

Cycle 2

Cycle 3

Cycle 4

Cycle 5

4 cycles

4 cycles

4 cycles

4 cycles

4 cycles
+4

+4

+4

+4

+4

Figure 6. The proposed strategy of removing loop dependencies using extra BRAMs.

5. Experimental Results Analysis

In this section, we analyze the experiment results of our proposed PF-TCD algorithm on FPGAs.
The hardware platform, the processing time and the speedup over original implementation will be
described in Section 5.1. The resource utilization of each kernel will be described in Section 5.2. The tree
crown detection results of our proposed approach will be analyzed in Section 5.3.

5.1. Performance Analysis of Our Proposed Approach

In this study, a Quickbird satellite image with a size of 12,188 × 12,576 pixels is used to evaluate
the performance of our proposed approach. We implement the proposed PF-TCD algorithm using a
high-level programming language called MaxJ (an extended version of Java). The kernel and manager
code of PF-TCD algorithm is transformed into a hardware design using MaxCompiler and further
processed into hardware code by FPGA vendor tools [40]. The MaxCompiler enables us to focus on
the description of the hardware design by hiding the hardware details. The performance of PF-TCD
algorithm is tested on a Maxeler MAX4 acceleration card with an Altera Stratix-V FPGA (running at
200 MHz) and 48GB DDR3 onboard memory.

We also compare the performance of our hardware implementation with a well-optimized
software implementation of the original algorithm (implemented using multi-threaded C++, compiled
with g++ with -O3 flags) on a 12-core CPU (Intel Xeon CPU E5-2697, running at 2.4 GHz). The running
time (averaged from 10 repeated experiments) of the hardware solution and the software solution are
0.33 s and 6.12 s, indicating that our proposed PF-TCD algorithm on FPGAs achieves the speedup
of 18.75 times over the original algorithm on 12-core CPU and meets the real-time data processing
requirements of satellites.

5.2. Resource Utilization of Each Kernel

In our proposed approach, the image size of each block is set as 116 × 116 pixels, in which the
width of the overlap is 16 pixels (similar to the crown diameter of a mature oil palm tree). The window
width (w) of 5, 10 and 15 are evaluated in this study, which should be smaller than the diameter of a
tree crown. When the w is set as 10, the average F1-score of the six selected regions is over 8% higher
than those obtained from other two cases. We also evaluate the number of pixels in a transect (nt)
from 8 to 12, which should be similar to or larger than the radius of a tree crown. The difference of
F1-score obtained from each case is smaller than 1% and the image processing time increases with
nt. Consequently, the parameter w is set as 10 and the parameter nt is set as 8 for our study area.
The parameter dmin (the minimum allowed distance between two tree apexes) is set as 5, which

Remote Sens. 2019, 11, 1025 13 of 20

guarantees that the coordinates corresponding to the same tree can be averaged into one coordinate
properly. As the value range of our data is 0 to 255, 8-bit fixed point computations are used for this
algorithm. For our proposed PF-TCD algorithm, the accumulative number of cycles of Kernel 1, Kernel
2, and Kernel 3 (denoted by N_Cycle_K1, N_Cycle_K2, N_Cycle_K3) can be calculated according to
Formula (14), of which the total number of cycles (denoted by N_Cycle_Total) equals the accumulative
number of cycles of Kernel 3. Kernel 1 and Kernel 2 are fully-pipelined and the input of Kernel 2 is the
output of Kernel 1. For Kernel 3, the incremental number of cycles equals to two times of the number
of windows, which takes only a small percentage of the total number of cycles (1.5%).

N_Cycle_K1 = (W + 2× nt)
2

N_Cycle_K2 = N_Cycle_K1 + (W/w) + 2

N_Cycle_Total = N_Cycle_K3 = N_Cycle_K2 + 2× (W/w)2

(14)

Table 1 summarizes the resource utilization of an image block in each main phase. The total
resource utilization of an image block on the Stratix-5SGSD8 FPGA is 28.33% of the LUTs, 27.82%
of the FFs, 25.47% of the DSPs and 29.61% of the BRAMs. Based on this resource utilization, three
image blocks in 116 × 116 pixels can be processed in parallel in our proposed approach. The power
consumption of our proposed approach on FPGAs is 20–25 W, which is significantly lower than the
power consumption required by GPUs and CPUs.

Table 1. The resource utilization of our proposed PF-TCD algorithm on FPGAs.

Resource Kernel 1 Kernel 2 Kernel 3 Manager Total

LUTs 1636 31,229 2852 38,621 74,338 (28.33%)
FFs 2847 50,062 6250 86,842 146,001 (27.82%)

DSPs 0 370 130 0 500 (25.47%)
BRAMs 0 304 1 455 760 (29.61%)

5.3. The Detection Results of Our Proposed Approach

To evaluate the detection results of our proposed approach, we compare the predicted tree crown
coordinates of each region with the ground truth collected through manually labeling by specialist.
The calculating processes of the precision, recall, and F1-score are described from Equations (15)–(17),
in which TP denotes the true positive detection indicating the number of correctly detected oil palm
trees, FP denotes the false positive detection indicating the number of other objects detected as oil
palm trees, and FN denotes the false negative detection indicating the number of oil palm trees not
detected. Similar to [4], if the Euclidean spatial distance between the coordinates of a detected oil
palm tree and a ground truth oil palm tree is smaller than or equal to 5 pixels, then the oil palm tree is
considered as detected correctly.

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1− score =
2× Precision× Recall

Precision + Recall
(17)

Figures 7 and 8 show the detection image results of six selected regions obtained from our
proposed PF-TCD algorithm and the original algorithm, in which the red points, green squares and
blue squares indicate the correctly detected oil palm trees (TP), the oil palm trees not detected (FN),
and other objects detected as oil palms (FP), respectively. Table 2 shows the detection results of each
region obtained from our proposed PF-TCD algorithm and the original algorithm, in terms of TP, FP,

Remote Sens. 2019, 11, 1025 14 of 20

FN, Precision, Recall and F1-score. The beginning (x, y) coordinates (the pixel offset to the top-left
corner of the whole study area) of six regions are (3896, 1715), (5390, 2733), (8783, 3768), (10,708, 6519),
(8210, 8678) and (1743, 11,384) in pixels. The sizes of six regions are 600× 600 pixels. Experiment
results demonstrate that the detection F1-scores obtained from our proposed PF-TCD algorithm are
between 83.98% and 92.15% for six regions. The difference between the F1-scores obtained from
PF-TCD algorithm on FPGAs and those obtained from the original algorithm on CPU is smaller than
1%, even though we use special angles (such as 45◦ and 90◦) for transact sampling and fixed point
computations in PF-TCD algorithm.

Table 2. The oil palm tree detection results of each region.

Method Index Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

TP 1033 1323 739 684 986 1380
FP 206 196 121 164 104 259

PF-TCD FN 72 104 43 97 64 125
algorithm Precision 83.37% 87.10% 85.93% 80.66% 90.46% 84.20%

Recall 93.48% 92.71% 94.50% 87.58% 93.90% 91.69%
F1-score 88.14% 89.82% 90.01% 83.98% 92.15% 87.79%

TP 1025 1320 741 681 980 1382
FP 212 200 119 165 110 257

Original FN 80 106 41 100 70 123
algorithm Precision 82.86% 86.84% 86.16% 80.50% 89.91% 84.32%

Recall 92.76% 92.57% 94.76% 87.20% 93.33% 91.83%
F1-score 87.53% 89.61% 90.26% 83.71% 91.59% 87.91%

6. Discussion

In this section, we analyze the size of image blocks and the image processing time of our proposed
approach. The impact of the size of each image block on the performance of our proposed approach
will be analyzed in Section 6.1. The running time for processing images in different sizes will be
analyzed in Section 6.2.

6.1. The Size of Image Blocks

In the blocking module of our proposed approach, the size of each image block has a great
influence on the performance of our proposed approach. When the size of each image block is getting
smaller, the resource utilization of each block will be less and more image blocks can be processed in
parallel. However, as the image block contains overlaps with their neighbors to guarantee that each
tree crown can be completely included in at least one image block, smaller image blocks will increase
the total number of image blocks and duplicated pixels. In contrast, when the size of each image block
is getting larger, the resource utilization of each block will be larger and fewer image blocks can be
processed in parallel. However, the number of duplicated pixels to be processed will be reduced and
fewer cycles will be required to process the whole image. After tuning the size of each image block, we
set the size of image block as 116 × 116 to maximize the overall performance.

Remote Sens. 2019, 11, 1025 15 of 20

(a) Region 1 (PF-TCD algorithm) (b) Region 1 (Original algorithm)

(c) Region 2 (PF-TCD algorithm) (d) Region 2 (Original algorithm)

(e) Region 3 (PF-TCD algorithm) (f) Region 3 (Original algorithm)

FPTP FN

Figure 7. The detection image results of region 1, 2 and 3 obtained from our proposed PF-TCD
algorithm (left) and the original algorithm (right).

Remote Sens. 2019, 11, 1025 16 of 20

(a) Region 4 (PF-TCD algorithm) (b) Region 4 (Original algorithm)

(c) Region 5 (PF-TCD algorithm) (d) Region 5 (Original algorithm)

(e) Region 6 (PF-TCD algorithm) (f) Region 6 (Original algorithm)

FPTP FN

Figure 8. The detection image results of region 4, 5 and 6 obtained from our proposed PF-TCD
algorithm (left) and the original algorithm (right).

Remote Sens. 2019, 11, 1025 17 of 20

6.2. The Running Time for Processing Images in Different Sizes

Figure 9 shows the running time of our proposed approach for processing remote sensing images
in different sizes. We can find that the running time increases almost linearly with the image size. This
is because when the FPGA resource utilization and the size of each image block are fixed, the number
of image blocks will increase with the size of the remote sensing image. The total number of cycles for
processing an image increases linearly with the image size, resulting in the linear increasing of the
running time. Based on this linear relationship, we can further predict the running time for processing
larger remote sensing images.

The number of pixels in each image
1e+7 2e+7 3e+7 4e+7 5e+7 6e+7

Th
e

ru
nn

in
g

tim
e

of
 e

ac
h

im
ag

e
(s

)

0

0.5

1

1.5

2

2.5

3

0.442

0.871

1.310

1.772

2.218

2.657

0.024 0.046 0.069 0.094 0.117 0.141

CPUs
FPGA

Figure 9. The running time for processing images in different sizes.

7. Conclusions

In this research, we propose an FPGA-based approach for large-scale remote sensing image
processing in real time. It is a complete high performance solution for automatic tree crown detection
from the raw satellite images to the final detection results. To satisfy the power, latency and
performance requirements of the practical scenarios of on-board data processing, we reconstruct and
modify the workflow of the original algorithm and designed a pipelined-friendly tree crown detection
algorithm (PF-TCD) with three computational kernels. We optimize and adjust the local maximum
filtering, transact sampling, and minimum distance filtering algorithms of the tree crown detection
approach to reduce the resource utilization and the idle cycles, and balance the utilization of different
resources (LUTs, FFs, DSPs, and BRAMs) to avoid any of them becoming the performance bottleneck.

Compared with the well-optimized software implementation of the original algorithm on an Intel
12-core CPU, our proposed PF-TCD algorithm obtains the speedup of 18.75 times for a large-scale
remote sensing image with 12,188 × 12,576 pixels. The image processing time is only 0.33 s, which
satisfies the requirements of real-time data processing on satellites. The detection F1-scores obtained
from our proposed PF-TCD algorithm are between 83.98% and 92.15% for six selected regions. In our
future work, we plan to further optimize our proposed approach and apply it to larger-scale datasets.
We will also explore the potential of reconfigurable platforms and develop high performance solutions
for other remote sensing image analysis tasks.

Remote Sens. 2019, 11, 1025 18 of 20

Author Contributions: Conceptualization, W.L. (Weijia Li), C.H., H.F. and W.L. (Wayne Luk); Data curation, W.L.
(Weijia Li) and L.Y.; Formal analysis, W.L. (Weijia Li); Funding acquisition, H.F.; Investigation, W.L. (Weijia Li) and
C.H.; Methodology, W.L. (Weijia Li) and C.H.; Project administration, H.F.; Resources, H.F. and L.Y.; Software,
W.L. (Weijia Li) and C.H.; Supervision, H.F. and W.L. (Wayne Luk); Validation, W.L. (Weijia Li), C.H. and J.Z.;
Visualization, W.L. (Weijia Li), C.H. and J.Z.; Writing—original draft, W.L. (Weijia Li) and C.H.; Writing—review
& editing, H.F., R.D., M.X. and W.L. (Wayne Luk).

Funding: This research was supported in part by the National Key R&D Program of China (Grant No.
2017YFA0604500 and 2017YFA0604401), by the National Natural Science Foundation of China (Grant No.
51761135015), and by the Center for High Performance Computing and System Simulation, Pilot National
Laboratory for Marine Science and Technology (Qingdao), the European Union Horizon 2020 Research and
Innovation Programme under grant agreement number 671653, UK EPSRC (EP/I012036/1, EP/L00058X/1,
EP/L016796/1 and EP/N031768/1), and Maxeler and Intel Programmable Solutions Group.

Acknowledgments: The authors would like to thank the editors and reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, W.; He, C.; Fu, H.; Luk, W. An FPGA-based tree crown detection approach for remote sensing images.
In Proceedings of the IEEE 2017 International Conference on Field Programmable Technology (ICFPT),
Melbourne, Australia, 11–13 December 2017; pp. 231–234.

2. Pouliot, D.; King, D.; Bell, F.; Pitt, D. Automated tree crown detection and delineation in high-resolution
digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [CrossRef]

3. Tan, K.P.; Kanniah, K.D.; Cracknell, A.P. Use of UK-DMC 2 and ALOS PALSAR for studying the age of oil
palm trees in southern peninsular Malaysia. Int. J. Remote Sens. 2013, 34, 7424–7446. [CrossRef]

4. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for
High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [CrossRef]

5. Chirici, G.; Giuliarelli, D.; Biscontini, D.; Tonti, D.; Mattioli, W.; Marchetti, M.; Corona, P. Large-scale
monitoring of coppice forest clearcuts by multitemporal very high resolution satellite imagery. A case study
from central Italy. Remote Sens. Environ. 2011, 115, 1025–1033. [CrossRef]

6. Li, W.; He, C.; Fang, J.; Zheng, J.; Fu, H.; Yu, L. Semantic Segmentation-Based Building Footprint Extraction
Using Very High-Resolution Satellite Images and Multi-Source GIS Data. Remote Sens. 2019, 11, 403.
[CrossRef]

7. Ke, Y.H.; Zhang, W.H.; Quackenbush, L.J. Active contour and hill climbing for tree crown detection and
delineation. Photogramm. Eng. Remote Sens. 2010, 76, 1169–1181. [CrossRef]

8. Santos, A.M.D.; Mitja, D.; Delaître, E.; Demagistri, L.; Miranda, I.D.S.; Libourel, T.; Petit, M. Estimating
babassu palm density using automatic palm tree detection with very high spatial resolution satellite images.
J. Environ. Manag. 2017, 193, 40–51. [CrossRef] [PubMed]

9. Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation
from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [CrossRef]

10. Quackenbush, L.J.; Hopkins, P.F.; Kinn, G.J. Using template correlation to identify individual trees in high
resolution imagery. In Proceedings of the American Society for Photogrammetry & Remote Sensing (ASPRS)
2000 Annual Conference Proceedings, Washington, DC, USA, 22–26 May 2000.

11. Leckie, D.G.; Gougeon, F.A.; Tinis, S.; Nelson, T.; Burnett, C.N.; Paradine, D. Automated tree recognition
in old growth conifer stands with high resolution digital imagery. Remote Sens. Environ. 2005, 94, 311–326.
[CrossRef]

12. López-López, M.; Calderón, R.; González-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Early Detection and
Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery.
Remote Sens. 2016, 8, 276. [CrossRef]

13. Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F. Efficient framework for palm tree detection in UAV
images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4692–4703. [CrossRef]

14. Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen,
I.; Imai, N.; et al. Individual tree detection and classification with UAV-based photogrammetric point clouds
and hyperspectral imaging. Remote Sens. 2017, 9, 185. [CrossRef]

http://dx.doi.org/10.1016/S0034-4257(02)00050-0
http://dx.doi.org/10.1080/01431161.2013.822601
http://dx.doi.org/10.3390/rs9010022
http://dx.doi.org/10.1016/j.rse.2010.12.007
http://dx.doi.org/10.3390/rs11040403
http://dx.doi.org/10.14358/PERS.76.10.1169
http://dx.doi.org/10.1016/j.jenvman.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28189928
http://dx.doi.org/10.1080/01431161.2010.494184
http://dx.doi.org/10.1016/j.rse.2004.10.011
http://dx.doi.org/10.3390/rs8040276
http://dx.doi.org/10.1109/JSTARS.2014.2331425
http://dx.doi.org/10.3390/rs9030185

Remote Sens. 2019, 11, 1025 19 of 20

15. Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-learning versus OBIA for scattered
shrub detection with Google earth imagery: Ziziphus Lotus as case study. Remote Sens. 2017, 9, 1220.

16. Li, W.; Dong, R.; Fu, H.; Yu, L. Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images
Using Two-Stage Convolutional Neural Networks. Remote Sens. 2019, 11, 11.

17. Freudenberg, M.; Nölke, N.; Agostini, A.; Urban, K.; Wörgötter, F.; Kleinn, C. Large Scale Palm Tree Detection
in High Resolution Satellite Images Using U-Net. Remote Sens. 2019, 11, 312. [CrossRef]

18. Li, W.; Fu, H.; Yu, L.; Gong, P.; Feng, D.; Li, C.; Clinton, N. Stacked Autoencoder-based deep learning
for remote-sensing image classification: A case study of African land-cover mapping. Int. J. Remote Sens.
2016, 37, 5632–5646. [CrossRef]

19. Santos, L.; Berrojo, L.; Moreno, J.; López, J.F.; Sarmiento, R. Multispectral and hyperspectral lossless
compressor for space applications (HyLoC): A low-complexity FPGA implementation of the CCSDS 123
standard. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 757–770.

20. Bing, Z.; Wei, Y.; Gao, L.; Chen, D. Real-time target detection in hyperspectral images based on spatial-spectral
information extraction. Eur. J. Adv. Signal Process. 2012, 2012, 142.

21. Liu, D.; Zhou, G.; Huang, J.; Zhang, R.; Shu, L.; Zhou, X.; Xin, C.S. On-Board Georeferencing Using
FPGA-Based Optimized Second-Order Polynomial Equation. Remote Sens. 2019, 11, 124.

22. Bernabe, S.; Sanchez, S.; Plaza, A.; López, S.; Benediktsson, J.A.; Sarmiento, R. Hyperspectral unmixing
on GPUs and multi-core processors: A comparison. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2013, 6, 1386–1398.

23. Li, W.; Fu, H.; You, Y.; Yu, L.; Fang, J. Parallel Multiclass Support Vector Machine for Remote Sensing Data
Classification on Multicore and Many-Core Architectures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2017, 10, 4387–4398. [CrossRef]

24. Wu, Z.; Liu, J.; Plaza, A.; Li, J.; Wei, Z. GPU implementation of composite kernels for hyperspectral image
classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1973–1977.

25. González, C.; Bernabé, S.; Mozos, D.; Plaza, A. FPGA implementation of an algorithm for automatically
detecting targets in remotely sensed hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2016, 9, 4334–4343. [CrossRef]

26. Mohammadnia, M.R.; Shannon, L. A multi-beam Scan Mode Synthetic Aperture Radar processor suitable for
satellite operation. In Proceedings of the 2016 IEEE 27th International Conference on IEEE Application-Specific
Systems, Architectures and Processors (ASAP), London, UK, 6–8 July 2016; pp. 83–90.

27. Lee, C.A.; Gasster, S.D.; Plaza, A.; Chang, C.I.; Huang, B. Recent developments in high performance
computing for remote sensing: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 508–527.
[CrossRef]

28. Wang, S.; Niu, X.; Ma, N.; Luk, W.; Leong, P.; Peng, Y. A Scalable Dataflow Accelerator for Real Time
Onboard Hyperspectral Image Classification. In International Symposium on Applied Reconfigurable Computing;
Springer: Berlin, Germany, 2016; pp. 105–116.

29. Gonzalez, C.; Lopez, S.; Mozos, D.; Sarmiento, R. A novel FPGA-based architecture for the estimation of the
virtual dimensionality in remotely sensed hyperspectral images. J. Real-Time Image Process. 2015, 43, 1–12.
[CrossRef]

30. Shan, N.; Wang, X.S.; Wang, Z.S. Efficient FPGA implementation of cloud detection for real-time remote
sensing image processing. In Proceedings of the 2010 Conference on Postgraduate Research in IEEE Asia
Pacific Microelectronics and Electronics (PrimeAsia), Shanghai, China, 22–24 September 2010; pp. 190–193.

31. Tang, J.W.; Shaikh-Husin, N.; Sheikh, U.U.; Marsono, M.N. FPGA-based real-time moving target detection
system for unmanned aerial vehicle application. Int. J. Reconfigur. Comput. 2016, 2016. [CrossRef]

32. Chen, Y.L.; Wu, C.C.; Lin, H.C.; Lin, C. A parallel approach of multi-level morphological active contour
algorithm for individual tree detection and crown delineation. In Proceedings of the 2013 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 2601–2604.

33. Duncanson, L.; Cook, B.; Hurtt, G.; Dubayah, R. An efficient, multi-layered crown delineation algorithm
for mapping individual tree structure across multiple ecosystems. Remote Sens. Environ. 2014, 154, 378–386.
[CrossRef]

34. Jiang, H.; Chen, S.; Li, D.; Wang, C.; Yang, J. Papaya Tree Detection with UAV Images Using a
GPU-Accelerated Scale-Space Filtering Method. Remote Sens. 2017, 9, 721. [CrossRef]

http://dx.doi.org/10.3390/rs11030312
http://dx.doi.org/10.1080/01431161.2016.1246775
http://dx.doi.org/10.1109/JSTARS.2017.2713126
http://dx.doi.org/10.1109/JSTARS.2015.2504427
http://dx.doi.org/10.1109/JSTARS.2011.2162643
http://dx.doi.org/10.1007/s11554-014-0482-2
http://dx.doi.org/10.1155/2016/8457908
http://dx.doi.org/10.1016/j.rse.2013.07.044
http://dx.doi.org/10.3390/rs9070721

Remote Sens. 2019, 11, 1025 20 of 20

35. Srestasathiern, P.; Rakwatin, P. Oil palm tree detection with high resolution multi-spectral satellite imagery.
Remote Sens. 2014, 6, 9749–9774. [CrossRef]

36. Cheng, Y.; Le, Y.; Xu, Y.; Hui, L.; Cracknell, A.P.; Kanniah, K.; Peng, G. Mapping oil palm extent in Malaysia
using ALOS-2 PALSAR-2 data. Int. J. Remote Sens. 2018, 39, 432–452. [CrossRef]

37. Cheng, Y.; Le, Y.; Xu, Y.; Liu, X.; Hui, L.; Cracknell, A.P.; Kanniah, K.; Peng, G. Towards global oil palm
plantation mapping using remote-sensing data. Int. J. Remote Sens. 2018, 39, 5891–5906. [CrossRef]

38. Malaysian Oil Palm Plantation Dataset. Available online: https://github.com/dongrunmin/oil_palm_data/
blob/master/segmentation_map (accessed on 6 March 2019).

39. Lachowicz, S.; Pfleiderer, H.J. Fast evaluation of nonlinear functions using FPGAs. Adv. Radio Sci.
2008, 6, 233–237. [CrossRef]

40. Summers, S.; Rose, A.; Sanders, P. Using MaxCompiler for the high level synthesis of trigger algorithms.
J. Instrum. 2017, 12, C02015. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs6109749
http://dx.doi.org/10.1080/01431161.2017.1387309
http://dx.doi.org/10.1080/01431161.2018.1492182
https://github.com/dongrunmin/oil_palm_data/blob/master/segmentation_map
https://github.com/dongrunmin/oil_palm_data/blob/master/segmentation_map
http://dx.doi.org/10.5194/ars-6-233-2008
http://dx.doi.org/10.1088/1748-0221/12/02/C02015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Image Pre-Processing and Non-Overlapping Local Maximum Filtering
	Transect Sampling and Circular-Window-Based Local Maximum Filtering
	Minimum Distance Filtering

	Data
	Methods
	Overall Framework of Tree Crown Detection for Large-Scale Remote Sensing Images on FPGAs
	Kernel 1: Transect Sampling Radius Calculation and Local Maximum Filtering
	Kernel 2: Transect Sampling Radius Based Local Maximum Filtering
	Kernel 3: Minimum Distance Filtering

	Experimental Results Analysis
	Performance Analysis of Our Proposed Approach
	Resource Utilization of Each Kernel
	The Detection Results of Our Proposed Approach

	Discussion
	The Size of Image Blocks
	The Running Time for Processing Images in Different Sizes

	Conclusions
	References

