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Abstract—High Energy Physics studies the fundamental forces
and elementary particles of the Universe. With the unprece-
dented scale of experiments comes the challenge of accurate,
ultra-low latency decision-making. Transformer Neural Networks
(TNNs) have been proven to accomplish cutting-edge accuracy
in classification for hadronic jet tagging. Nevertheless, software-
centered solutions targeting CPUs and GPUs lack the inference
speed required for real-time particle triggers, most notably those
at the CERN Large Hadron Collider. This paper proposes
a novel TNN-based architecture, efficiently mapped to Field-
Programmable Gate Arrays, that outperforms GPU inference
capabilities involving state-of-the-art neural network models by
approximately 1000 times while preserving comparable classifi-
cation accuracy. The design offers high customizability and aims
to bridge the gap between hardware and software development
by using High-Level Synthesis. Moreover, we propose a novel
model-independent post-training quantization search algorithm
that works in general hardware environments according to
user-defined constraints. Experimental evaluation yields a 64%
reduction in overall bit-widths with a 2% accuracy loss.

I. INTRODUCTION

The CERN Large Hadron Collider (LHC) is the world’s

highest-energy particle collider, the main aim of which is the

study of proton-proton collisions. The detection and analysis

of the data from such collisions is a challenge in various areas.

One such area is jet tagging, associating observed collimated

sprays of composite particles (hadrons) with the particles

(typically quarks or gluons) which initiated the jet.

The detectors make use of different sub-detector systems

to measure properties of the collisions, such as particle

trajectories and energies. These low-level features may be

used directly or combined into higher-level features. The

latter have been successfully used in the past using more

physically motivated machine learning (ML) algorithms, e.g.

using computer vision [1]. However, more recently, various

deep learning approaches have proven to outperform their

predecessors [2, 3].

The information throughput of petabytes per second col-

lected by the LHC detectors outclasses the real-time inference

capabilities of typical state-of-the-art solutions. The real-time

decision-making is often of utmost importance, and this pa-

per is motivated by this challenge which includes exploring

various types of neural network architecture as well as the

necessary infrastructure and deployment processes. Recently,
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the hls4ml codesign workflow has been successfully adopted

in particle physics experiments [4, 5], which allows ML

researchers and physicists to easily deploy their solutions

trained using common ML frameworks on reconfigurable de-

vices, typically Field Programmable Gate Arrays (FPGAs), or

application specific hardware, vastly improving the detection

algorithms’ inference capabilities. However, when it comes

to neural network architectures that have been proven to

outperform the previous state-of-the-art, at the time of writing

hls4ml offers limited support for graph neural networks [6,

7] and does not work with transformer neural networks.

This work develops novel, hardware-aware transformer neu-

ral network architectures as well as establishes efficient ways

of mapping them onto FPGAs. The novel aspects of this work

can be summarized as follows:

• Hardware-Aware Transformer Network Design: A

novel transformer architecture is designed with hardware

in mind, exploiting the capabilities of the target platform

to achieve cutting-edge latency and accuracy.

• Efficient Hardware Implementation: A codesign work-

flow with a number of complex neural network layers

supporting a range of optimization techniques, that can

be generalized to other applications.

• Post-Training Quantization Search: A custom algo-

rithm is proposed that finds the optimal set of bit-widths

for a High-Level Synthesis (HLS) model according to

user-defined constraints.

The specific transformer-based structure and coefficients

are specific for LHC, but the requirement for low latency

would benefit many other applications, especially those re-

quiring real-time response. For example, low latency designs

would benefit adaptive radiotherapy [8], gravitational wave

detection [9] and high-frequency trading [10]. The developed

approach can be adapted to address these other applications.

II. BACKGROUND

A. Real-time data processing at the LHC

Future upgrades to the ATLAS and CMS experiments at

the LHC are the main motivation for this work. The real-time

processing systems envisaged for these detectors are composed

of triggers split into two levels [11, 12, 13]:

• L1T - hardware (FPGAs) and firmware, pipelined and

fixed latency.
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• HLT - software, using farms of CPUs, with behavior

close to offline algorithms.

The Level-1 Trigger (L1T) key specifications used to evalu-

ate the design in this paper are the input data frequency of 40

MHz, which with a pipeline depth of 500 slots results in a fixed

12.5 µs latency budget, and the output frequency to HLT of

750 kHz (both of which correspond to the CMS experiment

case, though the ATLAS design is very similar). The L1T

receives data directly from custom detector electronic systems

over high-speed serial optical links. Data that cannot be

processed within the latency budget are completely lost. The

High Level Trigger (HLT) relies on thousands of multithreaded

CPUs and recently GPUs.

B. Transformer Neural Networks and Attention

A promising architecture which is the topic of this paper is

the transformer neural network (TNN). Similarly to recurrent

neural networks (RNNs), TNNs were designed for sequen-

tial input data, most commonly found in natural language

processing applications. However, compared to RNNs, they

process all input data at once. In RNNs, fully-connected,

convolutional [14] or attention mechanisms [15] are used in a

recurrent manner to allow models to learn the representation

and connections between different parts of the input sequence,

which most commonly are words in a sentence. This limits

the parallelizability as the network is handled serially - each

hidden state needs to wait for the result generated by the

previous one. In TNNs, a modified mechanism called self-

attention [16] is used which can find global relations in data,

without relying on the temporal, sequencing information. The

self-attention combines several simpler operations to achieve

its strength, including linear layers, matrix multiplication and

the softmax function.

Linear

Q K V

Matmul

Scale

MatmulSoftmax

Linear Linear

Fig. 1. Block diagram of a self-attention head.

A diagram of the self-attention can be seen in Fig. 1. The

Q, K, and V stand for queries, keys, and values respectively

which are meant to give a better understanding behind the

mechanism’s idea. It is also important to note that multiple

blocks of self-attention, referred to as heads, can be used

together, which allows for each head attending information

about a different hidden characteristic. The results of all

heads are concatenated, increasing output’s dimensionality,

and multiplied with a weight, as seen in figure 2.

Self-attention 
head 0

Self-attention 
head 1

Self-attention 
head H-1

Concatenate
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Fig. 2. Illustration of H self-attention heads forming a multi-headed self-
attention block.

The complexity of a multi-head self-attention depends on

the dimensions of the underlying queries ∈ R
NQ×dQ , keys

∈ RNK×dQ , and values ∈ RNK×dV parameters. The resulting

time complexity is represented in equation 1, while the space

complexity can be seen in equation 2.

O(h·(NQNK(dQ+dV )+d2Q(NQ+NK)+d2V NK+NQdV dout))) (1)

O(h · (NQ(NK + dV ) + dQ(NQ +NK) + dV NK +NQdout))) (2)

The symbols have the following meaning: h - number of

heads, dout - output dimension, Ni × di with i ∈ {Q,K, V }
- dimensions of queries, keys, and values weight matrices.

III. PROPOSED NEURAL NETWORK ARCHITECTURE

A. Model Design

This section addresses the complexity problem of TNNs

through a number of approaches. In order to track the accuracy

and latency effects of the design changes, the complexity of

the initial architecture (seen in Fig. 3) is high, but then it is

gradually lowered with various simplification and optimization

techniques. A number of optimization steps were tried, and the

successful ones are listed below, where the criterion each time

was the lack of notable decrease in accuracy:

1) First change was the reduction in the number of trans-

former layers from 3 to 1 and self-attention latent dimen-

sions from 128 to 16.

2) Although proven to outperform simpler ReLU activation

functions [17], the original SiLU blocks were simplified

to allow for easier FPGA mapping.

3) Similarly for the normalization layers [18], they are

replaced by batch normalization. Furthermore, these lay-

ers, along with dropout that also combats over-fitting

[19], were removed from the final design, which can be

attributed to the change in the used dataset, that already

includes normalized data.
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Fig. 3. Flow chart of the original architecture

The resulting simplified design can be seen in Fig. 4, while

its FPGA implementation is the topic of the next section.

Interestingly, the achieved accuracy is only slightly lower than

the starting point, with the value of 76.6%. This suggests that

the starting model could be described as ’over-saturated’ with

learning capacity given the relatively easy to classify HLF

dataset.
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Fig. 4. Flow chart of the simplified architecture

IV. HARDWARE MAPPING AND OPTIMIZATIONS

The template for the hardware mapping was obtained using

hls4ml, however, the bulk of the design (the transformer

layer with its self-attention component) was developed in-

dependently, since they are not available in the hls4ml at

the time of this work. During exploration, SiLU and layer

normalization blocks were also implemented, but the final

design does not depend on them.

The optimization that started the design process was the

transition from floating-point to fixed-point arithmetic. It has

been proven a successful strategy for a variety of applica-

tions [20], especially to meet real-time processing latency

constraints [21]. Fixed-point representation offers advantages

in terms of operations complexity, and hence latency, due to

the lack of cumbersome mantissa and exponent conversions.

It is also common to use fewer bits to represent numbers

to further simplify computations by adhering to bit widths

of FPGA building blocks, mainly Digital Signal Processing

(DSP) slices, while also requiring less logic elements for

registers and Look-Up Tables (LUT). This work benefits from

15/14 and 6/10 bit splits for the integer and fractional parts

accordingly, at different stages in the design, depending on

the precision required by an operation. The matmul blocks
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Fig. 5. Visualization of a tensor operation expressed in Einstein Summation
notation

in Fig. 1 implement a custom tensor multiplication, which

is specific to the self-attention formula [16]. It is normally

expressed using Einstein Summation notation [22], which is

supported by mathematical and machine learning libraries like

NumPy or PyTorch. However, not present by default in HLS,

it required careful design of the calculation loops in order

to not cripple the performance by unnecessary computations

and pseudo-random data accesses. As part of this research, an

efficient and fully-customizable HLS block has been designed,

that uses a very similar interface to the Python equivalent.

Figure 5 shows a visualization for an example notation to give

a better understanding of the necessary flexibility of a formula.

Another simple optimization used in between the matmul

blocks was the change in size scaling from using division

(1/
√
size) to right-shifting, which required precomputing the

logarithm of the square root of size, vastly simplifying the

hardware required at run-time.

The adapted architecture requires finding the log softmax

values for the final activation layer, which is used to map

inputs to probability-like results. The numerical stability and

computational efficiency of this operation is often explored in-

depth [23] and varies depending on the programming language

and target platform. The naive implementation comes straight

from the definition of taking a logarithm of softmax, seen in

equation 3.

σ(xi) = exi/

N∑

j=1

exj (3)

This paper proposes a different way of mapping this oper-

ation to hardware to improve stability while shortening the

critical path and using less resources. It is based on the

derivation shown in equation 4.

(4)

log(σ(xi)) = log(exi/

N∑

j=1

exj )

= log(exi)− log(

N∑

j=1

exj )

= xi − log(

N∑

j=1

exj )
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The resulting hardware operations are depicted in Fig. 6 and

7. It is important to note that operations like exponentiation,

division or taking a logarithm usually rely on precomputing a

wide range of values and mapping them in memory or LUTs

to allow for lookup at run-time. Hence, the optimized design

requires one fewer lookup while also replacing multiplication

by a subtraction, which can be simpler to express in hardware.
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Fig. 6. Direct hardware implementations of log softmax.
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Fig. 7. Optimized hardware implementations of log softmax.

Although further simplifications, including approximating

the summation by finding the maximum (see equation 5) or

simply omitting the logarithm portion of the expression, were

also evaluated, they noticeably lowered the final accuracy and

were thus abandoned.

(5)

log(σ(xi)) = exi − log(
N∑

j=1

exj )

= exi −

N∑

j=1

log(exj )

= exi −
N∑

j=1

xj

≈ exi −max(x)

The final and most crucial optimization involved pipelining

the design. In order for an HLS design to be pipelined, several

other optimizations have to be applied, either automatically

(derived from project’s constraints) or manually (using HLS

pragma directives). The most notable ones are loop unrolling,

array partitioning, and function inlining, all of which were

set to trade-off the hardware resources for the lowest latency

possible.

V. EVALUATION AND ANALYSIS

A. Dataset and Preprocessing

The dataset used in this work consists of simulated 13

TeV energy LHC proton-proton collisions, and it includes

information about the High-Level Features (HLF) [24] of

particle jest that were constructed using the anti-kt clustering

algorithm [25]. The dataset distinguishes five classes: light

quarks, top quarks, W bosons, Z bosons, and gluons.

It is also worth mentioning that normalization is the only

preprocessing measure used in this work. The samples are

simulated and do not contain any illegal or null values that

would require dropping or substituting, and for the same

reason, there is also no need for data augmentation.

B. Proposed Neural Network Inference Results

The simplification yields a significant reduction in FLOPS

to 583,676 and parameter number to 2,605. Not surprisingly,

this leads to a considerably faster inference, which is compared

with other state-of-the-art models in Table I and listed for

several other computing devices in Table II. The results have

been obtained by firstly performing 5 warm-up runs, followed

by CUDA-synchronization where applicable, and then timing

200 test runs, for which mean and standard deviation were

calculated. On a closer inspection, the results are similar to the

aforementioned DNN latency, however there are differences in

the evaluation methodology and the test bench specification,

which includes an Nvidia GTX 1080 GPU [26], which pre-

vents further conclusions.

TABLE I
SUMMARY OF NETWORKS’ INFERENCE TIME, ACCURACY,

FLOATING-POINT OPERATIONS PER SECOND AND PARAMETER NUMBER

FOR OPTIMAL BATCH SIZES, WITH BEST VALUES IN BOLD. INFERENCE

TIMES MEASURED USING NVIDIA GTX 1080 (*), NVIDIA GTX 1080 TI (‡).

Neural network
Inference per

batch (ms)

Accuracy /

aver. AUC
FLOPS Parameters

DNN [26] 1.0 ± 0.2* 0.760 / 0.941 27 k 14,725

CNN [26] 57.1 ± 0.5* 0.740 / 0.911 400 k 205,525

GRU [26] 23.2 ± 0.6* 0.750 / 0.912 46 k 15,575

JEDI-net [26] 121.2 ± 0.4* - / 0.959 116 M 33,625

JEDI-net with
∑

O [26] 402.0 ± 1.0* - / 0.957 458 M 8,767

Proposed network 1.2 ± 0.1‡ 0.761 / 0.940 584 k 2,605

TABLE II
COMPARISON OF SIMPLIFIED MODEL’S INFERENCE TIMES WITH BATCH

SIZE OF 128

Device
Inference time

per batch (ms) per sample (µs)

CPU

Intel Xeon Silver 4110 (Dual) 1.741 ± 0.027 13.604 ± 0.207

Intel Xeon X5690 (Dual) 1.622 ± 0.026 12.670 ± 0.206

Intel Xeon E5-2620 v3 1.325 ± 0.123 10.350 ± 0.963

Intel Xeon Gold 6154 (Dual) 1.167 ± 0.066 9.112 ± 0.516

GPU

Nvidia GTX 1080 Ti 1.166 ± 0.112 9.111 ± 0.876

Nvidia TITAN X 1.154 ± 0.119 9.017 ± 0.928

Nvidia TITAN Xp 1.062 ± 0.036 8.296 ± 0.283

C. C Simulation and RTL Synthesis Results

With all of the optimizations, the HLS design was ready for

evaluation. Thanks to its high-performance, XCU250 (variant

figd2104-2L-e) was chosen as the target FPGA platform. C

simulation yielded an accuracy of 73.4% on a test data set
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Fig. 8. Proposed architecture with highlighted pipeline stages.

composed of 165,760 (80/20 split with training data set) 16-

dimensional HLF samples, which is a result worse by only 2.3

percent points compared to the Pytorch implementation. Due

to the intrinsic reduced precision of the fixed-point arithmetic,

that score matches the expectations.

The RTL synthesis report shows a remarkable improvement

in the inference time, from the Pytorch implementation values

in the magnitude of 10 µs down to 18 cycles at 200 MHz

which equates to 90 ns per sample. What is more, the design

is free from any pipeline stalls and achieves an initiation

interval of 1, meaning that a new sample can be input on

each cycle, with its result available after 18 cycles. Table III

lists the hardware resource utilization. It can be seen, that the

selected FPGA has a significant headroom, with DSP slices

usage being most significant due to the calculation-intensive

nature of transformer layers, followed by LUTs which were

prioritized as the storage over BRAMs to reduce latency.

Exploiting the design parallelism by using more hardware

resources to achieve lower latency is possible, and we leave

that for our future work.

TABLE III
FPGA RESOURCES UTILIZATION

BRAM 18K DSP48E FF LUT

Total used 12 4,351 58,942 298,881

Available 5,376 12,288 3,456,000 1,728,000

Utilization 0.22% 35.41% 1.71% 17.30%

D. Latency Analytical Model

A visualization of the architecture annotated with the

pipeline stages can be seen in Fig. 8. As a consequence of

pipelining the model, all the operations can be completed in

either one or two cycles. Certain operations like ReLU or

scaling share their stage with subsequent components due to

their simplicity.

The design configuration affects several of the pipeline

stages, and hence a significant portion of the latency. The

number of transformer layers have a direct impact on stages III

to XI, with each additional layer effectively duplicating them,

increasing the latency by 12 cycles. Within the transformer

block, each feed forward (linear and ReLU) layer contributes

one cycle. It is not obvious at first, but the number of

self-attention heads do not influence the latency as they are

executed in parallel.

Latency (cycles) = Ctop + T · (CSA + CT + F · CFF ) (6)

Overall, the latency can be expressed using a few variables

and constants, leading to the dependency seen in equation 6.

As for the notation, Ctop, CSA, CT , and CFF stand for the

constant cycles needed in the top-level, self-attention, trans-

former, and feed-forward components, while T and F mean

the number of transformers and feed-forward layers. Given

the design configuration of proposed model, the equation

suggests 18 cycles which is a correct approximation, however

without additional experiments, the analytical models allows

for reasoning about alternative designs based on the proposed

one.

E. Post-Training Quantization

Compared to the previous quantization methods, the pro-

posed post-training quantization approach is noticeably easier

to experiment with and deploy for existing models. By simply

specifying the target environment, the algorithm adapts the
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Fig. 9. Visualization of the optimal fixed-point precision of the types used in the proposed model.

hardware implementation and finds the optimal set of bit-

widths. In this project, 60 individual variables are analyzed

for a maximum quantization granularity, which significantly

differs from the quantization-aware training experiments [27].

Fig. 9 showcases the final integer and fractional bit-widths,

with types related to the same layer logically grouped.

This method achieved a 64 % reduction in total bit-width

with a 2 % decrease in accuracy. Total bit-width relatively

closely corresponds to the hardware resource utilization -

while the FFs and LUTs are expected to vary linearly, DSPs

and BRAMs change step-wise and are only affected after their

width threshold is exceeded. In other words, the target FPGA’s

DSP slices allow up to 27 bits as their main input, hence

28 bits or more lead to an additional unit being instantiated.

For that reason, the algorithm uses C simulation accuracy

and bit-widths as its two driving signals, without the need

of performing the synthesis. By exploiting this simplified bit-

width to hardware resources relation, the total run-time of

the tool is significantly shorter as each simulation runs within

minutes instead of hours or even not finishing at all as it was

discussed before. However, the total number of simulations

still lead to a program run-time of around 7 days given

the model’s complexity. As a result, only one configuration

of the algorithm’s positive and negative accuracy tolerances

was tested, where the negative one was assigned twice the

importance of the positive tolerance, driving the substantial

bit-width reduction while sacrificing a fraction of the accuracy.

The success of this method proves the hypothesis about

strong correlation between neighboring layers. More specif-

ically, the average total bit-width difference between layers is

measured at approximately 4 bits. Furthermore, corresponding

types also seem to follow the same trends among different

layers - a good example are the widths of queries, keys, and

values linear layers, all of which have similar input, weight,

and accumulator widths, with the values’ being slightly less

similar, as they are used further along the computations than

the other two. It is also worth mentioning that there is no

noticeable difference in results regardless of whether the

integer or the fractional parts are analyzed first.

VI. RELATED WORK

Transformer architectures are computationally intensive due

their underlying attention mechanism, which requires a num-

ber of matrix operations. In order to benefit from transformer’s

state-of-the-art accuracy in various domains, several accelera-

tion techniques using FPGAs have been tried. That includes

methods which partially trade-off accuracy for better perfor-

mance by weight pruning [28, 29, 30, 31], as well as other

approaches that overcome the complexity without affecting the

results’ precision by focusing on higher hardware utilization

[32, 33], reduced memory accesses [34, 35], exploiting sparse

data patterns [36, 37] or a combination of these methods [38].

High energy physics experiments often require ultra-low

latency computation, which poses a challenge for real-time

data processing using machine learning [39]. Aside from

transformer architectures, other studies in this field have

traditionally focused on Deep Neural Networks [4, 27, 40, 41]

or Graph Neural Networks (GNNs) [26, 42] and their op-

timization [43, 44]. The relative popularity of GNN-based

accelerators comes from their richer research history, making

them a suitable choice for comparisons with novel transformer

models.
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VII. CONCLUSIONS AND FUTURE WORK

This paper proposes an FPGA accelerator for TNN-

based jet-tagging. The state-of-the-art software architecture is

adapted in a hardware-aware manner to the HLF jet dataset.

Then a hardware mapping with several optimizations is per-

formed that leads to a design that achieves superior latency that

is well within the constraints of real-time processing in L1T at

LHC. The introduced computationally-efficient post-training

quantization scheme offers a significant bit-width reduction

potential.

The resulting work serves as a proof-of-concept highlighting

the potential of the proposed architecture. There is a number

of available tuning opportunities, namely quantization-aware

training as well as pruning, to further improve the hardware

performance. Lastly, the work also aims to contribute to

the open-source community by examining the possibility of

introducing useful hardware blocks into libraries such as

those for hls4ml to enable future experiments with them

automatically.
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