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Abstract

This paper reviews the development of application-
specific multiprocessor systems for machine learning ap-
plications, and indicates how variants of such systems can
be produced by design customisation. We first provide an
overview of Progol, a machine learning framework based
on Inductive Logic Programming. We then describe, for
such frameworks, various uniprocessor architectures and
their adoption in multiprocessor systems. We also present
the experimental facilities and results for evaluating our ap-
proach, and a method for automating the compilation of
such designs.

1 Introduction

The ASAP Conference began in 1986 as the Interna-
tional Workshop on Systolic Arrays. The current focus on
application-specific systems reflects a broadened theme to
take into account recent technological advances. One of
the most important of such advances is field-programmable
hardware technology: its increasing sophistication enables
novel application-specific systems to be developed rapidly
at affordable cost.

A field-programmable hardware device delivers a typical
abstraction to its users as an array of programmable logic
and storage elements, linked together by programmable
connections. In the early days when field-programmable
hardware had limited capacity, systolic architectures pro-
vided an effective way of exploiting the available resources.
More recently, the rapid improvement in capacity and capa-
bility of field-programmable hardware has brought exciting
opportunities for hardware support of innovative architec-
tures, in addition to systolic ones.

One promising direction is to deploy field-
programmable hardware in application-specific multi-

processor systems. The use of such systems for logic
emulation [2] is well-known; other applications include
video processing [12], network processing [15], and
scientific computations [17].

In this paper, we review the development of application-
specific multiprocessor systems for machine learning appli-
cations, and indicate how variants of such systems can be
produced by design customisation. Machine learning has a
wide range of applications, including satellite fault diagno-
sis [5], finite element mesh analysis [3], and protein folding
in molecular biology [16]. While machine learning based
on a high-level framework, such as the Progol Inductive
Logic Programming approach, has shown good promise,
there are significant performance bottlenecks which we
hope our multiprocessor system would be able to overcome.

The rest of the paper is organised as follows. We first
provide an overview of Progol, a machine learning frame-
work based on Inductive Logic Programming (Section 2).
We then describe, for such frameworks, various uniproces-
sor architectures (Section 3) and their adoption in multipro-
cessor systems (Section 4). We also present the experimen-
tal facilities (Section 5) and results (Section 6) for evaluat-
ing our designs, and a method for automating the compila-
tion of such designs (Section 7). We shall end with conclud-
ing remarks and suggestions for further work (Section 8).

2 Background: Progol

Inductive logic programming (ILP) [10] is a learning
paradigm based on first-order logic. ILP systems produce
predicate hypotheses from background knowledge and ex-
amples. One advantage of this approach is that both the
input background knowledge and the output hypotheses are
in a human-readable format. Another advantage is that by
incorporating background knowledge, the learning system
can build on partial theories.

In general an ILP algorithm takes as input a set of pos-



itive and negative examples (E), some background knowl-
edge (B) and a language bias which defines the hypothesis
space. From this it produces a theory (H) explaining the
examples:

B ∧ H |= E

ILP algorithms search through a hypotheses space, itera-
tively assessing the quality of the current theory and special-
ising or generalising as appropriate. ILP algorithms employ
different strategies for constructing and searching through
the hypothesis space and in assessing the quality of each
hypothesis.

The ILP system Progol [9] is based on a method called
mode-directed inverse entailment. Progol constructs a lat-
tice of potential hypothesis bounded above and below by a
most and a least general hypothesis. The search space is ex-
plored using an A*-like algorithm. The searching and test-
ing is computationally demanding, and learning tasks can
run for hours or days on modern workstations. To avoid
overfitting which produces excessively specific solutions,
cross-fold validation is used which increases execution time
further.

In order to cope with the computational demands, dif-
ferent approaches to parallelising the learning process have
been proposed, such as splitting up the data set and form hy-
potheses based on each partition [13], partitioning the lan-
guage bias [4], and performing parallel branch and bound
search through the hypothesis space [11]. There is also
scope for parallelising the quality assessment of hypothe-
ses, a method that we exploit in our architectures.

Progol is an extension of the logic programming lan-
guage Prolog. We give only a brief and informal introduc-
tion to the required terminology. Prolog is a declarative lan-
guage where a program consists of a collection of facts and
rules. A predicate defines a relation, and is defined by one
or more clauses. Each clause contains one or more liter-
als, generally organised as a head literal and zero or more
body literals. A literal consists of a functor and arguments.
The arguments can be constants or variables. A unit clause
contains only one literal. A ground clause contains no vari-
ables.

Prolog execution is characterised by the use of unifica-
tion to pass arguments, and the use of non-deterministic ex-
ecution. A computation can fail, at which point it back-
tracks to an earlier state to try an alternative solution. A
procedure call can have many alternatives, and clause in-
dexing is commonly used to reduce the number of possible
calls.

3 Uniprocessor systems

We have developed several processors for use in the Pro-
gol learning system. We speed up the hypothesis testing

phase of Progol, which tests whether or not a hypothesis
instance is explained by the background knowledge. Both
the hypothesis and the background knowledge are Prolog
programs. The processors are therefore Prolog processors
executing a stream of queries (the hypothesis) with a pro-
gram (the background knowledge) loaded into memory.

3.1 WAM instruction processor

Our first processor design [7] is based on the Warren Ab-
stract Machine (WAM) execution model for Prolog [1],[18].
This is an execution model which is widely used in software
implementations of Prolog. The abstract machine is a stack-
based machine based on a high-level instruction set which
maps closely to Prolog code.

Our instruction processor differs somewhat from the
original WAM. The main differences are that the control
and data instructions are kept separate, all data-oriented in-
structions are replaced by a monolithic unify operation, and
bindings are stored on a separate stack. As in the origi-
nal WAM a local stack keeps both determinate and non-
determinate activation records, the trail stack records bind-
ings which need to be undone upon backtracking, and a
small unification stack holds temporary data during unifi-
cation of complex terms. The queries generated by the host
are stored in a reserved section of the code and data seg-
ments in the main memory.

The execution of the complex WAM instructions is not
pipelined, but the control logic for each instruction is highly
parallelised and makes use of speculation. The current im-
plementation does not cache instructions or data.

3.2 Data processor

Our second processor design [6] consists of a data pro-
cessor architecture which exploits simplifications in the
background knowledge. Specifically, it is assumed that the
background knowledge contains ground unit clauses only.
The lack of variables in the background knowledge means
that unification can take one of only a few forms, and a sim-
pler architecture can therefore be used.

The basic operation of a data processor is the same as
before: receive a hypothesis and evaluate it with respect to
the background knowledge. The processor contains a small
hypothesis memory, background memory cache, a unifier
unit, and a variable register file. These components are cus-
tomised for a particular hypothesis space. The architecture
of this processor is shown in Figure 1.

The unifier unit operates on tagged data from the hypoth-
esis memory, background memory and the variable register
file. The four data types in the hypothesis data correspond to
four unification operations (register store, register compare,
input data compare, no-op). The literal and argument fields
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Figure 1. Architecture of data processor

of the hypothesis contain relevant control information, and
are used in a simple controller containing a few counters
and a minimal stack.

We observe that data access to segments of the back-
ground knowledge with the same index display a high de-
gree of temporal locality. We make use of this observation
to make an estimate of the cache resource requirement in the
data set. For a data set, we examine the number of clauses
in the background knowledge using the same index, and use
the maximum value as the size of the active set. The input
data are grouped by index in order to improve cache perfor-
mance.

3.3 Customisable instruction processor

The two processor designs presented above each has its
benefits: the instruction processor can handle any form of
input data, while the data processor is much smaller and
faster. Our third processor design, Arvand, is developed to
combine the benefits of both by using a customisable pro-
cessor design. It is an instruction processor using a differ-
ent execution model which allows a simplified version of
the processor to resemble the data processor, while a more
complex processor, using the same instruction set, can han-
dle the full range of input data.

We make use of the Vienna Abstract Machine (VAM) [8]
execution model for Prolog. The VAM uses two instruction
streams in order to interleave argument setup and unifica-
tion. This execution model ties in well with the execution
model used in the data processor, where two streams (of
tagged data) are unified.

The Arvand processor operates on two instruction
streams in a four stage pipeline. The instruction streams,
one for the head and one for the goal, are cached indepen-
dently in direct-mapped caches. The deterministic and non-
deterministic control stacks are kept on the local stack in
the main memory, while the top part of the stack is also
buffered locally. The register file contains the variables for
the head, while the topmost frame in the stack buffer con-
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Figure 2. Customisable Arvand processor ar-
chitecture overview

tains variables for the goal. The topmost choice point on
the non-deterministic stack is also kept in registers; this al-
lows fast activation record push and pop operations, which
is important for shallow backtracking. If complex structures
are used, the unifier (labelled SLU in Figure 2) builds tem-
porary data on the global stack. Additional execution units
are required for extra-logical predicates. Currently the only
such execution unit is an accumulator-based ALU. Figure 2
shows an overview of the datapath of the processor, without
the optional ALU, or the global stack buffer.

The use of programmable logic as the implementation
platform makes it possible to cheaply and quickly generate
architectures. Variations of the basic architecture can there-
fore be used to cater for the specific needs of different input
programs or data. These customisations can be made in the
dataflow of the processor, or by parameterisation of mem-
ory units. The caches and buffers in the processor can all
be customised to the input program. Some interfaces be-
tween the internal processor storage elements and the main
memory are optional. Some classes of programs require lo-
cal buffers only, for goal instructions and the local stack;
while others may not require the global stack. The decode
unit can be tailored to cater only for the required instruction
combinations. For programs which deal with symbolic data
only, the ALU can be removed.

4 Multiprocessor architectures

To perform tasks in parallel we combine processors into
a multiprocessor. The multiprocessor is in the form of a pro-
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cessor farm, where a controller node receives or generates
tasks and dispatches them to the available processors.

The main memory, of which there may be several banks,
is shared between processors. An individual processor may
have its own internal caches and buffers and may also have
private data structures stored in the shared external memory.
The same code segment is shared by all the processors and
is replicated across the available memory banks.

The most basic multiprocessor architecture contains
identical processors. Even with this homogeneous architec-
ture, different configurations are possible, with the impor-
tant trade-off being between the number of processors and
the cache size. At one end of the range of possibilities the
multiprocessors contain a large number of parallel proces-
sors with small caches, while at the other end they contain
a small number of processors with large caches.

Two effects interact to determine the speedup that can be
attained for a given number of processors. First, increasing
the number of processors increases the level of parallelism
for the independent parts of execution. Some part of the
parallel tasks needs to be sequentialised, and this imposes
an absolute limit on the speedup that can be attained. Since
the processor nodes in the multiprocessor share the main
memory bus, the bandwidth of this bus is a limiting factor.
The speedup gained from the parallel execution of the inde-
pendent parts of the tasks will tend to converge on an upper
limit determined by the available memory bandwidth and
the aggregate memory bandwidth requirements for all the
processors.

Second, increasing the number of processors decreases
the performance of each processor. With a fixed amount

of resources, increasing parallelism results in less resources
per processor. In our multiprocessor, the cache size is de-
pendent on the number of processors. More processors im-
plies smaller caches which in turn implies higher memory
bandwidth requirements. Increasing the number of proces-
sors will therefore tend to increase the proportion of com-
putation which must be sequentialised, resulting in lower
performance.

5 Experimental setup

We use two different target platforms, RC1000 and
RC2000. The WAM instruction processor and the data pro-
cessor are both implemented on the RC1000 platform. This
contains a Xilinx XCV2000E FPGA chip, with 160 embed-
ded 256 × 16 bit RAMs. The board contains four exter-
nal RAM banks. The Arvand processor targets the RC2000
platform. The RC2000 contains a Xilinx XC2V6000 FPGA
chip, which contains 144 embedded 512 × 36 bit RAMs,
used for caches and buffers. The board also has 6 external
RAM banks.

For the Arvand processor, we have performed cycle-
accurate execution of single-processor runs. Execution
traces for cycle time and memory usage is used as a basis
for simulating multiprocessor performance.

For comparisons with software, we compile the bench-
marks to native code for x86 using GNU Prolog. The soft-
ware runs on a 2GHz Pentium 4 processor, with 256MB
RAM and a 512k L2 cache.

We construct benchmarks based on two data sets from
bio-informatics: protein folding and mutagenesis. The pro-
tein folding data set is taken from [16], where Progol is used
to predict the tertiary structure of proteins. We use the data
for the immunoglobulin fold. The mutagenesis data set [14]
is used in a study to predict mutagenic activity, linked to car-
cinogenity, of nitro-aromatic compounds. Both benchmarks
are constructed by sampling the hypothesis generated by a
full run of Progol.

For the Arvand processors we use two configurations.
The first deals with complex data, while the second one
deals only with ground unit clauses in the background
knowledge, like the data processor (Section 3.2). The com-
plex processors are named Cn where n is the number of
bits required to address the head cache. Similarly, the sim-
ple processors are named Sn. The C-processors are used
for the immunoglobulin data set, while the S-processors are
used for the mutagenesis data set.

6 Results

We compare the execution time of the Arvand unipro-
cessor and multiprocessor with software, as described in the



previous section. For the uniprocessors the performance is
roughly half that of the Pentium 4 processor. For multipro-
cessors we observe a ten times speedup using 38 processors.

The WAM processor is the largest design. Four of these
processors can fit on the XCV2000E chip. For the data
processor, 32 processors can fit on a single XCV2000E
chip. The Arvand processors come in several configura-
tions. The complex configuration allows 16 processors on
the XC2V6000 chip, with embedded RAMs being the lim-
iting factor. The simple configuration allows 38 processors
on the same chip, with configurable fabric being the limit-
ing factor. The XC2V6000 chip is around three times larger
than the XCV2000E.

In terms of execution time, the Arvand processor and the
data processor are the fastest. The data processor is ob-
served to be around 30 times faster than the WAM instruc-
tion processor on the same data set. The simple configura-
tion of Arvand has similar execution time as the data pro-
cessor.

The speedup that can be attained for different multipro-
cessor configurations varies between data sets. Figure 4
shows the speedup for the different Arvand processor con-
figurations for the immunoglobulin and mutagenesis data
sets. The speedup is calculated relative to a single 4k cache
processor. In addition, the aggregate miss rate is plotted,
calculated based on the total miss rate of the single proces-
sor run.

The speedup correlates with the number of processors,
but the effect of higher miss rate for small cache sizes limits
the speedup. For the immunoglobulin data set, the critical
point is in the switch from 4k to 2k cache. For the muta-
genesis data set, the active set can fit in even the small 1k
caches, and performance improves steadily, but the speedup
is limited by the longest running task.

From the above results, the link is clear between the ag-
gregate miss rate of the multiprocessor and its overall per-
formance. For one data set the performance limitation is
imposed by the adverse effect of high aggregate miss rate.
In this case a good estimate of the cache requirements is im-
perative to attain high performance and good resource utili-
sation.

7 Design automation

The architectures presented above are hand-crafted. In
order to speed up development of multiprocessor architec-
tures for inductive logic programming and related domains,
we are now developing an architecture generation frame-
work. This framework makes use of a high-level logic
programming oriented architecture description language,
Archlog. The language and its compilation framework has
the following benefits:

• Ease of development. A high level of abstraction al-
lows fast development of architectures and encourages
architectural exploration. The use of a language close
to that already in use in the intended application do-
main encourages its use by software application devel-
opers.

• Separation of concerns. The architecture generation is
library based, enabling application-developers to work
at a high level of abstraction, while the hardware de-
velopers focus on the efficient realisation of the library
components.

• Flexible hardware/software partitioning. The hard-
ware description and the description of the software
running on the architecture are similar, facilitating easy
migration from software to hardware, either manually
or automatically.

The Archlog language is similar to Prolog, and is used to
hierarchically describe an architecture. A special fork con-
struct is used to express data-parallel operation. A number
of processing primitives provide the basic building blocks
of an Archlog architecture. These can be quite simple, like
an adder operating on a stream. However, the main pro-
cessing element remains the customisable Arvand processor
from Section 3.3.

The synthesis in the Archlog framework is library-based.
The Archlog description is transformed to a netlist con-
taining processing elements and communication units with
standardised interfaces. The processing elements occur in
the Archlog program, but the communication units, such as
pipeline buffers and memory interfaces, must be mostly in-
ferred. Program analysis of the input software is used to set
parameters for the hardware generation.

We expect to be able to use the Archlog framework to
produce optimised designs quickly. The framework will
then be used to implement different inductive logic pro-
gramming architectures, as well as architectures for other
logic programming based applications.

8 Conclusions

We have described the development of application-
specific multiprocessor systems for machine learning appli-
cations, particularly for the Progol framework based on In-
ductive Logic Programming. We demonstrate that although
our customised multiprocessor system runs at a lower clock
speed, it can out-perform traditional microprocessors by up
to an order of magnitude. Current and future work includes
refining our multiprocessor architecture for improved ef-
fectiveness, and investigating how run-time reconfiguration
can be adapted for design optimisation.
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Figure 4. Performance of homogeneous multiprocessors
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