
0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

1

Enhancing High-Level Synthesis using a
Meta-Programming Approach

Jessica Vandebon∗, Jose G. F. Coutinho∗, Wayne Luk∗, Eriko Nurvitadhi†
∗Imperial College London, United Kingdom

Email: {jessica.vandebon17, gabriel.figueiredo, w.luk}@imperial.ac.uk
†Intel Corporation, San Jose, USA
Email: eriko.nurvitadhi@intel.com

Abstract—In today’s increasingly heterogeneous compute landscape, there is high demand for design tools that offer seemingly
contradictory features: portable programming abstractions that hide underlying architectural detail, and the capability to optimise and
exploit architectural features. Our meta-programming approach, Artisan, decouples application functionality from optimisation concerns to
address the complexity of mapping high-level application descriptions onto heterogeneous platforms from which they are abstracted. With
Artisan, application experts focus on algorithmic behaviour, while platform and domain experts focus on optimisation and mapping.
Artisan offers complete design-flow orchestration in a unified programming environment based on Python 3 to enable accessible
codification of reusable optimisation strategies that can be automatically applied to high-level application descriptions. We have
developed and evaluated an Artisan prototype and a set of customised meta-programs used to automatically optimise six case study
applications for CPU+FPGA targets. In our experiments, Artisan-optimised designs achieve the same order of magnitude speedup as
manually optimised designs compared to corresponding unoptimised software.

Index Terms—Heterogeneous Computing, Meta-Programming, FPGA, High-Level Synthesis

F

1 INTRODUCTION

IN this paper, we address the challenge of bridging the
ever-growing gap between design productivity and our

current computing landscape, in which the adoption of
heterogeneous and specialised hardware accelerators, such
as GPUs and FPGAs, has allowed orders of magnitude faster
performance over CPUs.

However, in order to leverage these resources to maximise
performance and resource utilisation, developers are required
to perform a number of tasks, including exposing program
concurrency, identifying code regions worth accelerating,
partitioning code, and optimising each partition to harness
the capabilities of each processing element. These tasks
require effort as well as platform expertise: developers
must take into consideration several factors, including data
movement, memory systems, parallel compute units, and
specialised resources at different levels of granularity. Despite
continuing advances in compiler technology, there is still
significant manual effort required to optimise applications.

In this context, we present a design-flow approach that
allows (A) behavioural and (B) optimisation concerns to be
independently described, and then automatically merged
to derive optimised designs. Optimisation concerns are
described using meta-programs, which codify platform- and
domain-specific expertise and describe how applications
should be effectively mapped to specific platforms. For this
purpose, we provide meta-programming mechanisms to al-
low source-code, tools, and platforms to be programmatically
manipulated and analysed in order to codify optimisation
strategies.

Our approach has the following key benefits:
1) new platforms can be targeted by adding, revising, or

parameterising meta-programs;

2) optimisations described in one meta-program can be
reused for multiple input applications;

3) decoupling functional application descriptions from
optimisation descriptions allows each to be developed
and maintained separately.

This paper extends our work in [1], introducing more com-
plex analysis and optimisation strategies, such as polyhedral
analysis, pattern-matching for non-trivial transformations
such as line-buffering, and multi-kernel execution models
with channels for direct kernel-to-kernel communication. In
addition, we cover additional benchmarks from the Rosetta
HLS (High-Level Synthesis) benchmark suite [2], namely:
digit recognition, 3D-rendering, and optical flow.

This paper provides four key contributions:

C1. A meta-programming approach for codifying and au-
tomating optimisation strategies;

C2. An open-source meta-programming framework, named
Artisan, which targets C/C++ applications;

C3. A meta-program repository for optimisation and map-
ping using Intel HLS tools on CPU+FPGA platforms;

C4. An evaluation of automated optimisation strategies in
terms of performance and development effort.

The rest of this paper is organised as follows: Section 2
outlines the motivation for our work; Section 3 explores re-
lated work; Section 4 introduces our approach (C1); Section 5
details the Artisan meta-programming framework (C2); Sec-
tion 6 overviews our current meta-program repository (C3);
Section 7 provides an evaluation (C4); Section 8 provides
a discussion about correctness and the limitations of our
approach; and finally, Section 9 concludes our findings and
discusses future work.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

2

2 MOTIVATION

Consider a C++ application developed by a physics expert.
To optimise this application for a heterogeneous computing
platform and leverage the capabilities of its processing
elements, including CPUs, GPUs, and FPGAs, the following
must be taken into account:

1. Partitioning and Mapping. First, the application must
be partitioned into code regions, and the most profitable
processing elements must be selected to execute each part.
Factors such as partition granularity, computing capabilities,
and data movement must be considered. Heuristics can be
used to guide this process based on code inspection, for
instance by looking at data-types, memory and arithmetic
intensity. This process can also be informed by runtime data,
such as hotspot regions [3] and the amount of data transferred
between partitions. For complex applications and platforms,
the partition and mapping process can be refined using
design-space exploration (DSE).

2. Optimising Partitions. Once partitions and their map-
pings are established, developers must isolate code parts so
that they can be compiled independently with target-specific
compilers. Moreover, extra code must be written to connect
partitions through remote procedure calls (RPC). While there
have been considerable advances in optimising compiler
technology for high-level code targeting GPUs and FPGAs,
software code still requires human effort to fully leverage
the specific hardware architecture capabilities. This includes
employing vendor API calls to support efficient I/O between
devices, performing loop transforms to improve parallelism
and pipelining, mapping scalars and arrays across memory
systems to improve data locality, and optimising arithmetic
operations with built-in specialised compute units (e.g.
extended SIMD instructions in CPUs or block multipliers in
FPGAs).

3. Reusing optimisations. Manual optimisations are
performed on and tailored to specific applications even
though they are based on best practices [4] [5] and generic
strategies. This manual optimisation effort cannot be reused,
and must be re-applied to every new application.

4. Maintainability. Once code has been partitioned,
mapped and optimised, it may be difficult to update function-
ality and to port the code to new platforms since behavioural
and optimisation concerns become intertwined.

In this paper, we address the above issues by providing a
design-flow approach that decouples functional and optimi-
sation concerns, allowing optimisation steps to be codified
and automated independently from application source-code.
The two key challenges addressed in this paper are:

(i) effective analysis to extract static and dynamic
information (i.e. dependence analysis, code pattern,
hotspots) from high-level code to inform optimisation
decisions;
(ii) codifying strategies to automate and reuse human
effort in optimising a full application onto a heteroge-
neous platform, covering all stages of the design-flow.

Additional challenges and limitations, such as semantic-
preserving transformations, are discussed in Section 8.

3 RELATED WORK

In this section we explore existing approaches that decouple
application behaviour from optimisation to address produc-
tivity, portability, and maintainability issues. In our context,
application behaviour describes functionality, while optimi-
sation describes how functional description is transformed to
run efficiently on a specific heterogeneous platform or device.
Table 1 overviews and compares the features of a variety of
approaches:

• Concerns Location. Although optimisation and be-
havioural concerns are decoupled in all listed approaches,
their description is not necessarily separated. Optimisation
description can either be embedded in the application
source, or separated from it. For example, Halide [6] is
a DSL that allows (1) image processing computations and
(2) schedules to be described within the same source. We
contend that separated descriptions, such as LARA [12]
and Delite [8], are better suited to allow the development
of generic optimisations strategies that can be reused and
applied to multiple applications.

• Support Existing Software Descriptions. The majority of
the approaches surveyed provide a new programming
model [6], [7], [8], [10], [11] using a domain-specific
language (DSL) or a programming API to codify ap-
plication behaviour. This enables uniform and robust
optimisation strategies since the application domain is
restricted, however developers are required to learn a
new programming model and possibly rewrite existing
code. In contrast, the ability to support existing general-
purpose software languages allows a wider range of
application domains and to target legacy code, as well as
having a low-learning curve for application developers. In
contrast, LARA [12] targets full application source-code,
in a number of languages, including C++, MATLAB and
Java.

• Optimisation Reusability. Optimisations described us-
ing these approaches can be limited in their reusability.
Typically, if optimisation descriptions are embedded in
application source-code, they are application specific, and
strategies need to be redefined and customised to target
other applications. Domain-specific compiler frameworks
(e.g. developed with Delite [8]) can improve productivity
by enabling optimisation reuse across applications within
the same domain. However, these still do not allow cross-
domain optimisations.

• Optimisation Target. The scope on which these optimi-
sation approaches operate also differs. Most of the ap-
proaches in our survey are limited to self-contained code
partitions, or kernels. For example, loo.py [10] provides a
Python based DSL for describing a kernel’s behaviour and
provides a library of optimising transformations based on
polyhedral analysis that can be applied. In contrast, LARA
[12] operates beyond a single code region, supporting
analysis and manipulation at the application source-level
with programmatic access to existing vendor compiler
tools and DSE. However, each LARA description (known
as an aspect) operates on a single target model, and thus
it relies on multiple meta-programming tools (known as
weavers) to execute different fragments of an optimisation
strategy.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

3

TABLE 1
Comparison of Approaches That Decouple Optimisation and Behavioural Concerns

Approach Concerns Support Existing Optimisation Optimisation Analysis
Location Software Descriptions Reusability Target Scope

Halide [6] embedded no no kernel code static

HeteroCL [7] embedded no no kernel code static

Delite [8] separated no yes kernel code static(domain specific)

TeML [9] embedded no no kernel code static

Loo.py [10] embedded no no kernel code static

Tiramisu [11] embedded no no kernel code static

LARA [12] [13] separated yes yes app code and tools static and dynamic(fragmented)

app code and toolsArtisan [1] separated yes yes (unified) static and dynamic

• Analysis Scope. Finally, most of the approaches in our
list rely on static code analysis. We believe that this is
not enough to support a wide range of optimisations,
which require runtime information, for instance hotspot
detection (used to partition code), monitoring data flow
across partitions, and DSE. Acquiring runtime information
requires the ability to instrument code to monitor and
register the desired information.

Our approach, Artisan, is designed with the above factors
in mind. In particular, optimisation strategies are codified
in meta-programs separately from application descriptions,
not entangled with application logic, in order to support
reusable optimisations. Optimisations are self-contained and
paramaterisable, such that they can be codified once and
then, where applicable, be reused to multiple applications.

Artisan operates on an application’s full source-code,
allowing a wider scope for analysis and transformations,
as described in Section 2. In addition, Artisan currently
targets C/C++ code, and thus strategies can be applied
to legacy code, not requiring algorithms to be re-written
and adapted to new programming models. We have also
designed Artisan to be more accessible by fully supporting a
well-known general-purpose language, Python. In particular,
we provide modules that can be imported into Python to
support our meta-programming approach, and a repository
of available meta-programs to optimise applications for
specific platforms [14].

Our meta-programming approach includes different anal-
ysis tasks: querying source-code for code patterns, parsing
tool reports, and acquiring monitoring platform data. In
addition, it supports tasks such as code instrumention and
transforms, invoking compile tools with specific options, and
specifying platform parameters for deployment. All these
tasks can be part of a coordinated optimisation strategy that
is played out in a single and unified execution environment.

Note that Artisan and LARA are inspired by the aspect-
oriented programming (AOP) [15] methodology of separa-
tion of concerns. However, AOP is restricted to functional
concerns, allowing secondary functionality (such as logging)
to be codified in separate modules from the main functional
description, and then merged during execution. In contrast,
we focus on decoupling functional and optimisation con-
cerns, which requires more complex analysis and manipula-
tion of the original source.

4 ARTISAN: OPTIMISATION APPROACH

As mentioned in Section 3, we propose a meta-programming
approach that decouples optimisation and behavioural de-
scriptions. Using our framework, Artisan, platform- and
domain-specific expertise are captured in parameterisable
meta-programs. Artisan provides developers with program-
matic access to artifacts including source-code, tools, and
platforms, enabling coordinated optimisation strategies to be
codified and reused across multiple applications.

The aim of meta-programs is to automate the human
effort currently required to effectively map applications
onto heterogeneous platforms (Section 2), and therefore
they complement vendor compiler tools. For example, in the
context of HLS, since meta-programs have access to the entire
application source they are able to perform optimisation tasks
that a single compiler tool cannot, including host-side and
inter-kernel analysis and instrumentation, as well as runtime
analysis, and automatic DSE.

Fig. 1 shows the three distinct stages involved in our
approach. During application development, application
experts write target-independent software descriptions and
verify functionality on a CPU. During meta-program de-
velopment, optimisation strategies are codified in Python.
Note that both stages are performed autonomously. In
the third stage, mapping and deployment, optimisation
meta-programs and software descriptions are automatically
merged, outputting an optimised description for a specific
platform. In this stage, meta-program parameters are speci-

C. mapping & deployment A. application development

SW C/C++
description

verify
functionality

on CPU

HW C/C++
descriptions

confirm
performance on
heterogeneous

resources

HLS meta-programsHLS meta-programsArtisan meta-programs

+
domain
experts

platform
experts

B. meta-program development

meta-program
parameters

application
requirements
+ objectives

tool
developers

Fig. 1. The three distinct stages and roles of our meta-programming
optimisation approach.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

4

fied according to application requirements (e.g. acceptable
output error) and optimisation goals (e.g. minimising execu-
tion time).

In practice, although there are three distinct sets of
responsibilities, the same person might take on more than
one role. For example, an application developer might also
map and deploy their application. Furthermore, interaction
between those with different responsibilities may prove
beneficial, but is not necessary.

Our approach addresses the two key mapping challenges
described in Section 2. With programmatic access to source-
code, tools, and platforms, meta-programs can be used to
perform effective static and dynamic application analysis.
Powerful query and instrumentation mechanisms enable
meta-programs to effectively match patterns in input source
code and apply source-to-source transformations program-
matically (Section 5). Furthermore, Artisan enables scope
for DSE, where optimisation decisions are automatically
guided by feedback from tool reports and analysis of runtime
behaviour and static code features.

The following section covers the process of codifying
Artisan meta-programs.

5 DEVELOPING ARTISAN META-PROGRAMS

As mentioned, we have designed Artisan to be accessible
to platform and domain experts. For this purpose, we have
developed a set of Python modules to support our meta-
programming approach mechanisms, allowing optimisation
strategies to be codified and executed.

By definition, meta-programs are regular programs that
analyse and manipulate source-code as data. However, as
explained earlier, in order to effectively optimise applications
for heterogeneous targets, we need to go beyond modifying
source-code. That is, we need to analyse and instrument
code, set compiler tool options, parse tool reports, specify
deployment options, configure runtime and platform settings,
and perform DSE based on feedback from tool reports and
platform monitoring. A key challenge in making Artisan ac-
cessible is to identify all the mechanisms required to support
any optimisation strategy. We describe these mechanisms in
this section, and demonstrate their use in Section 6.

5.1 Design-Flow Artifacts

Our meta-programming approach supports a unified pro-
gramming environment that exposes three types of design-
flow artifacts as first-class Python objects: source-code, tools,
and platforms, as illustrated in Fig. 2. With programmatic
access to these artifacts, we are able to capture and automate
coherent optimisation strategies for specific target platforms.
For instance, programmatic access to the source-code artifact
enables program description traversal to find code-patterns,
as well as manipulation to support source-to-source transfor-
mations. We cover the source-code artifact in more detail in
Section 5.2.

The Tool object wraps a specific set of tools, such as
g++ and HLS tools, allowing programmatic control over the
compilation process. Each tool object has a run() method
with generic parameters, such as folder location and project
name, as well as tool-specific parameters, such as triggering

 from artisan import *
A st = model(“hello_word.cpp -I src/include…”)

int f() { … ; return x; }

void main() {
 for (...) { } // L1
}

ast

Return

File
FnDef

Project

FnDef
ForLoop

f()

main()

L1
hello_world.cpp

(a) code artifact

Artisan meta-program (Python 3)

application code (C++)

(b) tool and platform artifacts

from artisan import *
 = hls_ocl(project=’src/’)
 = intel_fpga(project=’src/’,

 device=’a10’)

tool.run(options…)

tool.get_report()

compile

gather JSON
report / logs

(c) platform artifact

from artisan import *
 = intel_fpga(project=’src/’,
 device=’a10’)
platform

intel_fpga

platform.exec(options…)

platform.monitor()

execute

runtime monitoring

platform.exec(options…)

platform.monitor()

tool

execute

runtime monitoring

platform

hello_world.cpp

Fig. 2. Artisan design-flow artifacts.

compiler optimisations. The get_report() method returns
key results produced by the tools. For example, results
from synthesis reports, such as II (initiation interval) and
resource utilisation metrics. Using the Platform object we
can run compiled applications and extract key details about
execution, such as runtime device and power utilisation,
on target platforms using the exec() and monitor()
methods.

5.2 Source-Code Analysis and Manipulation

In Artisan, source-code is represented by an abstract-syntax
tree (AST), which can be analysed and manipulated using a
Python object. The AST closely reflects the structure of the
code as written by the developer without losing information.
Thus, when new code is generated from a manipulated AST,
the updated source-code remains familiar to the developer,
instead of deriving this code from a lower-level IR.

In this section, we present the main mechanisms imple-
mented in Artisan which allow meta-program developers
to traverse and manipulate application source-code: query
and instrument. For more implementation details, including
how an AST is modelled from input code and how code is
versioned, refer to our previous work [1].

5.2.1 Code Traversal, Queries, and Pattern Matching

Effective methods for AST traversal are critical in order to
identify code regions that match syntactic or computational
patterns with well-known optimising transformations, or to
extract relevant information to perform analyses.

To facilitate pattern matching, every AST node has a
query() method, which returns a table including all node
sequences in the invoking node’s sub-tree that match a spec-
ified search pattern and conditions. The query() method
has two parameters: match defines the search pattern, and
where specifies a condition to filter matches. The match
expression specifies a sequence of entities separated by the
edge => operator (“is ancestor of”). We demonstrate the query
mechanism with three examples in Fig. 3, explained below.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

5

(a) AST query for outermost 2-nested loops

(b) AST query and node attributes for variable references in a loop

lx ly

 .query(select=“lx:ForLoop => ly:ForLoop”,
 where=“lx.is_outermost()”)

result table

ast

(c) AST queries needed for points-to analysis in a function

 .query(select=“exp:AssignOp”,
 where=“is_pointer(exp.type())”)

int f() {
 int *p,*q,**r,a;
 p = &a;
 q = p;
 *r = q;
}

 .query(select=“exp:AssignOp =>
 where=“is_pointer_deref(exp.lhs())”)

FnDef

pointer-creating statements

void main() {
 for (...) // L1
 for (...) // L2
 for (...) // L3
}

ForLoop
L1

ForLoop
L2

ForLoop
L1

ForLoop
L3

ForLoop
L2

ForLoop
L3

app source-code

 .query(select=“Ref”) ForLoop

 for (...) {
 a[i][j+m] = f();
 }

loop source-code Attribute Value
.dims 2

.idx(0)

.idx(1)

Expr
i

Expr
j+m

Ref
{a}

FnDef

node attributes

Fig. 3. Artisan query mechanism.

Fig. 3(a) shows a simple pattern match example, finding
all two-nested for-loops in an AST where the outer of the two
is an outermost loop. The results of a query are structured
in a table, where each row represents a match and each
column corresponds to the entity specified in the match
expression. Entities include common source code constructs
(e.g. function definitions, loops, expressions). In our example,
columns correspond to ForLoop entities and are identified
by labels lx and ly. Our program has three two-nested
loops, but our query filters out the third match, as specified
by the where parameter, since loop L2 is not outermost.

In Fig. 3(b), we find all variable references within a
loop body. The results can be used in a meta-program
performing memory access pattern analysis. Each entity
(node instance type) is associated with a specific set of
attributes providing information about the corresponding
AST node. In our example, we find references to variable a,
and a sample of attributes are shown in the depicted attribute
table, including the dimensions and the index expressions in
each corresponding dimension.

In Fig. 3(c), we match all statements needed to construct
a points-to graph for a function. The code on the left
shows three different pointer-creating statements that we
can capture with a single query mechanism. We match
all assignment operation expressions and filter based on
whether matched expressions evaluate to pointer types. Meta-
programs can use the results of this query to perform points-
to analysis and determine if pointers may alias.

We include a more complex example of pattern matching
in Section 6, combining various queries with extra meta-
program logic to determine if a program might benefit from
line buffering.

pos=before

.instrument(pos,)CODE

pos=after

pos= replace

FnDef
main()

]

void main() {
 for (...) { }
}

CODE

CODE

CODE

(a) Artisan instrument mechanism

(b) Instrument a program loop with a pragma

(c) Replace a program loop with a function call

Example ideas:
replace subgraph expr with ip block
introduce shift register (might need more logic)
something to do with exit points?

 .instrument(pos=’before’, code=’#pragma unroll’);ForLoop

void main() {

 for (...) { }
}

 #pragma unroll
void main() {
 for (...) { }
}

 for (...) { }

 .instrument(pos=’replace’, code=’f_new(a,b);’);ForLoop

void main() {
 float a = 0.0;
 float b = 0.0

}

 f_new(a,b);

void main() {
 float a = 0.0;
 float b = 0.0;

 for (...) { }

}

 for (...) {
 a += f(b);
 }

 .instrument(pos=’before’, code=’void f_new(){...}’);
’

FnDef

void f_new(float a,float b){...}

main_for_a

original code instrumented code

original code
instrumented code

ForLoop

FnDef

Fig. 4. Artisan instrument mechanism.

5.2.2 Code Instrumentation

In order to inject monitoring primitives that collect runtime
information, or to perform source-to-source transformations,
a mechanism to manipulate source code is necessary. With
Artisan, every AST node can be instrumented with the
instrument(pos, code) method. This method has two
parameters: pos, which defines the position where the
instrumented code will be placed, and the code itself
which can be an arbitrary string. This allows developers
to manipulate source code in a way that is familiar, injecting
high-level code as strings rather than operating on lower-
level IR.

Fig. 4(a) demonstrates the instrument method with three
position arguments: before the target construct, replace the
target construct, or after the target construct. The method also
supports begin and end positions, allowing code insertion at
the beginning and end of basic block scopes.

Fig. 4(b) shows an example of code instrumentation using
the before position. In particular, we insert a pragma statement
before the loop construct to instruct the compiler to fully
unroll it. In general, pragma injection allows HLS code to be
annotated to guide the synthesis process.

Fig. 4(c) demonstrates how to replace a loop with a call to
a new function, as well as to insert the function’s definition
into the program. This is useful in order to extract hotspot
regions into isolated functions for analysis, optimisation, and
eventual offloading to hardware. In our example, the original
ForLoop entity is replaced with a function call string, and the
function’s definition is inserted before main(). The function
definition string and corresponding call string would be
constructed using extra logic and query mechanisms to deter-
mine suitable arguments and corresponding call parameters.

Section 6 includes examples of meta-programs employing
multiple coordinated query() and instrument() calls.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

6

5.3 Meta-Program Classification
We classify meta-programs into three types:
• Analysis. Analysis meta-programs acquire static and

runtime application information to guide the optimisa-
tion process. For instance, identifying hotspots, points-to
analysis, and polyhedral dependence analysis;

• Transforms. Transform meta-programs perform actions
on design-flow artifacts, changing their state. Examples in-
clude inserting pragma annotations to specific constructs
or refactoring code;

• Control. Control meta-programs [16] orchestrate the op-
timisation to achieve a specific objective. For instance, to
maximise or minimise an utility function such as execution
time or resource utilisation, by performing DSE.

Control meta-programs implement optimisation strategies
by relying on Analysis meta-programs to provide relevant
information about the application, and employ Transform
meta-programs to apply optimisation tasks. High-level control
strategies can also invoke lower-level Control meta-programs
to implement a divide-and-conquer strategy. Note that meta-
program developers are responsible for ensuring that trans-
formations are sufficiently correct, as discussed in Section 8.

6 HIGH-LEVEL SYNTHESIS META-PROGRAMS

In this paper, we focus on the Intel OpenCL SDK for FPGAs
to validate our approach. Artisan supports a generic interface
for tools, languages, and hardware targets so meta-programs
can in principle be customised and extended to support
other platforms. In the following sub-sections, we outline
our design-flow and provide an overview of our current
meta-program repository.

6.1 Control
Fig. 5 outlines the Artisan design flow for optimising
applications. The input is an unoptimised C++ application,
and the output is an optimised CPU+FPGA application.
We implement a high-level Control meta-program which
coordinates the optimisation process, employing analysis
and transform meta-programs to perform the following:
(1) Code normalisation. Normalising transformations are

applied to put the input application into a canonical
form, such that the code can be effectively parsed and
instrumented. For example, normalising loops. This
allows us to be robust against different coding styles.

(2) Hotspot detection/extraction. The application is instru-
mented with timers to identify program loops or func-
tions which comprise greater than a specified threshold
of program execution time. These regions are extracted
into isolated functions for hardware offloading.

(3) FPGA project generation. HW/SW partitioning is per-
formed, generating OpenCL FPGA project files: *.cl
contains program hotspots extracted into OpenCL ker-
nels, and *.cpp contains remaining application and
hardware management logic.

(4) Optimisation: design space exploration. Transform
meta-programs are applied, employing feedback from
analysis meta-programs to guide optimisation. For exam-
ple, P&R reports are used when unrolling program loops
to determine the unroll factor that maximises resource
utilisation without over-mapping the device.

6.2 Analysis
Table 2 overviews the analysis meta-programs from our cur-
rent meta-program repository. Static analysis meta-programs
(AS-X) inspect source code to generate reports without
performing instrumentation or requiring code execution.
For example, checking for code constructs that are not
synthesisable with Intel OpenCL, such as function pointers
and recursion, or performing static dependence analysis.
Dynamic analysis meta-programs (AD-X), on the other hand,
execute instrumented code in order to generate reports.
Note that instrumented versions are discarded once reports
are generated. For example, timing functions at runtime or
parsing design reports to gather resource utilisation values.

Before we introduce meta-program code, consider the C++
k-means classification application code included in Fig. 6. The
main function contains two loops: one initialises classes, and
one calls a function (radius()) to perform computations.
Within radius(), there are two nested loops, inside which
the squared distance between each data point and class centre
is calculated. We use this example to show the effects of the
meta-programs which follow. Below, we include two analysis
meta-program examples, one dynamic, and one static.

6.2.1 Dynamic Example: Loop Timing
Loop timing (AD-1) is an example of dynamic analysis. It
instruments input code with timers on every loop, such that
when the instrumented code is executed the time spent in
each loop is reported. This is useful to detect hotspot code
regions, for which loops are often candidates.

The code for AD-1 (time_loops.py) is included in
Fig. 7. For simplicity, we consider only for-loops, but the code
can trivially be changed to check while-loops as well. First, an
AST (provided as a parameter) is queried for for-loops (line
2). Each loop is instrumented with an artisan::Timer
object (line 4). The AST is queried for the main function (line
5), which is instrumented with a call to artisan::report
(line 6). Finally, the global scope is instrumented to include
artisan utility files (line 7).

The bottom of Fig. 7 shows instrumented k-means
classification code (k_means_timing.cpp) after applying
AD-1. This code begins with a new #include statement,
each loop has an artisan::Timer object, and there is an
artisan::report call at the end of main. When executed,
all timer values are written to loop_times.json.

6.2.2 Static Example: Parallel Loop
The parallel loop meta-program (AS-3) uses polyhedral de-
pendence analysis to statically determine whether a program
loop contains loop-carried dependencies. If a loop is free
from dependencies, it can be parallelised.

The key insight of polyhedral analysis is to model a
program’s dynamic execution instances, which correspond
to operations executed at run-time. For instance, a single
static code operation inside a program loop may correspond
to many dynamic execution instances depending on the
structure and number of iterations of the loop. Mathematical
objects, such as Presburger Sets and Maps, are used to
represent these instances and reason about their relations. We
extract relevant program information with Artisan, and use
islpy [17] [18], in order to model loops and run dependence
analysis.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

7

(4) optimisation:
design space exploration

(2) hotspot
detection/extraction

(3) FPGA project
generation

(1) code
normalisation

execute on
CPU+FPGA

platform

Intel PAC
Arria 10

CPU

execute
on CPU
platform

loop1:60%
loop2:20%

C++ code
instrumented
with timers

unoptimised
C++ code

normalised
C++ code CPU baseline

CPU+FPGA
code

transforming
CPU+FPGA

code

host.cpp

 kernel.cl

control

transform
normalise

analysis
loop/function

timing
transform

extract hotspot

transform
generate FPGA

project files

analysis
HW synthesis

check

analysis

C++ code
with

hotspot
extracted

optimised
CPU+FPGA
code

host.cpp

 kernel.cl

host.cpp

 kernel.cl

Input: Output:

transform

Fig. 5. Artisan Design Flow (Intel OpenCL SDK for FPGAs).

TABLE 2
Analysis Meta-Programs (LOC denotes lines of code)

Label Type Meta-Program LOC Description

AS-1 Static Call-graph 12 Determines all functions called by a specified top-level function and returns a call-
graph string.

AS-2 Static Variable R/W 8 Determines whether a specified variable is accessed and overwritten (RW), only
accessed (R), or only written to (W).

AS-3 Static Parallel loop 13 Uses polyhedral analysis to determine if iterations of a specified loop are independent.
AS-4 Static Loop dependencies 8 Identifies loop carried dependencies on variables using polyhedral analysis.
AS-5 Static Function Data-flow 10 Analyses function inputs/outputs to determine how they interact with one another.
AS-6 Static HW Synthesis Check 38 Checks if a specified function contains constructs that are not synthesisable using

Intel OpenCL (e.g. recursion, function pointers)

AD-1 Dynamic Loop Timing 8 Instruments program loops with timers.
AD-2 Dynamic Function Timing 6 Instruments a specified function with a timer.
AD-3 Dynamic Kernel Timing 22 Instruments a call to a specified FPGA kernel from the host with a timer.
AD-4 Dynamic Resource Utilisation 15 Parses P&R reports to determine estimated FPGA resource utilisation.
AD-5 Dynamic Hotspot detection 53 Identifies loops or functions where time spent is above a given threshold of overall

execution time.

TABLE 3
Transform Meta-Programs (LOC denotes lines of code)

Label Type Meta-Program Class LOC Description

TN-1 Normalisation Scopify n/a 9 Ensure all application scopes are block entities (i.e.enclosed in curly
brackets {}) to enable effective parsing and instrumentation.

TN-2 Normalisation For-loop Normali-
sation

n/a 10 Transforms for loops such that loop variables are normalised to start
at 0 and increase by a constant each iteration.

TG-1 Generation Loop-to-Function
Extraction

n/a 20 Extracts a specified program loop into a new function.

TG-2 Generation Generate OpenCL
FPGA Project

n/a >100 Generates OpenCL host (<main>.cpp) and kernel (<kernel>.cl) files.

TO-1 Optimisation Unroll Loop Scalability 4 Inserts #pragma unroll F above a specified loop to unroll it by
factor F.

TO-2 Optimisation NDRange Params Replication 11 Sets the work group size and number of SIMD work-items for an
NDRange kernel using #define statements.

TO-3 Optimisation Local Mem. Buffer Pipelining 16 Makes a local copy of a specified array, populating it with data from
global memory.

TO-4 Optimisation Function Inline Pipelining 60 Inlines a specified function.
TO-5 Optimisation Element Packing Memory

Enhancing
30 Modifies a kernel interface by packing multiple elements into a larger

data type.
TO-6 Optimisation Remove

Dependency
Pipelining 20 Introduces register to replace accesses to a specified variable within a

loop.
TO-7 Optimisation Line Buffering Memory

Enhancing
16 Introduces local line buffers (i.e. N lines of a 2D array) using shift

registers to update values.
TO-8 Optimisation Window Buffering Memory

Enhancing
16 Introduces local window buffers (i.e. NxN elements of a 2D array)

using shift registers to update values.
TO-9 Optimisation Introduce

Channels
Scalability 25 Introduces Intel OpenCL channels for direct kernel-to-kernel commu-

nication (replaces global memory accesses).
TO-10 Optimisation OpenMP Loop Scalability 25 Injects #pragma omp parallel for num_threads(N) above a

specified program loop.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

8

void radius(int n, float **data,
 class_t *classes, int **out){

 for (int i = 0; i < CLASSES; i++) {
 float dist2 = 0.0;
 for (int j = 0; j < DIM; j++) {
 float dist = classes[i].cntr[j] - data[n][j];
 dist2 += dist*dist;
 }
 out[n][i] = dist2 < classes[i].rdi2 ? i : -1;
 }
}
int main() {
 float data[NUM_POINTS][DIM];
 class_t classes[CLASSES];
 float result[NUM_POINTS][CLASSES];

 read_data(data);

 for (int i = 0; i < CLASSES; i++)
 init_class(&classes[i]);

 for (int n = 0; n < NUM_POINTS; n++)
 radius(n,data,classes,result);
}

 1

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

 15

 16
 17

 18
 19
 20

Fig. 6. Example C++ input application (k means.cpp)

app: k_means_timing.cpp

def time_for_loops(ast):
 loops = ast.query("ForLoop")
 for loop in loops:
 loop.body().instrument(pos=’begin’,
 code='artisan::Timer __timer__("%s")’%loop.tag());
 main_func = ast.query("FnDef{main}")
 main_func.body().instrument(pos=’end’,
 code='artisan::report("loop_times.json");')
 ast.global_scope().instrument(pos=’begin’,
 code="#include <artisan/timer.hpp>")

 1
 2
 3
 4

 5
 6

 7

meta-program: time_loops.py

#include <artisan/timer.hpp>
void radius(...){ ... }
int main() {
 float ...;
 read_data(data);
 for (int i = 0; i < CLASSES; i++) {
 artisan::Timer __timer__("main_for_a");
 init_class(&classes[i]);
 }
 for (int n = 0; n < NUM_POINTS; n++) {
 artisan::Timer __timer__("main_for_b");
 radius(n,data,classes,result);
 }
 artisan::report("loop_times.json");
}

 1
 2
 3
 4
 5

 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Fig. 7. AD-1: Loop Timing

This meta-program performs 7 steps to determine if a
loop is parallel, as indicated by comments in the code excerpt:

I. query for all statements in the loop (line 2). In our
example, four statements labelled from A to D are
identified;

II. derive statement instances according to their
loop index and iteration space (line 3, e.g.
A(n, i): 0≤n<N ∧ 0≤i<C);

III. construct a schedule capturing the execution order
of statement instances, by the position of each code
statement;

IV. query for all variable references (line 5, e.g. data[n][j]);
V. identify all reference instances and define their con-

straints (line 6, e.g. data(a, b): 0≤a<N ∧ 0≤b<D);
VI. define the mapping between statement and reference in-

stances, separating them into read and write sets (line 7,
e.g. {B(n, i, j)→data(a, b): a=n ∧ b=j} ∈ reads);

VII. compute the dependence flow on the polyhedral model
using islpy (line 8).

For k-means, the outermost loop is determined not to have
loop-carried dependencies, so the meta-program returns
True.

def is_parallel(loop):
 # I. find all stmts in loop
 stmts = loop.query(“s:Stmt”)
 # II. model loop stmts: names, iteration domains
 model = model_stmts(stmts)
 # III. build statement schedule
 schedule = build_stmt_schedule(model)
 # IV. find all references in loop (array and scalar)
 refs = loop.query(“r:Ref”)
 # V. determine array constraints
 arr_constrnts = get_array_constraints(refs,loop,ast)
 # VI. define access relations for each stmt and ref
 reads,writes = get_access_relations(model,refs,arr_constrnts)
 # VII. run dependence analysis (true -> parallel)
 return analyse_loop_deps(reads,writes,schedule)

 1

 2

 3

 4

 5

 6

 7

 8

for (int n = 0; n < N; n++) {
 for (int i = 0; i < C; i++) {
 float dist2 = 0.0;
 for (int j = 0; j < D; j++) {
 float dist = classes[i].cntr[j] - data[n][j];
 dist2 += dist*dist;
 }
 out[n][i] = dist2 < classes[i].rdi2 ? i : -1;
 }
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

A

D

meta-program: is_parallel.py

app: k_means.cpp

B
C

Fig. 8. AS-3 (partial): Parallel Loop (Polyhedral Dependence Analysis)

6.3 Transforms

Table 3 overviews the transform meta-programs from our
current meta-program repository. Transforms are categorised
as normalisation (TN-X), generation (TG-X), and optimisation
(TO-X). Normalisation meta-programs transform input ap-
plications into a canonical form to facilitate their instrumen-
tation by other meta-programs. Generation meta-programs
generate code in a different format from the input application,
for example, to comply with specific compilation tools (i.e.
creating OpenCL host and kernel files). Finally, optimisation
transforms apply techniques to make code more efficient.

The work in [19] identifies three transformation classes: (1)
pipelining; (2) scaling; (3) memory enhancing. In their paper,
they outline a variety of optimising transformations within
each class and describe how to apply them manually. With
Artisan these transformations can be codified and applied
to applications automatically. The optimising transforms we
present in this paper are all categorised according to these
transformation classes (Table 3).

In the following subsections, we provide examples of
transform meta-programs.

6.3.1 Normalisation Example: Scopify

Scopify (TN-1) is an example of a normalising transformation.
It ensures that all scoped statement bodies are surrounded by

def scopify(ast):
 scopes = ast.query("Scope")
 for scope in scopes:
 if hasattr(scope, 'body'):
 body = scope.body()
 if body and body.entity != 'Block':
 body.instrument(pos="before", code="{")
 body.instrument(pos="after", code="}")

 1
 2
 3
 4
 5
 6
 7
 8

 for (int i = 0; i < NUM_POINTS) {
 read_data_point(&data[i]);
 }

 18
 19
 20

meta-program: scopify.py

app: k_means_normalised.cpp

Fig. 9. TN-1: Scopify

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

9

curly brackets. This is important to ensure that subsequent
meta-programs can operate effectively. For instance, if a loop
or a conditional body is not surrounded by curly brackets,
they will not be identified as code blocks (entity Block), and
therefore we cannot add statements to them.

Fig. 9 shows the code for scopify (scopify.py), which
takes as parameter an AST. All AST scoped nodes (e.g. loops,
conditionals) are queried for (line 2), and if they contain
a body which is not a Block, they are instrumented with
surrounding curly brackets (lines 7-8).

6.3.2 Optimisation Example: Line buffering
Line buffering (TO-7) is a common memory optimisation
for image and video processing applications to exploit data
reuse in stencil loop computations [2] by buffering a number
of input rows at all times. Fig. 10 shows a general loop
example that may benefit from line buffering, as well as a
depiction of how the buffer operates. A variable suitable for
buffering is accessed within a two-nested loop, with reads
performed across a fixed number of rows (n) and columns
(m) in each iteration. The buffer caches n rows, introducing
and removing an element at each iteration.

To implement line buffering, we first check whether
this pattern is matched. We find all two-nested loops in
an input program using Artisan’s query mechanism, and
then check each nest for buffer candidates using the code
in Fig. 11 (match_linebuf_pattern.py). The bottom of
Fig. 11 shows how the pattern is matched in two different
input applications, optical flow and sobel filter. For brevity,
we assume that the loop nest iterates through rows then
columns, but we can extend the code to check for the opposite
case as well, and transpose the loops if required.

First, we find all read-only 2D array variables (lines 3-
4). For optical flow and sobel filter, grad and frame are
identified, respectively. Next, for each variable, we check
whether the first dimension accessed is always a linear
translation of the outer loop index (i.e. the rows loop, lines 6-
7), and we verify that the number of rows accessed is constant
and greater than 1 for each iteration (lines 8-10). In optical
flow, the first dimension of grad accessed is of the form
”r-i”, which is a linear translation of the loop index ”r”. The
row span of grad is constant at 7 ([r-0][c]...[r-6][c]).
Finally, we check whether the second dimension accessed
is always a linear translation of the inner loop index (i.e.
the columns loop, lines 11-12), and verify that the number
of columns accessed is constant. In sobel filter, the second
dimension of frame accessed is of the form ”x-1+j”, which

1
2
3
4
5

0
0 1 2 3 4 5 6 7 8

row = 4, col = 2

1
2
3
4
5

0
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

...
1
2
3
4
5

0

...

for (int row = 0; row < N; r++)
 for (int col = 0; col < M; col++)
 … read A[row:row-(n-1)][col:col-(m-1)] …

 1
 2
 3

row = 4, col = 5 row = 4, col = 8

Fig. 10. The code pattern to match for line buffering and buffer operation
for an example where N=6, M=9, n=m=3. The darker elements are
buffered. In each depicted iteration, the element with an O is removed
from the buffer, the element with an X is added to the buffer, and all
elements in the yellow square are read, following a sliding window pattern.

input app 1: optical flow

for (int r = 0; r < HEIGHT + 3; r ++) {
 for (int c = 0; c < WIDTH; c ++) {
 float acc = 0;
 if (r >= 6 && r < MAX_HEIGHT) {
 for (int i = 0; i < 7; i ++) {

 acc += grad[r-i][c] * FILTER[i];
 …

[r-i][c]

input app 2: sobel filter

for (int y = 0; y < ROWS; y++) {
 for (int x = 0; x < COLS; x++){
 int x_dir = 0; int y_dir = 0;
 if (y>=1 && y<COLS-1 && x>=1 && x<ROWS-1) {
 for(int i = 0; i < 3; i++){
 for(int j = 0; j < 3; j++){

 uint pixel = frame[y-1+i][x-1+j] ;
 ...

[y-1+i][x-1+j]

 1
 2
 3
 4
 5

 6
 7

 1
 2
 3
 4
 5
 6

 7
 8

meta-program: match_linebuf_pattern.py

def match_linebuf_pattern(nest, idx_vars):
 buffer_candidates = []
 refs = nest.query(match=“r:Ref”, where=’r.dims==2’)
 read_only = get_read_only_vars(refs)
 for var in read_only:
 fst_dims = [r.dims(0) for r in var[‘reads’]]
 if linear_translation(fst_dims, idx_vars[0])
 row_span = get_access_span(fst_dims)
 if not is_const_gt1(row_span):
 continue
 snd_dims = [r.dims(1) for r in var[‘reads’]]
 if linear_translation(snd_dims, idx_vars[1]):
 col_span = get_access_span(snd_dims)
 if not is_const(col_span):
 continue
 buffer_candidates.append((var,row_span,flag))
 return buffer_candidates

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

Fig. 11. TO-7: Pattern Matching for Line Buffering

is a linear translation of the loop index ”x”, and the column
span is constant at 3 ([...][x-1]...[...][x+1]). Note
that for optical flow, one column is accessed in each iteration,
corresponding to a vertical 1D stencil, in contrast to the 2D
stencil in sobel filter.

Once we have a candidate variable for buffering, we
instrument the loop code to introduce a buffer. Fig. 12
includes line_buffer.py, a meta-program that performs
the transformation, and shows how it operates on both
applications. First, we ensure the loop nest iterates through
rows and then columns. If this is not already the case, we
transpose the loops (lines 2-3). Next, we transform the loop
into a normalised form, where the access pattern corresponds
to our example in Fig. 10 (line 4). That is, for the variable to
buffer, the bottom right element accessed corresponds to the
current nest iteration. If the loop is not already in this format,
horizontal and/or vertical translations are performed. Once
the loop nest and accesses are in the expected format, we
declare a buffer (line 7-8) and insert it above the loop. We
insert buffer update code at the top of the inner loop body
(lines 9-10), and we change variable references to read from
the buffer (lines 11-12).

Fig. 12 shows how the transformation applies to our
optical flow and sobel filter examples. Optical flow is already
normalised, whereas the sobel filter example requires a
translation, the result of which is shown (normalised app
2). The buffer declarations, shift and update code, and
modified accesses for each application are highlighted in
the optimised code excerpts. Note that we enable the Intel
OpenCL compiler to infer a shift buffer in our buffer update

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

10

def line_buffer(ast,loop_nest,transpose_flag,var,n_rows):
 if transpose_flag:
 loop_nest = transpose_loops(loop_nest.l1, loop_nest.l2)
 translate_loop_to_normalised_form(loop_nest,var)
 r,c = get_loop_idxs(loop_nest)
 H,W = get_size(var)
 buf_decl = “%s %s_buf[%d][%d];\n” % (get_type(var),var,n_rows,W)
 loop_nest.l1.instrument(pos=”before”, code=buf_decl)
 update_string = get_update_string(loop_nest,var,n_rows,H,W,r,c)
 loop_nest.l2.body().instrument(pos=”begin”, code=update_string)
 refs = loop_nest.query(“Ref{%s}” % var)
 translate_var_accesses_to_buffer(refs,var+”_buf”,r)
 ast.commit()

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

optimised app 1: optical flow

float grad_buf[7][MAX_WIDTH];
for (int r = 0; r < MAX_HEIGHT + 3; r++)
 for (int c = 0; c < MAX_WIDTH; c++)
 if (r < MAX_HEIGHT && c < MAX_WIDTH) {
 /* shift column c of buffer up */
 #pragma unroll
 for (int i = n-1; i>0; i--) {
 grad_buf[i][c] = grad_buf[i-1][c];
 }
 /* insert next value into buffer */
 grad_buf[0][c] = grad[r][c];
 } else if (c < MAX_WIDTH) {
 grad_buf[0][c] = 0;
 }
 float acc = 0
 if (r >= 6 && r < MAX_HEIGHT) {
 for (int i = 0; i < 7; i ++) {
 acc += grad_buf[i][c] * FILTER[i];
 ...

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

normalised app 2: sobel filter

for (int y = 0; y < ROWS+1; y++) {
 for (int x = 0; x < COLS+1; x++){
 if (y>=2 && y<ROWS && x>=2 && x<COLS) {
 for(int i = 0; i <= 2; i++){
 for(int j = 0; j <= 2; j++){
 uint pixel = frame[y-i][x-j];
 ...
 }
 }
 frame_out[y-1][x-1] = f();
 }else if (y>=1 && y<ROWS+1 && x>=1 && x<COLS+1){
 frame_out[y-1][x-1] = 0;
 }
 }
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

optimised app 2: sobel filter

float frame_buf[3][COLS];
for (int y = 0; y < ROWS+1; y++) {
 for (int x = 0; x < COLS+1; x++){
 int x_dir = 0; int y_dir = 0;
 if (y < ROWS && x < COLS) {
 #pragma unroll
 for (int i = 3-1; i>0; i--) {
 frame_buf[i][x] = frame_buf[i-1][x];
 }
 frame_buf[0][x] = frame[y][x];
 } else if (x < COLS) {
 frame_buf[0][x] = 0;
 }
 if (y>=2 || y<ROWS || x>=2 && x<COLS) {
 for(int i = 0; i <= 2; i++){
 for(int j = 0; j <= 2; j++){
 uint pixel = frame_buf[i][x-j];
 ...

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

meta-program: line_buffer.py

Fig. 12. TO-7 (partial): Line Buffering

code by unrolling the column shift loop.

7 EVALUATION

7.1 Experimental Setup

We evaluate our Artisan meta-programs with FPGA and
CPU targets. Baseline CPU as well as FPGA experiments
are executed on the Intel Academic Compute Cloud. CPU
input applications are programmed in C++, compiled with
G++ 4.8.5 and target an Intel Xeon Platinum 8280 CPU @
2.70GHz. FPGA applications use the Intel OpenCL SDK for
FPGAs included in Quartus Prime Pro 17.1.1 and target an
Intel Arria10 PAC board. Multi-threaded CPU experiments
are compiled with G++ 5.4.0 which supports the OpenMP 4.0
standard, and target 8x Intel Core i7-9700K CPUs @ 3.60GHz.
Meta-programs are programmed in Python3 using Artisan
developed on top of the ROSE compiler framework [20].

We apply meta-programs to six benchmark applications:
AdPredictor, K-Means Classification, N-Body Simulation,
Digit Recognition, 3D-Rendering and Optical Flow. The first
three benchmarks are extended from our work in [1], and
the latter three are from the Rosetta HLS benchmark suite [2].
These benchmarks cover domains including machine learn-
ing, physics and image processing.

7.2 Optimisation Strategies

Table 4 includes the execution model selected for each
benchmark as well as a list of the optimisations applied using
Artisan. AdPredictor and K-Means both employ a single
work-item execution model. Both applications are compute-
bound and well-suited to pipelining optimisations. For each,

we unroll loops (TO-1), checking resource utilisation (AD-
4) to determine the maximum unroll factor that does not
overmap the device. For K-Means, we also introduce local
memory buffers (TO-3) for kernel arguments reused across
iterations that fit in on-chip memory.

N-Body Simulation and Digit Recognition use ND-Range
execution models, with multiple work-items performing
computations in parallel. These applications are compute-
bound and suited to scalability optimisations. For each we
use a hill-climbing DSE based on kernel timing (AD-3), to
identify the ND-Range parameters (work group size and
number of SIMD items) that minimise execution time (TO-2).
For N-Body Simulation, we remove a loop dependency (AS-
4,TO-6). For Digit Recognition, we inline all functions (TO-4)
and partially unroll fixed-bound loops (TO-1).

3D-Rendering and Optical Flow both follow a multi-
kernel with channels execution model, where kernels commu-
nicate directly via on-chip channels. Both applications consist
of multiple kernels and are memory-bound, so introducing
channels (TO-9) for inter-kernel communication is critical
to reduce overhead of global memory accesses. For 3D-
Rendering, 8-bit inputs are packed into unsigned integers
(TO-5) for efficient host to kernel transfer. For Optical Flow,
we introduce line and window buffers (TO-7, TO-8).

7.3 Performance Results

To evaluate performance, we compare the execution time re-
sults achieved automatically using Artisan to manually hand-
tuned FPGA designs. Table 4 includes speedups achieved
compared to the baseline, unoptimised input software. We
also include speedups achieved by designs automatically
optimised using Artisan with OpenMP to target multiple

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

11

TABLE 4
Summary of Performance Results and Optimisation Strategies for Each Benchmark

Benchmark Speedup Execution Applied Artisan Extra/Different Manual
OpenMP CPU Artisan A10 Manual A10 Model Optimisations Optimisations

AdPredictor
10.3× 98.5× 98.5× Single Unroll fixed loops fully

(LOC = 156) (LOC +37%) Work-Item
K-Means Classification

9.1× 37.2× 41.8× Single Local memory buffers Unroll fixed loops (F=16)
(LOC = 93) (LOC +96%) Work-Item Unroll fixed loops (F=32)

N-Body Simulation
11.7× 23.5× 25.5× ND-Range Set NDRange params Struct padding

(LOC = 119) (LOC +42%) Remove dependency Single precision FP

Digit Recognition
11.2× 408.6×

415.8×
ND-Range

Set NDRange params Simplified inlining

(LOC = 171) (LOC +10%) Inline functions
Unroll fixed loop (F=16)

3D-Rendering
n/a 3.2×

3.5× Multi-Kernel Kernel channels Struct padding

(LOC = 286) (LOC +53%) w/ Channels Data packing
Remove dependency

Optical Flow
n/a 16.7×

18.5× Multi-Kernel Kernel channels Struct padding

(LOC = 477) (LOC +37%) w/ Channels Line buffering Fewer channels
Window buffering

CPU threads, following the strategy presented in [1]. For
3D-rendering and optical flow loops are not parallelisable,
so there is no applicable OpenMP optimisation.

Overall, the Artisan-optimised designs achieve the same
order of magnitude speedup as our manually hand-tuned
designs. Speedups achieved range from 3.2 times to 408.6
times compared to unoptimised CPU designs.

The final column in Table 4 includes optimisations that
were applied to the manual design and not to the automated
design. These explain the slight discrepancy in performance
between the two. In some cases, these differences are due to
limitations of the current Artisan framework. For instance,
it is not yet possible (but will soon be supported) to query
for complex struct definitions and therefore padding struct
types for efficient memory alignment cannot be automated
(N-Body Simulation, 3D-Rendering, Optical Flow).

In other cases, more complex optimisation techniques
must be implemented. For instance, word-length optimisa-
tion to automatically demote types from double- to single-
precision floating point (N-Body Simulation), and supporting
DSE incorporating multiple metrics, such as performance and
resource utilisation. In the case of K-Means, automatically
unrolling until overmapping the device determines an unroll
factor of 32, whereas manually observing kernel execution
times with different unroll factors confirms that a factor of 16
achieved better execution time results despite utilising less
of the device.

In principle, strategies could be developed to minimise
these discrepancies and to improve automated designs. For
example, the unroll until overmap DSE can be guided by
P&R reports, which take longer to produce but are more
precise, instead of using estimated resource utilisation results
which are faster to generate but may lead to less efficient
designs. It is up to meta-program developers to consider
trade-offs and to codify the most suitable strategies.

7.4 Application Developer Effort
Table 4 includes the LOC count for each unoptimised
benchmark application (column 1) as well as the added
LOC percentage for each manually optimised Arria10 design
(column 4). The added LOC ranges from 10% for Digit
Recognition, to 96% for K-Means. This is an indication of
the manual effort required to hand-tune each design which
is effectively removed when using Artisan to automate

the process. This added LOC metric does not, however,
capture the expertise and experience required to effectively
manually optimise a design. This requires understanding of
each application, the target platform, and experience with
the design tools, which often equates to months or years
of developer experience. These percentages are therefore
lower bounds on the estimation of developer effort saved
when using Artisan. We discuss the effort to develop meta-
programs in the next section.

8 DISCUSSION

One challenge when codifying any optimisation is to ensure
correctness: that the resulting code preserves the behaviour
of the original code. Ensuring correctness by verification is
of critical importance, since it would also clarify the precise
conditions under which an optimisation is valid. Verification
is, however, beyond the scope of this paper. Moreover, it
is possible that different tools will be needed to verify
different transformations. We hope in future to interface
Artisan to verification tools such as model checkers and
theorem provers, to facilitate the verification of key Artisan
transformations.

Another aspect about developing Artisan meta-programs
is that it requires platform and/or domain expertise. Tables 2
and 3 include LOC (lines of code) counts for each meta-
program. These meta-programs were developed by a single
developer in three weeks. We contend that operating at
source-level (human-level) is easier than at IR level (compiler-
level), since it does not require developers to learn a new
model representation. Note that this does not preclude the
use of more complex compiler analysis, such as polyhedral
analysis, to support more aggressive transformations.

Finally, while Artisan is designed to automate human
optimisation effort, it can only do so as long as there are
systematic steps that allow a developer to codify them.
Furthermore, the speedup achieved is still dependent on
the algorithm employed by the application developer, and its
coding style. For instance, obscured code that heavily relies
on function and data pointers, instead of static calls and
arrays, may be less effectively optimised if meta-programs
rely on static information. Both cases can be mitigated by
supporting code analysis that guides developers to write
code that is more maintainable and more amenable for
optimisation.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3096429, IEEE
Transactions on Computers

12

9 CONCLUSION

In this paper, we address the complexity of mapping high-
level application descriptions onto heterogeneous platforms
using our meta-programming approach: Artisan. Artisan
decouples functional and optimisation descriptions: applica-
tion experts focus on algorithmic behaviour, and platform
experts focus on optimisation and mapping using meta-
programs. Artisan offers design-flow orchestration using a
single unified programming environment based on Python
3, enabling platform and domain experts to codify reusable,
parameterisable optimisation strategies and apply them to ap-
plications automatically. We have developed and evaluated
an Artisan prototype and used it to optimise six case study
applications for CPU+FPGA targets, achieving the same
order of magnitude of speedup (up to 409 times) as manually
optimised designs, when compared to the corresponding
unoptimised software versions.

Future work includes extending our meta-program repos-
itory to support additional hardware platforms and pro-
gramming models, such as Intel OneAPI [21]). It would
also be of interest to interface our approach to sophisticated
optimisation and verification tools.

ACKNOWLEDGMENTS

The support of Intel and the U.K. EPSRC (EP/L016796/1,
EP/N031768/1, EP/P010040/1, EP/S030069/1,
EP/L00058X/1) is gratefully acknowledged.

REFERENCES

[1] J. Vandebon, J. G. F. Coutinho, W. Luk, E. Nurvitadhi, and T. Tod-
man, “Artisan: a Meta-Programming Approach For Codifying
Optimisation Strategies,” in Int’l Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2020.

[2] Y. Zhou et al., “Rosetta: A Realistic High-Level Synthesis Bench-
mark Suite for Software-Programmable FPGAs,” Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2018.

[3] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,”
Computer, vol. 41, no. 7, 2008.

[4] “Intel High Level Synthesis Compiler Pro Edi-
tion: Best Practices Guide,” accessed Mar-2020. [On-
line]. Available: https://www.intel.com/content/www/us/en/
programmable/documentation/nml1505158467345.html

[5] “Intel FPGA SDK for OpenCL Pro Edition:
Best Practices Guide,” accessed Mar-2020. [On-
line]. Available: https://www.intel.com/content/www/us/en/
programmable/documentation/mwh1391807516407.html

[6] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe,
and F. Durand, “Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines,” ACM Trans. Graph.,
vol. 31, no. 4, 2012.

[7] Y-H Lai et al., “HeteroCL: A Multi-Paradigm Programming Infras-
tructure for Software-Defined Reconfigurable Computing,” in Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), 2019.

[8] A. K. Sujeeth et al., “Delite: A compiler architecture for
performance-oriented embedded domain-specific languages,” ACM
Trans. on Embedded Computing Systems, vol. 13, p. 134, 2014.

[9] A. Susungi, N. A. Rink, A. Cohen, J. Castrillon, and C. Tadonki,
“Meta-Programming for Cross-Domain Tensor Optimizations,” in
Int’l Conf. on Generative Programming: Concepts & Experiences (GPCE),
2018.

[10] A. Klöckner, “Loo.py: Transformation-based code generation for
gpus and cpus,” in Int’l Workshop on Libraries, Languages, and
Compilers for Array Programming (ARRAY), 2014.

[11] R. Baghdadi et al, “Tiramisu: A Polyhedral Compiler for Expressing
Fast and Portable Code,” in Int’l Symp. on Code Generation and
Optimization (CGO), 2019.

[12] J. M. Cardoso et al., “LARA: an aspect-oriented programming
language for embedded systems,” in Int’l Conf. on Aspect-oriented
Software Development (ICAOSD), 2012.

[13] P. Pinto, T. Carvalho, J. Bispo, M. A. Ramalho, and J. M. Cardoso,
“Aspect composition for multiple target languages using LARA,”
Computer Languages, Systems & Structures, vol. 53, 2018.

[14] Intel Corporation, “Intel FPGA SDK for OpenCL,”
https://www.intel.co.uk/content/www/uk/en/software/
programmable/sdk-for-opencl/overview.html, 2020, [Online;
accessed Mar-2020].

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in European Conference on
Object-Oriented Programming. Springer, 2001, pp. 327–354.

[16] Q. Liu, T. Todman, W. Luk, and G. A. Constantinides, “Optimizing
Hardware Design by Composing Utility-Directed Transformations,”
IEEE Trans. on Computers, vol. 61, no. 12, 2011.

[17] “islpy 2020.2.2 Documentation,” accessed Feb-2021. [Online].
Available: https://documen.tician.de/islpy/index.html

[18] “Integer Set Library Documentation,” accessed Mar-2021. [Online].
Available: http://isl.gforge.inria.fr/

[19] J. de Fine Licht, S. Meierhans, and T. Hoefler, “Transformations of
High-Level Synthesis Codes for High-Performance Computing,”
IEEE Trans. on Parallel and Distributed Systems, vol. 32, 2021.

[20] “ROSE compiler infrastructure,” accessed Mar-2020. [Online].
Available: http://rosecompiler.org/

[21] “Intel oneAPI Toolkits,” accessed Mar-2020. [Online]. Available:
https://software.intel.com/en-us/oneapi

Jessica Vandebon is a PhD student within the
Custom Computing Group at Imperial College
London under the supervision of Prof. Wayne
Luk. Her research interests include high-level ab-
stractions for heterogeneous and reconfigurable
compute platforms. She received her B.S. in
Computer Engineering from Columbia University
in 2017, and her M.Sc. in Advanced Computing
from Imperial College London in 2018.

Dr. Gabriel Figueiredo received his M.Sc. and
PhD in Computing Science from Imperial College
London respectively. Since 2005, Dr. Figueiredo
has been working as a research associate at the
Custom Computing Group in Imperial College
London, and has been involved in several UK
and EU research projects. In addition, he has pub-
lished over 30 research papers in peer-reviewed
journals and international conferences and has
contributed as an author to two book chapters,
and as an editor to one book.

Prof. Wayne Luk received his M.A., M.Sc. and
D.Phil. in engineering and computing science
from Oxford University. Currently Professor of
Computer Engineering at Imperial College, he
founded and leads the Computer Systems Sec-
tion and the Custom Computing Group, and is
also Visiting Professor at Stanford University. He
is on the Program Committee of many interna-
tional conferences such as FCCM, FPGA and
DATE. He has been an author or editor for 6
books, 4 special journal issues, a patent and

over 120 research papers in peer-reviewed journals and conference
proceedings.

Dr. Eriko Nurvitadhi is a senior research scien-
tist and manager of the FPGA Research Lab at
Intel Labs. He works on hardware accelerator
architectures (e.g., FPGAs, ASICs) for AI and
data analytics, with over 30 academic publica-
tions and 20 patent filed/issued in this area.
His research has contributed to Intel’s FPGA
and ASIC solutions for AI. He co-founded Intel
academic programs on FPGAs (HARP, ISRA).
He received his PhD in Electrical and Computer
Engineering from Carnegie Mellon University.

Authorized licensed use limited to: Imperial College London. Downloaded on August 04,2021 at 19:41:10 UTC from IEEE Xplore. Restrictions apply.

