
High-Performance FPGA Network Switch Architecture
Philippos Papaphilippou, Jiuxi Meng, Wayne Luk
Department of Computing, Imperial College London, UK

{pp616,jiuxi.meng16,w.luk}@imperial.ac.uk

ABSTRACT
We present a high-throughput FPGA design for supporting high-
performance network switching. FPGAs have recently been at-
tracting attention for datacenter computing due to their increasing
transceiver count and capabilities, which also benefit the implemen-
tation and refinement of network switches. Our solution replaces
the crossbar in favour of a novel, more pipeline-friendly approach,
the “Combined parallel round-robin arbiter”. It also removes the
overhead of incorporating an often-iterative scheduling or match-
ing algorithm, which sometimes tries to fit too many steps in a
single or a few FPGA cycles. The result is a network switch imple-
mentation on FPGAs operating at a high frequency and with a low
port-to-port latency. It also provides a wiser buffer memory utilisa-
tion than traditional Virtual Output Queue (VOQ)-based switches
and is able to keep 100% throughput for a wider range of traffic
patterns using a fraction of the buffer memory and shorter packets.

KEYWORDS
Network switch, FPGA, round-robin, arbiter, scheduling algorithms,
sorting network applications, stream processing
ACM Reference Format:
Philippos Papaphilippou, Jiuxi Meng, Wayne Luk. 2020. High-Performance
FPGA Network Switch Architecture. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’20),
February 23–25, 2020, Seaside, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3373087.3375299

1 INTRODUCTION
While FPGAs have already been adopted by cloud providers as a
hardware acceleration platform, FPGA vendors have been increas-
ing the transceiver count onmid to higher-end FPGAs, making them
attractive also for single-chip network switch implementations. Xil-
inx Virtex UltraScale+ FPGAs support up to 48 GTM transceivers
(up to 58 Gbps each), and up to 128 GTY transceivers (up to 32.75
Gbps each), depending on the speed grade and device/package com-
bination [14, 15]. In the latest device iterations, the available logic
resources have also increased substantially. For example, the re-
cently announced VU19P device features around 9 million logic
cells. This leaves a gap in research on FPGA-based switches, which
are usually unable to saturate the bandwidth of the transceivers
while retaining competitive switching performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’20, February 23–25, 2020, Seaside, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375299

FPGA-based network switch implementations are inspired by
well-known approaches used for ASICs/ASSPs, usually classified by
the position of their buffer memory. Output-queued (OQ) network
switches have been shown to perform better than input-queued (IQ)
switches [8]. However, their adoption has been limited, due to the re-
quirement for output queues to operate at a much higher frequency.
To solve this problem, various hybrid approaches emerged, making
use of both input queues and other memories [9]. These present
different shortcomings, such as the need to move the speedup to
the internal logic. Moreover, for FPGAs such workarounds have
a prominent performance overhead, being unable to saturate the
available link bandwidth efficiently. Thus, the latest FPGA solution
has fallen back to input-queued switches [22], and with bigger flits,
in order to achieve a moderately high throughput, inheriting the
related limitations.

This paper presents a novel network switch designed to perform
well as an FPGA-based implementation, since it does not require
iterative algorithms [22], logic speedup [9] or memory speedup.
At the same time we show that it is competitive as a switching
approach under different traffic patterns. This is something that
previous research on FPGA switches gave almost no emphasis,
despite its impact on memory utilisation, dropped packet rate and
average latency.

As a proof of concept, our open-source implementation of a 16 ×
16 switch provides an aggregate throughput of 903.2 Gbps on a
Zynq UltraScale+ FPGA, surpassing the last reported, theoretically
achievable 819 Gbps [1], which requires an embedded network-on-
chip (NoC) [5].

Our key contributions in this work are as follows:

• A high-throughput network switch design on FPGAs, based
on a sorting network.

• Anew buffer topologywith better performance, that requires
a small fraction of thememory used in today’s Virtual Output
Queues (VOQs).

• A modular design approach that focuses on high through-
put and a technique to significantly reduce the port-to-port
latency.

• Extensive simulation results comparing the algorithmic as-
pect of our approach to a selection of scheduling algorithms.

2 BACKGROUND
2.1 Head-of-line (HOL) blocking
HOL blocking is the performance bottleneck in crossbars when mul-
tiple inputs request to send to the same output port. It is known to
limit the throughput to just 58.6% [21]. The available workarounds
try to appropriately rearrange the transmissions of the most re-
cently arrived packages using temporary buffer memories.

https://doi.org/10.1145/3373087.3375299
https://doi.org/10.1145/3373087.3375299

2.2 Virtual Output Queues (VOQs)
VOQs are widely accepted as a solution to head-of-line blocking.
They are used in input-queued (IQ) switches as a buffer space be-
tween the inputs and the crossbar. There is one queue for each
source/destination combination, totalling P × P queues, where P
is the number of ports. The idea is that a packet will always have
a place to go, until its transmission is determined by a schedul-
ing algorithm, given that the respective queue is non-empty. As
demonstrated in figure 1 (and in section 5), VOQs have performance
limitations. These include buffer fragmentation, causing dropped
packets, and poor performance for bursty and nonuniform traffic.

Virtual
Output
Queues

Dropped flit,
although plenty of
free space overall

Outputs

Figure 1: An input-queued switch showing two limitations

They are still found today in the highest-end switches, such as
Arista’s 7800R3, which provides an aggregate throughput of up
to 460 Tbps [3]. VOQs also exist in some form in hybrid memory
model switches [9], such as in combined input and output queued
(CIOQ [8]), combined input and crosspoint queued (CICQ [16]) and
hierarchical crossbar (HC [17]) switches.

2.3 Scheduling algorithms
Scheduling or matching algorithms are used to make those ‘de-
queue’ decisions, by finding a nearly-maximum matching between
the available input and output ports [10, 21]. The goal is to max-
imise throughput, while providing other desirable features, such
as preventing starvation, i.e. ensuring no input is getting blocked
indefinitely. They require multiple iterations to perform well for
various traffic patterns.

2.4 Round-robin arbiter
A round-robin arbiter is used for input arbitration to achieve fair-
ness to incoming requests [21]. It is commonly applied to dequeue
packets from 1 out of P queues, with a round-robin priority. The
incoming packets can arrive at any of the P inputs. When there is
an input available, a grant signal is enabled, and the arbiter selects
the next available queue, based on a priority offset.

In hardware, this is usually implemented using a programmable
priority encoder (PPE). The PPE can be expensive to implement

efficiently and can contribute to the critical path for an increasing
number of inputs [11].

In practice, the round-robin arbiter can have small modifications
to accommodate the requirements of a scheduling algorithm. One
way is to postpone the rotation until a queue is emptied entirely, in
order to improve scheduling performance for bursty traffic [19].

2.5 Parallel round-robin arbiter
The parallel round-robin arbiter [27] receives from 0 to P packets
per cycle, and rearranges them so that the output in P memory
banks appears as it is written in round-robin fashion. In contrast
to a round-robin arbiter, which has a maximum output rate of 1,
it is a pipeline-friendly stream processor with a throughput of P
packets per cycle. As every packet is processed at line-rate, there
is no need for additional memory for producing the round robin
effect. Figure 2 shows an example of input and output of such an
arbiter, capable of processing multiple requests at a time. The input
involves packets arriving in arbitrary positions.

out[0].valid

out[1].valid

out[2].valid

out[3].valid

clk

in[0].valid

in[1].valid

in[2].valid

in[3].valid

Figure 2: Parallel round-robin arbiter example, P=4

When this output is stored in banked memory, it has the advan-
tage of using memory efficiently, as the data are evenly distributed
across the P banks. Afterwards, the stored output data can be seri-
alised by dequeuing in round-robin fashion, ensuring fairness and
preventing starvation.

3 PROPOSED DESIGN
The main idea is to use fully-pipelined logic to process the incoming
packets at line-rate and insert them in output queues in a balanced
way. There are P groups of P output queues, where P is the number
of ports. Similar to Virtual Output Queues (VOQs), this requires
P×P queues. However, by moving those queues towards the output,
the traffic has the opportunity to get reorganised in such a way,
that each of the P FIFO groups is filled with packets only destined
for that port. In each cycle, up to P packets arrive, which are then
grouped according to their destination. These packets are permuted
such that the P queues in each of the P groups appear to be filled
serially in round-robin fashion, but this is done in parallel, as with
a parallel round-robin arbiter. Figure 3 outlines this architecture.

The balanced traffic approach achieves better utilisation of the
available memory resources. This is because the P queues of the
same group are filled at the same rate, leaving no gaps of unused
resources. In contrast, the P × P queues in traditional VOQs assign
only one queue for each (portsource ,portdest .) combination. A
packet arriving in our proposed switch has the possibility to land
in P queues for portdest . , which are virtually unified.

Incoming

packets

Output

queues

Round-robin

dequeue

To port 0

To port 1

To port 2

To port 3

Balanced

traffic

Figure 3: Abstracted view of the proposed solution, P=4

Apart from its advantageous behaviour as an algorithm, our
design leads to efficient hardware implementation. The proposal
replaces the crossbar in favour of more pipeline-friendly structures.
This removes the need to solve bipartite graph problems (or ap-
proximations) on-the-fly, which is what scheduling algorithms are
for.

Near the ports, we have P round-robin arbiters, which rotate to
provide the content of each FIFO group in a serialised manner, with
a throughput of 1 per port.

3.1 Combined parallel round-robin arbiter
The main element in our solution is the Combined parallel round-
robin arbiter (Figure 4). It can be seen as a hardware-optimisation of
the following switching scheme. The functionality is equivalent to
having P parallel round-robin arbiters, one for each output port, for
balancing its FIFOs occupancy. This holds because the output of the
pipeline for each port essentially does not depend on the packets
destined for the other ports. As a result, the proposal only uses
one sorting network, instead of P sorting networks for P separate
parallel round-robin arbiters, hence its name.

It consists of two pipelines being merged together, with addi-
tional pipeline stages at the end for the final rotation of the packets,
before appending them to the FIFO group of their destination port.
The first pipeline is for the ‘sorting network’ and the second one,
‘offsets’, is for calculating the amount of rotation each barrel shifter
(rotator) needs to perform. The ‘offsets’ pipeline includes every-
thing below the sorting network in figure 4. The two pipelines have
different lengths and therefore additional shift registers are used
for synchronising their output.

The arbiter architecture is fully pipelined and processes up to P
packets at line rate. At its output, all inserted packets are distributed
into the output queues. The pipeline logic is non-blocking, and any
dropped packets can only occur at the queue level.

3.2 Building blocks
Here, we provide an overview of the building blocks, and how
they interact with each other. Figure 5 shows examples of the main
building blocks (sorting network, adder tree, prefix sum and

barrel shifter) for a specific input size, combined with registers,
to work as pipelines in hardware.

a) Sorting network (Batcher’s odd-even mergesort). This structure
consists of compare-and-swap (CAS) units and is able to sort a list of
P elements in a number of parallel steps. The CAS units can be seen
as sorters of 2 elements. There are two topologies frequently used
in FPGAs [23]: Batcher’s odd-even merge sort and bitonic sort [4].
They have the same pipeline length, which is (loд2(P) · (loд2(P) +
1))/2 ∈ Θ(loд2(P)) steps. However, we found out that Batcher’s
odd-even merge sort maps better on FPGA resources, and this is
because it has shorter total wire length and fewer CAS units than
bitonic sort. Such structures are straightforward to produce for any
value of P, though more optimal networks exist [6]. Depth-optimal
sorters are difficult to find for large P-values.

In our proposal, the sorting network is used to sort a batch of
P packets according to their valid and dest . fields. The goal is to
have all packets going to the same port arranged in consecutive
order, before feeding them to the rotators. The sort priority is given
to the invalid packets, so the comparison in the CAS units is done
on the concatenation {valid,dest .}, which is 1 + loд2(P) bits wide.

b) Adder tree. This structure calculates the sum of P inputs (i.e.
out =

∑P−1
i=0 ini) in loд2(P) parallel steps. In the pipelined version,

as shown in figure 5, each step has a number of independent adders
that work in parallel and their results are saved in pipeline registers.

In our design, the adder trees are used to perform popcount,
i.e. to count the number of packets coming in a batch of up to P,
that satisfy certain criterion. We have P+1 adder trees for P inputs.
The first tree counts the number of packets with their valid bit
unset (Null or non-existent). Each one of the other P trees are
counting the number of packets going to each of the P ports. This
information is later used by the prefix sum, as well as to update
the offset counters (keeping the ‘current’ write rotation index of the
output queues).

c) Prefix sum. The parallel version of prefix sum [13] can be seen
as a superset of the adder tree. It provides the cumulative sum (i.e.
outk =

∑k
i=0 ini for k ∈ {0, 1, ..., P − 1}) in loд2(P) parallel steps.

The prefix sum is used here to identify the starting positions of
each group of packets going to the same destination port, within
the sorted batch of P packets. The inputs of the prefix sum are the P
out of the P+1 popcounts, starting from the Null count for in0, the
(dest . == 0) count for in1, and up to the (dest . == P − 2) count for
inP−1. Since we give priority to Null packets in sorting, the out0
wire of the prefix sum represents the start index of the packets going
to port0, or the index just after the Null packets. Those starting
positions are used to calculate the final amount of rotation each
copy of the sorted batch of P packets needs, before writing them to
the FIFO groups, in order to achieve the round-robin effect.

d) Barrel shifters (rotators). The purpose of the rotator is to ro-
tate a number of elements by a specified offset. The wiring in our
pipelined implementation, as shown in figure 5d, has a small resem-
blance to the wiring of prefix sum and consumes loд2(P) pipeline
stages. The select signal gets propagated alongside the data (pack-
ets) and the respective bit is fed across multiple 2-to-1 multiplexers
in each stage.

Incoming

packets

Output

queues

0 1
P-1 ...

0 1

0 1

Round-robin

dequeue

To port 0

To port 1

To port P-1

Combined parallel round-robin arbiter

valid

and

dest.

fields

P-1 ...

P-1 ...

...

...

...

...

...

...
...

...

...

...

... ...

log2(P) bits

Packet size

log2(P)+1 bits

Sorting network: log2(P)×(log2(P)+1)/2

Adder trees: log2(P)

Pipeline stages

Offset counters: 1 Prefix sum: log2(P) Subtractors: 1

Shift registers: log2(P)

Barrel shifters: log2(P)

Balanced

traffic

...

...

...

Nulls count

dest.==P-1
count

dest.==0 count

dest.==P-2 count

......

......

Select

signals

Offsets pipeline

Sorting network pipeline

Packets

broadcast

Figure 4: The proposed high-performance FPGA network switch

in0

in1

in2

in3

in4

in5

in6

in7
0 1 2 3 4 5 6

out0

out1

out2

out3

out4

out5

out6

out7

cycles

a) Batcher's odd-even mergesort

> > > > > >

in0

in1

in2

in3

in4

in5

in6

in7
0 1 2 3

out

cycles

b) Adder tree

> > >

in0

in1

in2

in3

in4

in5

in6

in7
0 1 2 3

out0

out1

out2

out3

out4

out5

out6

out7

cycles

c) Prefix sum

> > >

in0

in1

in2

in3

in4

in5

in6

in7

select
0 1 2 3

out0

out1

out2

out3

out4

out5

out6

out7

cycles

d) Barrel shifter (rotator)

> > >select[0] select[1] select[2]

Figure 5: Pipelined versions of the building blocks for 8 inputs

The rotators are useful for performing the final rotation on the
batch of 0 to P consecutive packets destined to each port. Note that
the rotations are done on all packets in the batch, as it is broad-
casted to all rotators. The output of each of the rotators is filtered
afterwards to ensure that it only serves the respective destination
port.

Filters. In our design, the filters check the validity of a packet
or whether the destination field equals to a specified port number
(an integer between 0 and P-1). Therefore, an equality check is
performed for only up to loд2(P) bits, which has little timing slack.
Therefore, we have not assigned any pipeline stages for them.

Subtractors. The subtractors occupy one pipeline stage and their
purpose is to produce the select signals for the rotators. Each rotator
performs a rotation equivalent to two rotations, one to the left, for
bringing the packets going to the respective port to position 0 in
the sorted packet batch, and one to the right, to achieve the round-
robin effect. The subtractor calculates the addition of the positive
offset to the negative offset. The positive offset corresponds to the

(delayed) queue rotation offset for the port, produced by the offset
counters. The negative offset corresponds to the respective output
value of the prefix sum, i.e. out0 the start index for packets to port0,
etc.

4 PROPERTIES AND OPTIMISATIONS
4.1 Complexities
In terms of hardware resource utilisation, the fastest growing of all
building blocks is the sorting network. This highlights the impor-
tance of the “combined” aspect of the Combined parallel round-robin
arbiter, whose reduced hardware resource utilisation makes its im-
plementation practical on FPGAs. The hardware complexity of each
odd-even merge sorting network is O(P × loд2(P)) CAS units. The
reduction to just one sorting network reduces the overall hard-
ware complexity to that of the P barrel shifters, which sums to
O(P2 × loд(P)) 2-to-1 multiplexers.

The pipeline length (latency) is one of the main contributors
to the port-to-port latency, as it is added as a processing latency,

even when the output queues are empty. It is calculated as the
sum of the barrel shifter latency (latencyBS) and the maximum of
the two pipelines at the beginning, which are the sorting network
(latencySN) and the offset calculation logic (latencyof f sets).

latency = latencyBS +max (latencySN , latencyof f sets)

= loд2(P) +max (
loд2(P)×(loд2(P)+1)

2 , 2 × loд2(P) + 1)
∈ O(loд2(P))

As it is, the resulting port-to-port latency is not competitive. How-
ever, we now introduce an optimisation to improve the latency
significantly, sometimes with a small overhead in operating fre-
quency.

4.2 Reducing the port-to-port latency
The logic complexity of each stage, although highly parallel, it is
lightweight. This is because the basic components are comparing,
adding or subtracting up to loд2(P)+1 bits. This allows to combine
multiple pipeline stages in one cycle.

The pipeline latency can be reduced by removing the regis-
ters from all pipeline stages whose order is not multiples of S ,
where S ∈ N∗ can approximately divide the port-to-port latency
(i.e. latencyopt ≈ latency/S). In this way, although the complexity
of the number of pipeline stages is more than that of competing
solutions, our approach can still provide lower port-to-port latency
for moderately high values of P. An example for dividing a sorter’s
latency by 3 is shown in figure 6.

in0

in1

in2

in3

in4

in5

in6

in7

0 0 0 1 1 1 2

out0

out1

out2

out3

out4

out5

out6

out7

cycles

> > > > > >

Figure 6: Example for dividing the latency of a sorter by S=3

At the programming level, when there is a shift register corre-
sponding to a stage without registers and S > 1, we replace the
shift register with a wire. This is done for the sake of simplicity, by
always keeping the notion of stages. For example, a shift register
of length 4 and S=2 is essentially implemented as a shift register of
length 2.

The only pipeline stage whose registers cannot be removed is
where the P adders are keeping the queue offsets for the P ports, as
shown in figure 4. This is because these adders are the only place
where a feedback exists in our pipeline. The output of each adder

is added back as a way to update the respective offset. Fortunately,
this feedback is always one stage long and does not contribute to
the critical path, but adds development complexity to this optimi-
sation. We denote the compulsory register index as indexcomp and
it represents the index of this pipeline stage (starting from 0).

indexcomp = loд2(P).

Keeping the above inmind, the optimised pipeline latency (latencyopt)
is calculated as follows.

latencyopt = ⌈
latency−indexcomp

S ⌉ + ⌈
1+indexcomp

S ⌉ − 1

Table 1 illustrates how this optimisation significantly reduces the
port-to-port latency. Illustratively, one more cycle is added to the
port-to-port latency, representing the minimum time a packet stays
in the output queues. A typical operating frequency of 150MHz
was selected to enable translating the pipeline latency from cycles
to nanoseconds, before the actual place-and-route in the evaluation
(section 5.2).

Number of ports (P) 2 4 8 16 32 64 128 256
Pipeline length 4 7 10 14 20 27 35 44

Compulsory reg. index 1 2 3 4 5 6 7 8
Pipeline latency, S=1 4 7 10 14 20 27 35 44
Pipeline latency, S=2 2 4 5 7 10 14 17 22
Pipeline latency, S=4 1 2 2 4 5 7 8 11

Port-to-port latency (ns)
(indicative, with S=4 13.3 20 20 33.3 40 53.3 60 80
and fclk=150MHz)

Table 1: Indicative port-to-port latency after reg. reduction

An unexplored optimisation is to use a different values of S for
different pipeline stages groups. An example for stages with more
complexity can be seen in figure 5, where the most dense of our
building blocks in terms of wiring are the barrel shifters.

In other applications, different pipelining techniques may be
more appropriate. If we restrict this discussion on sorting networks
on FPGAs (with no instructions), there are three common pipelin-
ing techniques: (a) synchronously, using up to P/2 comparators per
stage, (b) asynchronously, incorporating additional logic for evalu-
ating completion [23] and (c) with unary processing [24], increasing
the latency. Our use-case-specific solution lies between (a) and (b),
as it is still a synchronous circuit but can achieve a performance
closer to the asynchronous, without the related complications.

Section 5 contains more details about the impact of this opti-
misation on Flip-Flop register utilisation, as well as on operating
frequency. Additionally, using simulation, we measure the average
time a packet stays in the queues using different approaches and
traffic patterns, as the latency here represents only the minimum.

4.3 Pipeline synchronisation
Our description includes an additional group of shift registers, for
either the ‘sorting network’ pipeline or the ‘offsets’ pipeline, de-
pending on which one is the shorter. The number of stages in the
shift registers is equal to the pipeline length difference between the
the two pipelines (i.e. |(loд2(P)×(loд2(P)+1)/2)−(2×loд2(P)+1)|).

An optimisation to reduce the register utilisation can be achieved
where the ‘offsets’ pipeline is shorter than the sorting network (for
P > 8). In such cases, the ‘offsets’ pipeline can start at a later stage,
by reading thevalid and dest . fields from a later stage of the sorting
network. This is possible due to the fact that during the sorting
network pipeline stages, a set of up to P packets is only getting
permuted, and the fact that the addition operation is commutative
and associative. This optimisation removes the need for additional
registers as a synchronisation measure when P > 8, and is included
in all our implementations (but not reflected in table 1).

Another possible optimisation for S > 1 and P > 8 is to position
the compulsory register stage in a position that could benefit the to-
tal number of stages with registers (and therefore the total pipeline
latency). The compulsory register stage can be moved by selecting
a different start for the ‘offsets’ pipeline, and introducing additional
shift registers where required. This can only save up to 1 cycle in
latency. At a high level, the idea is to keep the maximum allowable
consecutive stages without registers, at the end and the start of the
pipeline, so that the register removal optimisation becomes more
beneficial.

4.4 Simpler output arbiters
The output arbiters can be simpler than traditional round robin
arbiters. This is because only one queue is needed to be checked for
available packets, as the queues in a FIFO group are filled in round-
robin fashion as well. At decision time, the queue to be checked is
the one denoted by the arbiter’s index (rotating in the range from 0
to P − 1). Originally, round robin arbiters produce a дrant signal,
which relates to P different input queues, potentially becoming
the critical path for large P , assuming everything else is efficiently
pipelined.

This optimisation assumes no packets are being dropped, other-
wise there is a small performance overhead, as the output arbiter
can get out of synchronisation. Our solution includes this optimisa-
tion, as the overhead of doing so is negligible for all traffic models
in our simulations.

4.5 Output per cycle
The Combined parallel round-robin arbiter produces 0 to P packets
in every FPGA cycle, without depending on algorithm phases or
iterations. Also, as with modern designs for high-throughput data
processing [25, 26], it can be considered ‘feedback-less’, as no input
of a pipeline stage depends on the output of a subsequent stage.
Given that the line rate supports it, this means that the operating
frequency and packet size combination can be directly translated
into the maximum throughput.

This is not the case with iterative algorithm approaches, such
as iSLIP-based implementations [11, 22]. Essentially, our solution
can support many times more throughput for the same packet size
than iterative approaches.

5 EVALUATION
Our proposal is first implemented in software for high-level simu-
lation, in order to study its performance as a switching algorithm.
Once successful, an RTL generator script is implemented to produce

Verilog code for a switch of any specified packet size, number of
ports (P) and latency reduction (S).

The generated RTL code is validated in two ways: (a) using
RTL simulations with a testbench and waveforms for observing the
parallel round robin effect, and (b) in real hardware on an Avnet’s
Ultra96 featuring the ZU3EG device and running Linux.

In the latter case, the generated Verilog code is encapsulated
in an AXI peripheral with the following debugging functionality:
a batch of up to P packets is stored serially into registers by the
user’s software. A ‘release’ command is sent to insert all packets in
the pipeline, during the same FPGA cycle. A similar procedure is
followed for retrieving the packets back in software to verify that
the outcome is the same as that of RTL or non-RTL simulations.

All source code used for evaluation, including the RTL code and
the simulators for competitor algorithms and traffic patterns, has
been developed from scratch and are freely available1.

5.1 Simulation: Algorithm evaluation
This part of the evaluation is conducted in software (non-RTL)
and ignores hardware-related complications, such as the pipeline
latency, bandwidth and packet size. The idea is to focus on the
algorithmic aspect of our proposal. Therefore, we assume that the
algorithms themselves run on a switch at the same operating fre-
quency/ bandwidth and introduce an unrealistic processing latency
of 0 cycles.

We consider our approach an alternative to scheduling algo-
rithms for crossbar switches, even though we have replaced the
crossbar altogether. This is because our proposal uses P × P queues,
as in VOQs for input-queued switches. Another similarity is that
our solution requires no speedup of any memory or logic, as a
single clock is used for the entire design. Due to their simplicity,
one of them is also incorporated in the state-of-the-art FPGA net-
work switch implementation [22], outperforming a solution with a
hybrid memory model [9].

The performance of the proposed design is compared against
various scheduling algorithms. We present comparison results for
parallel iterative matching (PIM [2]), round-robin matching (RRM
[21]), iSLIP [21], dual round-robin matching (DRRM [7, 18]) and
dual round-robin matching switch with exhaustive service (EDRRM
[19]).

The progress in such algorithms tends to be incremental, in the
sense that each approach improves on some aspects of a predecessor.
The changes focused on improving ASIC implementation efficiency
[18, 21], scheduling performance and/or their behaviour under a
wider spectrum of traffic patterns [12, 19].

Although all can work as iterative algorithms, some of them
are originally presented as 1-iteration approaches, due to their
simplicity and relative-efficiency. Regardless, we consider their
single-iteration version, as well as with multiple (loд2(P)) iterations.

With respect to the traffic, the proposed approach is evaluated
for the following patterns:

(a) Uniform Bernoulli arrivals: At each input port, in each cycle
a packet is sent with a probability r (input rate). The destina-
tion port of each packet is any of the P ports, all appearing
with an equal probability 1/P .

1Source code available: http://philippos.info/switch

http://philippos.info/switch

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100

A
v
er

ag
e

la
te

n
cy

 (
cy

cl
es

)

Input rate (%)

a) Uniform Bernoulli arrivals

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100
A

v
er

ag
e

la
te

n
cy

 (
cy

cl
es

)

Input rate (%)

b) Uniform bursty traffic

PIM

RRM

iSLIP

DRRM

EDRRM

Proposal

PIM-1

RRM-1

iSLIP-1

DRRM-1

EDRRM-1

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100

A
v
er

ag
e

la
te

n
cy

 (
cy

cl
es

)

Input rate (%)

c) Nonuniform traffic

Figure 7: Simulated average packet latency using different algorithms and traffic models (16 × 16 switch)

(b) Uniform bursty traffic: The packets at each input are sent
based on an independent Markov chain, which has three
states: ‘On’, ‘Off’ and ‘New’. In each cycle at ‘Off’, no packet is
emitted. At ‘New’, a packet is sent with its output destination
selected uniformly among the ports. At ‘On’, a packet is sent
to the same destination as the one of the previous packet.
The transition probabilities are shown in figure 8, where r is
the average input rate and s is the average burst size. The
proposed model is almost equivalent to the two-state model
[12], but it does not limit the maximum input rate to 1− 1

s+1 .
The default value of s is set to 32.

Off On

New

r/s

(1-r)/s

1-1/s

On phase

1-r/s

Off phase

r/s (1-r)/s
1-1/s

r/s

Figure 8: A uniform bursty traffic Markov model

(c) Nonuniform traffic [12, 19]: At each input, in each cycle a
packet is sent with a probability r . Its destination will be the
same as the source with a probability p. All other outputs
share an equal probability, i.e. (1 − p)/(P − 1). The default
value of p is set to 0.5.

Average latency. The first experiment explores the average la-
tency a packet waits inside a queue to be served. In this experiment
we assume that the P × P FIFOs have infinite depth and, thus, no
dropped packets.

As we can see in figure 7, the proposed design consistently
outperforms the scheduling algorithms studied here. For each of
the scheduling algorithms, we include a multi-iteration version
and a single-iteration version, denoted by appending “-1” to its
name. For both the traffic patterns (a) and (b), the multi-iteration
scheduling algorithms perform almost identically to each other. (It

is their single-iteration performance that motivated most of them).
In traffic model (c), the only close competitor to our approach is
EDRRM [19], which is selected here as an algorithm designed for
bursty/nonuniform traffic. Still, for an input rate of 1, our proposed
approach reduces the average latency by 2x, 1.4x and 6x for the
traffic models (a), (b) and (c) over the best alternative for each (PIM,
PIM and EDRRM).

Worst-case latency. Using a similar experiment, for a 16x16
switch, we observe that our approach also yields the lowest average
worst-case latencies. The best alternative algorithms remain the
same for this metric. Using an input rate of 100%, the best alternative
per traffic model yields a latency of 1535, 7992 and 7212 cycles for
the traffic patterns (a), (b) and (c). The corresponding values for
our proposal are 375, 2807 and 310 cycles, which translate to a
reduction of the worst-case latency by 4.1, 2.8 and 23.3 times on
average respectively.

Impact of queue size. As a third experiment, the queue size
requirements are explored. The best alternative algorithms are
still PIM, PIM and EDRRM for the traffic patterns (a), (b) and (c)
respectively. The approach is to measure the dropped packet rate
using different FIFOs lengths. The FIFO depth metric is a consistent
way to measure the total buffer size in our simulations, as both
virtual output queues (VOQs) and our proposal’s output queues are
P × P buffers.

Figure 9 shows the dropped packet rate with respect to the queue
size for our approach, as well as for the best alternative for each
of the traffic patterns. Our approach requires a small fraction of
memory to support 100% throughput, i.e. a dropped packet rate
equal to zero (represented by the colour white). For the traffic
pattern (a) and an input rate 1, we achieve a 4.6x reduction in
FIFO depth (153 to 33) for supporting 100% throughput, while the
dropped packet rate for a FIFO depth of 1, drops from 16.1% to
5.2%. For the traffic patterns (b) and (c) and input rate 1, the other
approaches require a FIFO depth beyond our design space, which
is a sign for not supporting the 100% throughput, as the memory’s
order of magnitude approaches the one of the number of inserted
packets. Nevertheless, our approach exhibits a better behaviour.

Figure 9: Impact of queue size, for the proposal and the best alternative per traffic model (16 × 16 switch)

Moreover, for the traffic pattern (c), it is able to handle nonuniform
traffic with marginally less requirements than in the Bernoulli case,
while this pattern becomes much more challenging for the other
approaches.

5.2 FPGA implementation
This part of the evaluation explores the performance and scalability
of our design on FPGAs, using the RTL code produced by our Verilog
generator.

First, the resource utilisation in flip-flop registers (FF) and lookup
tables (LUT) is presented, as reported by Vivado 2018.3. Figure 10
shows these numbers for a switch design space with 256-bit packets,
the number of ports ranging from 2 to 32 (powers of 2) and the
latency reduction parameter S for the values of 1, 2 and 4.

1K

10K

100K

1000K

2 4 8 16 32

L
U

T

Number of ports (P)

S=1

S=2

S=4

1K

10K

100K

1000K

2 4 8 16 32

F
F

Number of ports (P)

Figure 10: Synthesis results for a packet size of 256 bits

It can be seen that the flip-flop utilisation is significantly de-
creased by the register reduction optimisation. For example, for

P=32 and 256-bit packets, if we use approximately one quarter of
the pipeline registers (using S=4), the FF utilisation drops from
1720K to 579K. This is not the case for the lookup tables, as the
functional units remain more or less the same, with some variations
due to tool-related optimisations.

In order to restrict our design space and focus on the more
demanding switch logic, the FIFO queue depth is limited to one,
implemented as registers. The effects of different memory tech-
nologies and hierarchies for different devices and number of ports
are beyond the scope of this paper. It is worth noting that a shal-
low queue depths could be a realistic use case, as our approach
performs similarly to using VOQs with deeper FIFOs, as shown in
our simulation results. In many-port switches, register/LUTRAM-
based queues become a viable solution to the block RAM limitation
explored in related research [22] (VOQs as BRAM require many
multiples of P × P blocks for the common packet widths). The re-
duction of memory needs in our solution can provide finer resource
granularity and thus, feasibility.

As a target device we select the Zynq UltraScale+ ZU19EG, hav-
ing the same architecture as ZU3EG, that was used for validation.
The resources on ZU19EG are comparable to those in mid-range
UltraScale+ FPGAs, which commonly appear in today’s research on
accelerator design. As a use case example, this device is also avail-
able in the package FFVC1760, which provides 16 GTY transceivers,
with 32.75 Gbps per link. A goal would be to allow saturating these
links using the available programmable logic for implementing a
16 × 16 switch.

The performance results for this device are summarised in figure
11. There are 256-bit and 512-bit-wide versions of 2, 4, 8 and 16-port
switches. Each of those 8 data series has 3 data points, one for each
S value in {1, 2, 4}. The two performance metrics here are the line
throughput and port-to-port-latency, which are measured in the y
and x axis respectively. The throughput is calculated as the product
of the operating frequency and the packet size (i.e. Throuдhput =
Width × fclk). The port-to-port latency is the pipeline latency in
cycles, plus one extra cycle for reading from the queues, multiplied
by the clock period (i.e. latencyp2p = (latencyopt + 1)/fclk).

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Port-to-port latency (ns)

P=2, 512-bit

P=4, 512-bit

P=8, 512-bit

P=16, 512-bit

P=2, 256-bit

P=4, 256-bit

P=8, 256-bit

P=16, 256-bit

lower is better

h
ig

h
er is b

etter

Figure 11: Throughput and port-to-port latency on ZU19EG

For S=1 and 256-bit packets, the maximal operating frequency
equals to 301, 208, 196 and 140 MHz for the designs with 2, 4, 8 and
16 ports respectively. For 512-bit packets, the corresponding values
are 276, 269, 143 and 110 MHz. When moving to S=4, the operating
frequency changes slightly, such as from 110 to 102MHz for the
16x16 512-bit switch.

As shown in figure 11, our design almost always exceeds the
throughput of GTY (32.75 Gbps). As expected, at least for P >
4, the latency optimisation has a small overhead on throughput,
but significantly reduces the port-to-port latency. In the following
sectionwe select our 16×16 switch implementations for comparison
to the related work.

6 RELATEDWORK
An FPGA network switch implementation is GCQ [9]. It improves
on a hybrid buffer approach, the hierarchical crossbar (HC) switch
[17]. The idea is to improve the scalability for a higher number
of ports by using smaller switches hierarchically. Due to the fact
that it requires a logic speedup, the yielded base frequency was
40 MHz, resulting in an aggregate throughput of 160 Gbps for a
16 × 16 switch. For a better comparison with today’s standards, the
same design was reimplemented on an UltraScale+ device (VU9P)
[22], and its aggregate throughput value is upgraded to 222 Gbps,
using a data width of 256 bits.

The most recent switch implementation on FPGA is SMiSLIP
[22]. It is an IQ switch, implemented as a crossbar with VOQs, and
controlled by the iSLIP scheduling algorithm [21]. The focus of
this work is the optimisation for FPGAs to achieve buffer-sharing
and a better performance. Despite the relatively high operating
frequencies, SMiSLIP only produces output once every 3 + loд2(P)
cycles. For this reason, the throughput is calculated as 1

3+loд2(P) of
the line speed. The aggregate throughput for a 16× 16 switch is 118,
282 and 538 Gbps, for 256, 640 and 1280-bit packets respectively.

This is expected for iterative matching algorithms, such as iSLIP.
One of the original iSLIP-based prototypes [11] is an ASIC operating
at 175MHz in a 32-port switch. Despite its optimisations such as
the merging of the 2 out of its 3 phases (request, grant and accept),
it is not fully-pipelined. It only produces output once every 9 cycles,
reducing the maximum throughput to only 1/9 of the speed the
fabric. It does not necessarily mean that the lines are useless during

the in-between cycles. In this case, a packet is broken down into
9 pieces and is sent progressively. Thus, higher throughput can
be achieved, but with fewer decisions (crossbar configurations)
between the same amount of data. In other words, a larger packet
size is needed to fulfil higher throughput, but this can quickly
become wasteful and inefficient.

In terms of hardware resources utilisation, as a direct comparison
with GCQ [9], ignoring the switching performance, for a 256-bit
16x16 switch our S=4 implementation consumes around 3.5x the
LUTs and 4x the FFs. It is important to note that it would be more
appropriate for this comparison to be made against a competitor
switch of wider packets for achieving similar throughput, as demon-
strated below.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180

GTH

GTY

GTM

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Port-to-port latency (ns)

SMiSLIP, 256-bit

SMiSLIP, 640-bit

SMiSLIP, 1280-bit

Proposal, 256-bit

GCQ, 256-bit

GCQ, 640-bit

GCQ, 1280-bit

Proposal, 512-bit

lower is better

h
ig

h
er is b

etter

Figure 12: Comparison of 16×16 switch implementations on
comparable FPGAs featuring the UltraScale+ architecture

Figure 12 shows how our implementation performs against the
related work, based on the operating frequencies for VU9P [22].
For a packet size of 256 bits and S=2, our proposal achieves around
4.7 and 2.5 times the throughput of the 256-bit versions of SMiS-
LIP and GCQ respectively. SMiSLIP seems to marginally win for
port-to-port latencies. However, since it uses the iSLIP scheduling
algorithm, there will be significant additional latency for high input
rates, as found in simulation. Moreover, if really needed, our design
can easily achieve lower pipeline latencies by further exploring
the S parameter. GCQ yields the worst latencies irrespective of
packet size. For a packet size of 512 bits and S=1, we achieve the
highest throughput overall, nearly saturating the UltraScale+ GTM
transceiver. However, the best choice for GTM seems to be 512-
bit packets and S=4 for our proposal. This is because for a small
drop in throughput, it yields 3.7 times lower latency than our only
competitor, a GCQ switch with more than twice the packet size.

7 FUTUREWORK AND CONCLUSION
As future work, it would be useful to explore other functionalities
desirable to have in network switches. These include quality of
service (QoS) support for prioritising different classes of traffic,

and the support for other addressing methods, such as multicast.
The challenge in adding more functionality would be the resource
utilisation efficiency, as it might be easy to incorporate additional
features with more hardware resources. Our switch design was
implemented out-of-context, but it could be tested on a high-end
board, where multiple transceiver ports are populated.

The current presentation starting with a pipelined design and
stages of similar slack simplified any discussions in relating it to
different devices, architectures, and transceiver types. The alter-
native presentation to pipeline a combinational design could be
particularly useful in targeting a specific device.

Note that today’s switches are systems purposely built for the
task and can provide links with a bandwidth of 400 Gbps [3], much
higher than the the 58 Gbps supported on the latest FPGA device
[14], although ports can also be combined [20]. Therefore, it would
be interesting to study applications on larger and faster switches
for newer technologies. For the moment, a comparison with pro-
prietary technology could also focus on the algorithmic aspect of
our approach, as we have shown that competing solutions can
contribute to a higher port-to-port latency in all evaluated traffic
patterns.

It would also be appropriate to build mathematical models esti-
mating performance and memory needs, as well as proofs for any
optimalities our design or algorithmic approach may exhibit.

This paper presents a novel high-performance network switch
architecture for FPGAs. The main element is the combined paral-
lel round arbiter, a fully-pipelinable structure with which packets
are rearranged at line rate, capable of filling the output queues in
balanced way. It can achieve a better switching performance using
a fraction of the memory used by VOQs, as our simulations illus-
trate. Our approach is well suited for FPGA implementation, since
it does not require crossbars with scheduling algorithms or any
logic or memory speedups, leading to a high operating frequency.
In combination with its output-per-cycle property, it eliminates
the need for sacrificing the smaller packet size for achieving high
throughput, as found in related work. We also present the regis-
ter removal optimisation, with which the port-to-port latency is
significantly reduced. Finally, a 16 × 16 switch is implemented on
a Zynq UltraScale+ device, achieving an aggregate bandwidth of
903.2 Gbps, saturating its GTY transceivers. It almost also satu-
rates the GTM transceivers found in the highest-end devices, while
providing competitive switching performance for a wide range of
traffic patterns.

ACKNOWLEDGMENTS
This research was sponsored by dunnhumby. The authors would
like to thank Behrad Niazmand for his insightful feedback, as well
as Chris Brooks and Rosie Prior from dunnhumby for their involve-
ment in the partnership program. The support of Microsoft Re-
search and the United KingdomEPSRC (grant number EP/L016796/1,
EP/I012036/1, EP/L00058X/1, EP/N031768/1 and EP/K034448/1), Eu-
ropean Union Horizon 2020 Research and Innovation Programme
(grant number 671653) is gratefully acknowledged.

REFERENCES
[1] Mohamed S Abdelfattah, Andrew Bitar, and Vaughn Betz. 2015. Take the highway:

Design for embedded NoCs on FPGAs. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 98–107.

[2] Thomas E Anderson, Susan S Owicki, James B Saxe, and Charles P Thacker. 1993.
High-speed switch scheduling for local-area networks. ACM Transactions on
Computer Systems (TOCS) 11, 4 (1993), 319–352.

[3] Arista Networks, Inc. 2019. 7800R3 Series Data Center Switch Router Data Sheet.
[4] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings

of the April 30–May 2, 1968, spring joint computer conference. ACM, 307–314.
[5] Andrew Bitar, Jeffrey Cassidy, Natalie Enright Jerger, and Vaughn Betz. 2014.

Efficient and programmable Ethernet switching with a NoC-enhanced FPGA. In
Proceedings of the tenth ACM/IEEE symposium on Architectures for networking
and communications systems. ACM, 89–100.

[6] Daniel Bundala and Jakub Závodnỳ. 2014. Optimal sorting networks. In Interna-
tional Conference on Language and Automata Theory and Applications. Springer,
236–247.

[7] Jonathan Chao. 2000. Saturn: a terabit packet switch using dual round robin.
IEEE Communications Magazine 38, 12 (2000), 78–84.

[8] Shang-Tse Chuang, Ashish Goel, Nick McKeown, and Balaji Prabhakar. 1999.
Matching output queueing with a combined input/output-queued switch. IEEE
Journal on Selected Areas in Communications 17, 6 (1999), 1030–1039.

[9] Zefu Dai and Jianwen Zhu. 2012. Saturating the transceiver bandwidth: Switch
fabric design on FPGAs. In Proceedings of the ACM/SIGDA international sympo-
sium on Field Programmable Gate Arrays. ACM, 67–76.

[10] Nadeen Gebara, Jiuxi Meng, Wayne Luk, and Paolo Costa. 2018. Scheduling
Algorithms for High Performance Network Switching on FPGAs: A Survey. In
2018 International Conference on Field-Programmable Technology (FPT). IEEE,
166–173.

[11] Pankaj Gupta and Nick McKeown. 1999. Designing and implementing a fast
crossbar scheduler. IEEE micro 19, 1 (1999), 20–28.

[12] Chunzhi He and Kwan L Yeung. 2011. D-LQF: An efficient distributed scheduling
algorithm for input-queued switches. In 2011 IEEE International Conference on
Communications (ICC). IEEE, 1–5.

[13] W Daniel Hillis and Guy L Steele Jr. 1986. Data parallel algorithms. Commun.
ACM 29, 12 (1986), 1170–1183.

[14] Xilinx Inc. 2015-2019. UltraScale+ FPGA Product Tables and Product Selection
Guide.

[15] Xilinx Inc. 2019. Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching
Characteristics (DS923).

[16] Yossi Kanizo, David Hay, and Isaac Keslassy. 2009. The crosspoint-queued switch.
In IEEE INFOCOM 2009. IEEE, 729–737.

[17] John Kim, William J Dally, Brian Towles, and Amit K Gupta. 2005. Microarchi-
tecture of a high-radix router. In ACM SIGARCH Computer Architecture News,
Vol. 33. IEEE Computer Society, 420–431.

[18] Yihan Li, Shivendra Panwar, and H Jonathan Chao. 2001. On the performance
of a dual round-robin switch. In Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No. 01CH37213), Vol. 3. IEEE, 1688–
1697.

[19] Yihan Li, Shivendra Panwar, and H Jonathan Chao. 2002. The dual round robin
matching switch with exhaustive service. In Workshop on High Performance
Switching and Routing, Merging Optical and IP Technologie. IEEE, 58–63.

[20] Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso and Sergio Lopez-
Buedo. 2019. Limago: an FPGA-based Open-source 100 GbE TCP/IP Stack. In
2019 30th International Conference on Field Programmable Logic and Applications
(FPL). IEEE.

[21] Nick McKeown. 1999. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM transactions on networking 2 (1999), 188–201.

[22] Jiuxi Meng, Nadeen Gebara, Ho-Cheung Ng, Paolo Costa, and Wayne Luk. 2019.
Investigating the Feasibility of FPGA-based Network Switches. In 2019 IEEE
30th International Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE.

[23] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2012. Sorting networks on
FPGAs. The VLDB Journal—The International Journal on Very Large Data Bases
21, 1 (2012), 1–23.

[24] M Hassan Najafi, David J Lilja, Marc D Riedel, and Kia Bazargan. 2018. Low-cost
sorting network circuits using unary processing. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 26, 8 (2018), 1471–1480.

[25] Philippos Papaphilippou, Chris Brooks, and Wayne Luk. 2018. FLiMS: Fast
Lightweight Merge Sorter. In 2018 International Conference on Field-Programmable
Technology (FPT). IEEE, 78–85.

[26] Philippos Papaphilippou andWayne Luk. 2018. Accelerating database systems us-
ing FPGAs: A survey. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 125–130.

[27] Philippos Papaphilippou, Holger Pirk, and Wayne Luk. 2019. Accelerating the
merge phase of sort-merge join. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 100–105.

	Abstract
	1 Introduction
	2 Background
	2.1 Head-of-line (HOL) blocking
	2.2 Virtual Output Queues (VOQs)
	2.3 Scheduling algorithms
	2.4 Round-robin arbiter
	2.5 Parallel round-robin arbiter

	3 Proposed design
	3.1 Combined parallel round-robin arbiter
	3.2 Building blocks

	4 Properties and optimisations
	4.1 Complexities
	4.2 Reducing the port-to-port latency
	4.3 Pipeline synchronisation
	4.4 Simpler output arbiters
	4.5 Output per cycle

	5 Evaluation
	5.1 Simulation: Algorithm evaluation
	5.2 FPGA implementation

	6 Related work
	7 Future work and conclusion
	Acknowledgments
	References

