
Fast and Accurate Training of Ensemble Models
with FPGA-based Switch

Jiuxi Meng, Ce Guo, Nadeen Gebara, Wayne Luk
Department of Computing, Imperial College London

Email: {jiuxi.meng16, c.guo, n.gebara17, w.luk}@imperial.ac.uk

Abstract—Random projection is gaining more attention in
large scale machine learning. It has been proved to reduce the
dimensionality of a set of data whilst approximately preserving
the pairwise distance between points by multiplying the original
dataset with a chosen matrix. However, projecting data to a lower
dimension subspace typically reduces the training accuracy. In
this paper, we propose a novel architecture that combines an
FPGA-based switch with the ensemble learning method. This
architecture enables reducing training time while maintaining
high accuracy. Our initial result shows a speedup of 2.12-6.77
times using four different high dimensionality datasets.

I. INTRODUCTION

Recent years have witnessed a significant surge in the size

of data available for machine learning tasks. Though this is

great for improving training accuracy, it is computationally

challenging. Reducing the high dimensionality of the data

becomes crucial for accelerating machine learning. Random

Projection (RP) has been proved to be a powerful method

for dimensionality reduction. However, increasing the sparsity

of the RP matrix and thereby reducing the projected dimen-

sionality inevitably results in loss of information within the

dataset. This, in turn, impacts the training accuracy of machine

learning applications.

An ensemble classification system comprises of multiple

classifiers. These classifiers can be diverse in model type

as well as predictive accuracy. The diversity of the clas-

sifiers allows them to correct and compensate each others’

shortcomings, thereby achieving a collective accuracy that is

higher than that of the individual classifier. Combining RP and

ensemble systems allows classifiers to gain diversity from data

in different sub-spaces, and the system to recover the accuracy

loss with the ensemble.

Network switches as the pivot of data centre networks are

possible places to introduce diversity. However, commodity

network switches are fixed in functionality, so are not suitable

for computational tasks. Previous work [1] shows the capabil-

ity of FPGAs for implementing network switches. However,

such design typically leaves computational resources such as

Digital Signal Processing (DSP) blocks unused, which can

be utilised to implement additional functions. We therefore

propose an FPGA based network switch architecture to deploy

RP ensemble method across multiple workers, with the switch

section responsible for distributing training data and the DSPs

for random projection.

The challenges of designing such systems are: (C1) Process-

ing large dimensional data requires a large amount of FPGA

resources, thereby limiting the scalability of the system. (C2)

Performing fast computation requires storing the RP matrices

on-chip, and this becomes challenging as the dimensionality

of input data increases due to limited on-chip storage. Through

model analysis, we tackle the aforementioned challenges, and

provide a generalisable solution for various scenarios. The

main contributions of this paper are:

1) A novel architecture for random projection ensemble

method that utilises the spare resources of an FPGA-

based switch.

2) Potential speedups in training whilst maintaining or even

surpassing the single model accuracy.

3) A performance model that benefits future deployment of

our system.

II. BACKGROUND AND RELATED WORK

Fox et al. [2] propose the first FPGA based RP method

to make training scalable on FPGAs. However, the limited

resources left for RP in their design force them to use high

sparsity RP matrices for hardware simplicity, which results

in large error for the projected subspace. It also limits their

design to low-dimensional datasets, whereas the benefits of RP

are more significant for high-dimensional datasets. In contrast,

our work devotes all the idle computational resources on an

FPGA-based switch to performing RP, allowing us to explore

RP using Li’s method [3] without introducing additional error.

III. PROPOSED SYSTEM ARCHITECTURE

The system comprises two major parts, as shown in Fig. 1,

the FPGA-based switch for data pre-processing and the worker

nodes for training. The system starts with a network storage

server, sending the training data to the FPGA through a

high-speed interface. Upon entering the FPGA-based switch,

the data within the packets are either sent directly to the

output port (forwarding mode), or enter the DSPs where

matrix multiplication is performed with the pre-stored RP

matrices (processing mode) before being sent to the output

port depending on the request field in the header. The worker

nodes then use the received data to perform training. We make

no assumptions on the type of worker nodes, and they could

range from simple development boards to server clusters.

Our design can be deployed as an extra layer of switching

between the ToR switch and server nodes, illustrated by the

right half of Fig. 1. This approach allows a reduction of the

number of workers connected to each FPGA and keeps the

functionality of the traditional rack. As a result, more resources

on the FPGA can be utilised to compute random projection.

81

2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)

2160-052X/20/$31.00 ©2020 IEEE
DOI 10.1109/ASAP49362.2020.00023

Authorized licensed use limited to: Imperial College London. Downloaded on December 13,2022 at 18:35:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: System flow.

Replacing the ToR switch with FPGA-based switches, in

contrast, would require the FPGA to scale with the number

of servers connected to the ToR switch and this would limit

the resources available for computation. Such a hierarchical

approach allows us to address C1 as the number of worker

nodes increases.

On-chip storage avoids extra data transfer latency of the RP

matrix from the off-chip memory and is necessary to perform

fast data projection within the FPGA-based switch. However,

the size of the projection matrix can become considerably

larger than the capacity of the FPGA when the data dimension

increases. Observing that the sparse matrix consists of only

three types of values (positive, negative and zero) as shown

in [3], we propose a compression method that represents the

matrix value with 2 bits, and restores values only when used.

This method enables storing the RP matrix on-chip with little

logic resource overhead, thereby addressing challenge C2.

IV. THEORETICAL MODEL

RP can be performed by the switch and/or by the worker

nodes. Let α be the fraction RP computed by the switch, the

rest (1 − α) computed by the workers. The overall system

time consists of (a) the RP time Tproject(α) (b) release time

of output ports trelease(α) and (c) the training time of the

worker Ttrain. It is possible to implement the RP with systolic

matrix multiplication to allow the overlapping of random

projection and data release time. Therefore, we take the greater

of Tproject(α) and Trelease(α). Ignoring the latency caused

by the network and the pipeline, the total system time is as

follows:

T (α) = max(Tproject(α), Trelease(α)) + Ttrain (1)

Tproject(α) =
αX

θswitch
project

+
(1− α)X

θworker
project

(2)

where X is the number of data points for training a sub-

model in the ensemble; θDproject is the throughput of random

projection for device D measured by the number of data

instances projected per second.

The release time to a worker is the total data traffic F (α)
divided by the bandwidth b from the switch to the worker.

The data traffic for each worker includes the original data and

projected data sent to the worker, i.e.

F (α) = αXk + (1− α)Xm (3)

where m and k are respectively the number of dimensions

of the original data and the projected data. Assuming that all

workers have the same bandwidth b measured by the number

of data entries transferred per second, the release time is

Trelease(α) =
F

b
=

αXk + (1− α)Xm

b
(4)

We propose to handle all calculations for random projection

in the FPGA-based switch with spare resources, which corre-

sponds to α = 1. In contrast, in a conventional system with

an ordinary switch, the random projection works solely on

the workers, which corresponds to α = 0. The difference in

performance is as follows:

T (1)− T (0) = X
[
max(

1

θswitch
project

,
k

b
)−max(

1

θworker
project

,
m

b
)
]

(5)

The proposed system outperforms the conventional one if and

only if T (1)− T (0) < 0. This inequality holds if and only if:

max(
1

θswitch
project

,
k

b
)−max(

1

θworker
project

,
m

b
) < 0 (6)

Note that inequality 6 is independent of the number of data

points X or the time spent on sub-model training Ttrain.

Inequality 6 is very likely to hold under practical settings.

In particular, there can only be four cases for the maximum

operations.

1) max(1
θswitch
project

, k
b) =

k
b and max(1

θworker
project

, m
b) =

m
b . Since

k < m is the fundamental setting of random projection

and b > 0, we have k
b < m

b . Therefore inequality 6

obviously holds.

2) max(1
θswitch
project

, k
b) =

k
b and max(1

θworker
project

, m
b) =

1
θworker
project

.

In this case, k
b < m

b ≤ θworker
project. Therefore, similar to

the previous case, inequality 6 still holds.

3) max(1
θswitch
project

, k
b) = 1

θswitch
project

and max(1
θworker
project

, m
b) =

1
θworker
project

. In other words, the random projection time is

the bottleneck of both systems. In this case, the inequity

holds if θswitch
project > θworker

project, which holds as long as DSPs

on the FPGA have a speed advantage over the worker

in terms of matrix multiplication.

4) max(1
θswitch
project

, k
b) =

1
θswitch
project

and max(1
θworker
project

, m
b) =

m
b .

In this case, whether inequality 6 holds is more data-

dependent and hardware-dependent. However, we found

that the case is very unlikely to appear practically.

V. EXPERIMENT SETUP AND PERFORMANCE ESTIMATION

The experiments are primarily carried out in simulation

with binary classification datasets from UCI repository [4].

A two-layer MLP classifier model from Keras [5] is used in

our experiment. The simulation is open sourced1. Based on

Eq. 7, training time is obtained from simulation and switch

time is calculated based on our model. The simulation flow

is illustrated in Fig. 2. To study the impact of dimension

1https://github.com/jiuxi-pub/Ensemble learning

82

Authorized licensed use limited to: Imperial College London. Downloaded on December 13,2022 at 18:35:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Simulation flow.

Fig. 3: Time graph. Top: Forward mode (without RP). Bottom:

Processing mode (with RP).

reduction on the training time and accuracy, different number

of workers (#en size), size of dimensionalities (#dim) and

the portion size of bootstrapping (#portion) are passed as

input parameters to the simulator.

Fig. 3 illustrates the system time flow in more practically,

with the top half showing the time for training without RP

and the bottom half with RP. t0 represents the time for the

first element in the dataset to leave the switch. tIa is the time

interval for each packet to arrive at the worker. Tt is the total

training time taken by the worker. Without RP, training data are

simply forwarded to the worker without processing, resulting

in shorter t0 and tIa in the top graph than the ones in the

bottom. Packet forwarding during random projection is also

shown in the bottom graph, indicated by the grey arrows in

between the packets with RP. From the time graph, it is not

hard to observe that a speedup from our design requires tdiff
to be greater than zero.

To prove our point, four high dimensionality datasets are

tested with their performance improvements shown in Tab. I.

As a proof of concept, we assume a 4x4 10Gbps (256bit data

width) switch is implemented on a Xilinx vu9p FPGA with

6840 DSPs, as presented in [1], [6]. A previous 4x4 network

switch designed by the NetFPGA-SUME project [7] shows

less than 15% of on-chip memory usage and less than 10%

logic usage on a Virtex-7 chip. The same implementation on

an Ultrascale+ chip will leave us with more flexibility for the

RP function. We further assume a 16-bit fixed-point number

for data representation as it only requires a single DSP block.

Floating-point multiplication is avoided for minimal resource

utilisation. The impact of fixed-point versus floating-point is

modelled by a conversion precision loss in the simulation.

Overall system time is represented by the sum of time spent

on the switch (Tswitch) and the training time of workers (Tt)

TABLE I: Estimated result.

Name
Size
used

Original
dimension

Reduced
dimension

Estimated
Speedup

Ad [8] 3279 1558 200 3.28
epsilon [9] 55000 2000 1000 2.12
gisette [4] 6000 5000 1000 6.77
realsim [10] 5783 20958 3500 3.51

as shown in Eq. 7.

Tsingle = TF
switch + TF

t ,

Tensemble = TP
switch + TP

t

(7)

where superscript F and P stand for forwarding mode and

processing mode of the switch respectively. On the switch side,

time is measured by the difference between the first entry and

the last departure of packets. TP
switch in terms of clock cycles

is given by:

TP
switch = tin + tmult

︸ ︷︷ ︸

t0

+(Xsub − 1) ∗ tIa + tout (8)

where Xsub is the number of elements in the dataset for each

sub-model; tin is the time for the first element to enter the

switch; tout is the time for the last element to leave the switch,

which is shorter than tin due to the dimension reduction; tmult

is the time for multiplying a single element of the dataset with

the RP matrix. tIa equals to tmult, as shown in Fig. 5.

Packet forwarding time for single model training is shorter

as no multiplication time is required. The switching latency is

typically a few hundred nanoseconds and is a one time expense

for continuous packet transfer, which becomes negligible com-

pared with the total forwarding time. It can be modelled as:

TF
switch = Xs ∗ tout = Xs ∗ tin, where Xs denotes the number

of elements in the single model training dataset.

The speedup S of our proposed system compared with a

single model can then be calculated by:

S =
Tsingle

Tensemble
=

TF
switch + TF

t

TP
switch + TP

t

(9)

VI. RESULT AND DISCUSSION

In general, our software simulation result shows an increase

in training accuracy and a decrease in training time with the

ensemble method; the reduced dimension is typically less than

half of the original. We choose to have 15 members for the

ensemble method, as they achieve stable performance for most

tested datasets. Fig. 4 shows the training time against accuracy

for different binary classification datasets. The original data

are represented with hollow markers, whereas experimental

data are represented with solid filled markers. Take the Ad

dataset for example; our method uses only 12.83% of the

original dimension and 30.38% of the original training time to

achieve the same accuracy of single model training. Increasing

the dimensionality to 50% extends the training time but

results in even higher accuracy than single model training. For

the epsilon data set, the proposed method experiences small

variance in terms of accuracy, but with only less than 0.5%

lower in accuracy for some dimensions. This can be explained

as the result of an insufficient ensemble member size. The

gisette dataset gives the highest time reduction among all the

83

Authorized licensed use limited to: Imperial College London. Downloaded on December 13,2022 at 18:35:03 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7

96.6

96.8

97.0

97.2

97.4

97.6 Ad dim =1558
Ad dim = 200
Ad dim = 400
Ad dim = 600
Ad dim = 800
Ad dim = 1000

A
cc

ur
ac

y
(%

)

Time (s)

lower is better

higher is better

0 2 4 6 8 10 12
83.2

83.4

83.6

83.8

84.0

84.2

lower is better

higher is better

epsilon dim = 2000
dim = 800
dim = 1000
dim = 1200
dim = 1400

A
cc

ur
ac

y
(%

)

Time (s) 0 5 10 15 20 25 30 35
96.9
97.0
97.1
97.2
97.3
97.4
97.5
97.6
97.7 gisette dim = 5000

dim = 500
dim = 750
dim = 1000
dim = 1250

A
cc

ur
ac

y
(%

)

Time (s)

lower is better

higher is better

Fig. 4: Experimental results showing the impact of the proposed system on training time and accuracy.

Fig. 5: Time variables in the system.

tests. Note that the training time of lower dimension data is

given by the slowest member.

A case study will be used to illustrate Eq. 9. The Ad dataset

under testing has a total of 3279 elements, in which 80%

(Xs = 2623) is used for single model training. A portion of

80% from Xs is chosen as sub-training data (Xsub = 2098)

for this case study. Assume the switch is running with a

200MHz clock rate, and let C denotes its period which is

5ns. We have tin = 1558 ∗ 16/256 ≈ 98C. This latency only

needs to be considered once as mentioned in Fig. 5. With

limited DSP resources on the FPGA, matrix multiplication

is broken down into column-wise vector multiplication. For

a system with each FPGA-based switch connecting to two

workers, to simplify the calculation, we allocate 1558*2 DSPs

to each matrix multiplier module. We have multiplication

time tmult = tIa = 1558kC/(1558 ∗ 2) = 1/2kC. The

remaining elements take tmult × (Xsub − 1) = 209700C.

After dimension reduction, a vector of 200 dimensions takes

Tout = 200×16/256 ≈ 13C cycles. In total, TP
switch = (98+

209700+13)C = 1.049e−3s. Finally, given that the training

time for the reduced dimension dataset is 1.838s measured by

the worker, we have Tensemble = 0.001049+1.838 = 1.8390s

With our FPGA-based switch serving as a simple forward-

ing switch, the time spent on the switch is given by the total

number of cycles that the dataset requires to be transferred.

Therefore, TF
switch = Xs ∗ tin = 2623 ∗ 98C = 0.00128s.

Together with training time of 6.049s obtained from the

worker, Tsingle = 0.00128 + 6.049 = 6.0502s. Using Eq. 9,

we obtain the speedup as S ≈ 3.288. In addition, we determine

the optimal value of α for the various models considered and

summarise the results in Tab. II.

TABLE II: RP speedup result with selected α value.

RP time (s) αopt

Name α = 0 α = 1
Ad 0.1145 0.0021 0.980
epsilon 0.1867 0.1760 0.515
gisette 0.3686 0.0320 0.920
realsim 0.7012 0.7756 0.475

VII. CONCLUSION

Compared with single model training, our system with

ensemble learning achieves a higher training accuracy with

reduced training time. It can be extended to cover multiple

FPGAs for processing datasets with large dimensionality.

Further work will explore how our design can benefit other

computations, and how such computations can be implemented

automatically and efficiently on the switch.

Acknowledgment. The support of of UK EPSRC (grant

number EP/L016796/1, EP/I012036/1, EP/L00058X/1,

EP/N031768/1 and EP/K034448/1), Microsoft and Xilinx is

gratefully acknowledged.

REFERENCES

[1] J. Meng, N. Gebara, H.-C. Ng, P. Costa, and W. Luk, “Investigating
the feasibility of FPGA-based network switches,” in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), vol. 2160. IEEE, 2019, pp. 218–226.

[2] S. Fox, S. Tridgell, C. Jin, and P. H. Leong, “Random projections for
scaling machine learning on FPGAs,” in 2016 International Conference
on Field-Programmable Technology (FPT). IEEE, 2016, pp. 85–92.

[3] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 287–296.

[4] D. Dua and C. Graff, “Uci machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[5] F. Chollet et al., “Keras,” https://keras.io, 2015.
[6] P. Papaphilippou, J. Meng, and W. Luk, “High-performance FPGA

network switch architecture,” in The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2020, pp. 76–85.

[7] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 gbps as research commodity,” IEEE
micro, vol. 34, no. 5, pp. 32–41, 2014.

[8] N. Kushmerick, “Learning to remove internet advertisements,” in Agents,
1999, p. 175.

[9] “LIBSVM data: Classification (binary class),” https://www.csie.ntu.edu.
tw/∼cjlin/libsvmtools/datasets/binary.html#epsilon.

[10] “LIBSVM data: Classification (binary class),” https://www.csie.ntu.edu.
tw/∼cjlin/libsvmtools/datasets/binary.html#real-sim.

84

Authorized licensed use limited to: Imperial College London. Downloaded on December 13,2022 at 18:35:03 UTC from IEEE Xplore. Restrictions apply.

