THE DERIVATION OF REGULAR SYNCHRONOUS
CIRCUITS

WAYNE LUK and GERAINT JONES

Programming Research Group, Ozford University Computing Laboratory,
11 Keble Road, Ozford, England OX1 3QD

Abstract. An approach to derive parametrised representation of regular synchronous circuits from
their specification is presented. A number of word level and bit level rank evaluator designs are
developed to illustrate the techniques described.

INTRODUCTION

Design derivation involves recording the steps in developing a product from a specification, and
the justification of design decisions in proceeding from one step to the next. This paper outlines a
framework for deriving regular synchronous circuits so that they can be described succinctly and
derived in a rigorous manner. This will also provide a basis for documenting design commitments
and for evaluating design tradeoffs.

A specification describes the desired behaviour of a system. For the sake of clarity an expressive
notation should be used to capture the specification precisely and comprehensibly. Our specifica-
tions are general predicates on the observable behaviour of the product. Familiar mathematical
operators, such as the summation operator ), can be used in the specification.

Architectures are expressed in a restricted notation which allows efficient structures to be de-
veloped by stepwise refinement. The strength of regular architectures is that a relatively small
number of predefined structures appears to be sufficient to capture the main design idioms. These
structures correspond to common patterns of computation that can be laid out efficiently on a two-
dimensional surface; they can be parametrised to cater for requirements of different applications.
Our notation also possesses elegant algebraic properties which enable designs to be transformed
by simple substitution of equal expressions. In particular, there are theorems that can be used to
pipeline a circuit to any desirable degree.

The derivation of designs in our framework consists of two steps: rewriting the specification
in terms of predefined structures to obtain a draft architecture, and optimising that architecture
by successive correctness-preserving transformations using algebraic theorems. These steps can be
repeated for developing, at a lower level of abstraction, architectures that still satisfy the original
specification.

SPECIFYING AND DESCRIBING PARAMETRISED ARCHITECTURES

The design process starts with an unambiguous specification of what the system is to accomplish.
Predicate logic provides a formalism to specify requirements clearly and precisely. A simple adder,
for instance, can be defined by ADD(z,y,2) df =2+ y. For many systems, such as those for
signal processing, this step is normally quite straightforward as the operations to be performed are
generally well understood.

Next comes the problem of describing an architecture. Expressing both specification and archi-
tecture in the same notation simplifies the task of associating them. An architecture f is described
by a binary relation [4,5], and is defined in the form z fy def P(z,y) where z,y represent the in-
terface signals and belong to dom(f) and rng(f) (domain and range of f) respectively, and P is
a predicate describing the intended behaviour. The design process can then be seen as finding an
appropriate expression for f that relates the interface signals z,y according to the specification P

2.

CH2603-9/88/0000/0305$01.00 © 1988 IEEE 305



306 International Conference on Systolic Arrays

The converse ! of a circuit f is defined by z (f~1) y def y f = and corresponds to reflecting f
in a line orthogonal to the direction of signal flow. If f happens to be a function, then f z represents
the value of f for the argument z. If there is a need to distinguish infix operators from relations
the former will be underlined, soy = afb ¥ y = f (a,b) = (a,b)fy.

For a circuit with ports on every side of its bounding box, the following convention is used to
partition the interface signals into domain and range: signals for the west or north side are allocated
to the domain, and those for the south or east side to the range. If there are two or more signals in
the domain (or range), the signals are represented as tuples with the position of a particular signal
corresponding to its relative position, and the tuple structure - the grouping of signals — reflecting
the logical organisation of adjacent signals. As usual, subscripting a tuple with { extracts its it4
element (i starts from zero), so zo is the first element of tuple z. z;; is defined to be (z;);. The
number of elements in z is written as #z.

The empty tuple is denoted by (). Tuples are formed by constructors append left (app;) and
append right (appr), which append an element to the left and to the right of a tuple respectively,
so that

aappy, (b,c,d) = (a,b,c) appr d = (a, b, c, d).

The following operations are used to manipulate tuples (I is defined to be dom(z), and in case

of zip, Vi € I. dom(z;) = J):

zelnz ¥ 2=z, (select n z,1< n < #z),
czipz ¥ z=((z;jlieD|jeJ) (interleaving elements of z),
(y,2) distp z 4f 2= {y, m)|i € I) (distribute y to left of each z;),
(z,y)distrz ¥ z={((z;,y)]iel) (distribute y to right of each z;),
crevz ¥ 2= Tyr_i—1li € I) (reverse z),
cidz ¥ z2=g¢ (identity relation).

These can be used to describe organisation of data, or can be implemented as wiring cells.

Circuits are combined by circuit combinators which are higher order functions mapping compo-
nents to the circuit in which they are wired together. The definitions of some circuit combinators
are given in Figure 1; because of lack of space the base case of inductive definitions is not given.
These circuit combinators correspond to simple and regular patterns of interconnections, some of
which are shown in Figure 2. They are parametrised by the type of components that they combine.
Some of them, such as pipe, map, triangle and reduce, are parametrised by the array size as well:
each combinator describes a family of circuits with the same structure.

Three wiring cells will be named: tj24_5f[id,id], which corresponds to a T-junction of two
branches, id2 4 id || id, which corresponds to extending two buses of wires, and rev2 3 [ely, el ],
which corresponds to a cross-over circuit. They can be used to describe common wiring patterns;
tj}(IN) def (/(Jv) tj271)7! and tjé,N) d=°f(/gv)t_1'2_1)_l, for instance, represent circuits that broadcast a
signal to N + 1 destinations.

For systems with sequential elements, we use streams — infinite tuples with the innermost sub-
script representing time - to describe and reason about them. A stream operator relates a single
stream in its domain to a single stream in its range. Square brackets will be used to indicate the
interleaving of a tuple of streams to form a stream of tuples, so that [[z,y],2]; = ((z:,%:), ). A
stream operator will be denoted by capitalising the first letter of the corresponding static operator;
thus [z,y] Add z e vz = zyadd y: = 2, + y;. The same symbols are used for both stream and
static circuit combinators ~ no confusion should arise since stream combinators will be confined to
stream components and static combinators will be confined to static components.

A delay D is defined by zDy %f v¢. Yt = Ty—1. Z’s with t < 0 can be regarded as undefined
values or values defined by initialisation. An anti-delay D! is such that D; D~ = D~!; D = Id.
A latch is modelled by a delay with data flowing from domain to range, or by an anti-delay with
data flowing from range to domain. From its definition D can be used on all types of signals, so



Mapping Methodology 307

z(fi9)z ¥ Iy (zf)A(vg2) (sequential composition)
(z, ¥) (Fll 9) (=", ¢") ' (zf2)A(yg¥) (parallel composition)
fstf 4 s|id (apply to first)
sndf 4 id|f (apply to second)
z[fgl{pe) & (2fp) A(2g9) {construction)
&g (pipe)
appr; <™V € £l () f; appy (map)
appr; ATF X fsi(ocf; APF); appr (left triangle)
appr; As;'“)f def snd(ocf; A(I{')f); appr (right triangle)
(8, (b, NF—g)(p, 0)s7) & s (a,0)f(p,8) A2, c)g(a, ) (f beside g)
(e, 8), )(Flo)(p () %F Fa. (b,)f(s,7) A(a,0)g(p,q) (f above g)
T el ((ely; £)L(g; elzh)); ely (flat above)
snd appr; \("+Bf def (\(,;-')f—of); fst appr (horizontal array)
fstapps; \GPVF 4 (\PFLP); snd aps (vertical array)
Inf % \u(f; el ); ely (horizontal reduce)
v & \v(FielY); ely (vertical reduce)
\mmlp 4 \EI0\Dg) (rectangular array)
appr || appg; trail "tV (P, Q) ¥ (\uP—Q) | (trail (™(P, @)=\vP); (Q’s on trailing diagonal
appr || appr of a square array of P’s)

Note: prefix circuit combinators have a higher binding power than infix ones, and sequential
composition has the least binding power, so o f; g—h means (o f); (9—h). Bracketed super-
scripts are size parameters, often omitted when they can be deduced from environment.

Figure 1. Definitions of circuit combinators
—HAH- AI#H#—C%}-
f3
\uf
¢ [#] L-%] Agf flg T Iﬁ [b [ﬁ
of i = Iuf

Figure 2. Pictures of some circuit combinators

that for example D; xF = xD; xF = x(D; F).

DERIVING DESIGNS

A specification needs to be recast in circuit combinators before the algebraic theorems outlined
below can be applied. This can usually be done by the method of divide-and-conguer: decompose
the specification into components which can be implemented by known architectures, and combine
the architectures by circuit combinators. For instance, if specification P can be decomposed into
P1 and P2 which can be implemented by architectures P1 and P2 respectively, that is, if

P(z,y) = 3Jz.Pl(z,z) A P2(y,2)
Jz.(z P12z) A (z P2y),

then P(z,y) = z(P1; P2)y. A designer will know how to implement certain specifications directly:
for example given that V t. dom(z;) = K, then

Vi.y, = E iy = z([!0,1d]; /gAdd)y where (p,q)addr e ptg=r.
0<k<#K



308  International Conference on Systolic Arrays

(z (l¢)y is defined to be V¢. y; = c.) This theorem can be proved by induction on the size of z. Of
course, this is one of many possible ways to implement summation.

The algorithm is fixed once the specification has been expressed in circuit combinators that
define the shape of the circuit. The expression can then be refined by algebraic theorems which
state the behavioural equivalence of distinct expressions. Circuits are transformed by substitution
of equals using these theorems. The theorems discussed in this paper can be divided into several
classes.

The two sides of a bracketing theorem represent different views of the same circuit layout; it is like
bracketing the same circuit layout in different ways. The most familiar example is the associative
law of sequential composition: f; (g; h) = (f; g); h. Other examples include distributive laws like
x(f; 9) = f; g, and \w(sndg; f) = snd ocg; \srf and (/PF1)1 T (/Pg) = (F T o)™

Flipping theorems express the reflectional symmetries in regular structures; they relate circuits
to their mirror images. Some examples are (f; ¢)~' = g=%; f~ and (\vf)~! = \g(f ).

Zipping theorems relates circuits with connections interleaved in different ways and can be used
to interleave bundles of wires to minimise their length and the number of cross-overs. Here are a
couple of examples to convey their flavour: (zip; f; zip)® = zip; F™; zip and \ g (2ip; «f; zip) =
sndzip; (zip; <(\uf); zip); fstzip.

Retiming is a well-known technique to achieve pipelining by relocating latches to reduce combi-
national rippling. For systems containing no primitives which possess a measure of absolute time,
adding n delays to every domain signal and n anti-delays to every range signal (or vice versa)
will not alter its behaviour: D*; F; D™ = D~"; F; D" = F. Retiming theorems for our circuit
combinators can then be derived, such as

F* = (F; D)% D7, 1)

\WF = snd ApD; \(F; sndD); AgD1 || D", )
\("™MF = A;D| ApD; \(™™(F; D); (D™™; ApD™Y) [1(D~™; A,D™Y), (3)
Fixm = (F% D)% D, (4)
\POPF) = snd 220 \P\PF; snd D); ARD || D", ()

\WOEDF) = ALD|| AgD; \™ ™ (trail )(F, F; D)); (D™; AgD-1) || (D~"; A,D1).(6)

These theorems are still true if all delays are changed to anti-delays and anti-delays to delays.
The significance of theorems (4~6) is that a single expression, such as ( F¥; D)", represents an array
with elements which are themselves arrays so that the degree of pipelining can be controlled by
adjusting the size of the component arrays. See [2] for a more detailed discussion of this topic.

Other theorems correspond to well-known numerical identities, such as for negation and addition
of integers: xnegate; add = add; negate.

DATA REFINEMENT

One often designs a word level circuit first and then refines it to bit level. Data refinement is a
useful technique that allows bit level architectures to be developed from the corresponding word
level architectures. The essential idea is to use an abstraction function to map concrete data (such
as bits) to abstract data (such as integers), and to ensure that for a given concrete signal z the
abstract representation of the range signal of the concrete operation fe is the same as the range
signal of the corresponding abstract operation f, on abstract data: abs (fez) = fa(absz).
An abstraction function mapping a tuple of bits to a number can be defined as
abs() % o,
abs (23 appg z) df 2 x abszs + =

where z € {0,1} and Vi € dom(zs). zs; € {0,1}. The first element of the tuple is the most
significant bit.



Mapping Methodology 309

To illustrate the design procedure, consider developing a bit level architecture adds to increment
a number, represented by a tuple of bits, by one or zero. That is, given that zs is a tuple of bits
and that y is a single bit, adds has to satisfy

abs (adds (zs,y)) = abszs + y. (7)

To find an expression for adds, consider the induction case of right hand side of (7):

abs(zs apprz) + ¥y = 2xabszs + z + y

= 2x(abszs + c) + s where 2xc+s=z+y
= 2 X abs(adds(zs,c)) + s (by induction hypothesis)
= abs ((adds (z3,c)) appr )
= abs (papp,psapprs) where papprps = adds{zs,c),

so if adds (zs appr z,y) = p appy ps appRr s then (7) will be satisfied. Moreover, if

(z,y) hadd {c, s) df z4+y=2xc+s, thensince
(\vf)asappra,b) = (b',as'apppa’) where (V',as’) = (\vf){as,z} A (z,a') = f{a, b},

the definition addsdzd\yhadd; appy, will satisfy the induction case of (7). This definition also

satisfies the base case of (7).

As another example, consider implementing a function sm by a bit level architecture smbs.
Given two numbers z and y, z sm y iz < y, otherwise z gm y d¢f 0. This time let us represent
the most significant bit as the last element of the tuple. The abstraction function then becomes
abs' z % abs (rev ). smbs should satisfy

smbs (zs,ys) = (abs’ zs) sm (abs’ ys). (8)
smbs can be derived by noting that
abs’ (zs apprz) < abs'(ysappry) = (2 <y) V ((z = y) A (abs’ zs < abs’ys)),
which gives
abs’ (zs apprz) sm abs’ (ys appry) = (z smbity) or ((z eqy) and (abs’ zs sm abs’ ys))

and not are bit level and-gates, or-gates and inverters respectively. Furthermore it can be shown
that smbs % [10, zip]; /5 smb where p smb (g, 1) = (g smbit r) or (g eg r) and p) satisfies (8), which
follows from

g {0,

c
g (= GPPRT, YSapprY) = f(y(zs,yS),(z,y))}

where z gmbit y = y and (not z), = €q ydzefl if z = y otherwise z eg yd_—e.fO, and and, or

= ¢g= [!C, zip]; /Hf

RANK EVALUATION: SPECIFICATION AND WORD LEVEL DESIGNS

A circuit for rank evaluation can be specified as follows [3]: given a window of length N 4+ 1 and
input z, compute output y such that
Vi gy = Z Ti—n ST I¢.
1<n<N
A preliminary architecture can be derived by decomposing the specification into several stages
each of which can be directly implemented by the architectures on the left hand side of the following
equations:
z (T52; snd(T5"); Eh)) ya
ya (Disty) yb
yb (AgfstD; «xfstD) ye
yc (< Sm) yd
yd ([!0, Id); /n Add) y

Vt. ya, = (z;,2s,) where Vn:0< n< N.zs;, = z4,
Vi,n:0<n < N.ybyn = (21,21),

Vi,n:0<n< N.ycyn = (Zt—n-1,2t),
Vi,n:0<n< N.ydyn=24_n_15mz,

Viy= Y Zin-18MmT = Y Ty_nSma;.
0<n<N 1<n<N

LI 1 | R 1T}

The intermediate streams ya, yb, yc and yd can be eliminated by sequential composition to give



310 International Conference on Systolic Arrays

zReQy = Vt.y = z Zy_, S 7, where
1<n<N
Re0 % Tj2; snd(T55Y); El); Disty; A pfstD; ocfstD; ocSm; [10, Id]; / g Add.

By implementing Disty, as an array of wiring cells for broadcasting: Dist; = \g[Id2, EL]; EL,
by noting that

snd(«xF; ApG); \y[Id2, Eh); Ely = \y[Id2, EL); Eh; xsndF; AgsndG,
and by using theorem (2) and other bracketing theorems, Re0 can be transformed to Rel:
Rel % 10, Tj2); Relcell™; Bl where Relcell %f (fstD; [Sm, Id2]) | Add.
Rel can be pipelined by every K cells by retiming theorem (4) so that Re2; D~ = Rel, where
Re2 ¥ [10, Tj2]; (Relcell®; DYM; El, (given K >0 and K x M = N).

® =7

Figure 3. Re0 Figure 4. Re2 (K =2,M = 2)

A faster circuit can be obtained by pipelining the Sm cell and the adder,
Re3 &f [10, Tj2); Re3cell¥; El, where Re3cell (fstD; [Sm; D, Id2)) I(Ada’; D),
which satisfies fstD; Re3; D~(¥N+1) = Rel.
All circuits derived so far have unidirectional flow data. Circuits with counter-flowing data can

be derived by using the following theorem to move the T-junction from the top left-hand corner of
Rel to the top right-hand corner:

T52; (/v (fstD; [F, 1d2))~1)™Y; BY = EGY; (/v [F, fstD1"1)"; snd Tj2~1; Ely; Rev,
and since sndRev; [y Add = [y Add, Rel can be transformed to Re4:
Re4 % 10, EL™Y); Redcell™; snd Tj2™1; By where Redcell % [Sm, fstD-1] T Add.
Re4 can be pipelined in several ways. We can make it 2-slow by doubling every delay and
anti-delay in the circuit [2] and then apply retiming theorem (1) to give
Res 4 [0, EL"); RebcellV; snd Tj2-1; By,
ReScell % [Sm, D! || D] ] (Add; D).

However, only one of a pair of adjacent processors is active at any time, hence doubling the
cycle time for a particular computation. This can be avoided by pipelining Re4 by every K cells
(K >1and K x M = N), so that Re6; D~M = Re4, where

Re6 % [0, EL,7'); Re6eell™; sndTj271; Ely and Rebeell % RedcellX~1; Redcell’,
Redcell’ %' [Sm,sndD] [ (Add; D).
An alternative way of partially pipelining Re4 would have Re7; D~(X-DM _ Re4, where
Re1 % [t0, ELY); ReTcell™; snd Tj2-Y; B,
ReTcell % Redcell’®—1; Redcell.

Some simple measures of design tradeoffs for the architectures developed are given in Table 1.



oe
(1]
S

L

Table 1

Mapping Methodology

D-(K-1)M

Figure 6. Design Re7 (K =3, M =2)

. Comparison of word level rank evaluator designs

Min. clock period Slow-  Number of
Data flow Design (for a particular Latency doun latches
computation) by 2 in array
Unidir. Rel Tsm + NT pa4 N No N
flow
Re2 Tsm + KT p44 NK+1) No N(K +3)
(K >0) K K
Re3 ma:c( Tsm, TAdd) 2N +1 No 5N
Contra- Re4 Tsm + NT paq N No N
flow
Re5 2(Tsm + Taaa) 3N Yes 3N
Re6 Tsm + KT pd4 N(K +1) No N(K+1)
(K >1) K K
Rel  maz((K-1)Tp+ Tsm N(2K-1) No N(2K-1)
(K >1) +Tadd, Tsm + 2T 4da) K K

Tsmy Tadd:

N: number of word level rank evaluator cells
K: clustering cells in groups of K cells

Tp: propagation delay across a cell

the combinational delay of cell Sm, Add

311



312 International Conference on Systolic Arrays

RANK EVALUATION: DATA REFINEMENT AND BIT LEVEL DESIGNS
Relcell can be separated into a combinational part Relcella and a register:
Relcell = snd(fstD); Relcella where relcella % sma L add
and sma ¥ [sm,id2].
relcellc, the concrete (bit level) implementation of relcella, should satisfy
abs; relcella = relcellc; abs. 9
abs is defined in the section on data refinement. For convenience, we shall use abs to denote the
abstraction of all bit components in a tuple, for example abs ({(0,1),(1,1)},(1,0)) = ((1,3),2).

If smc and addc are the concrete implementations of sma and add respectively, then (9) will
hold if relcellc = smcIaddc, and smc; abs = abs; sma and addc; abs = abs; add. Since

«rev; abs; sm = smbs,
abs; sm = rev; smbs
oxrev; [0, zip); / g smb.

Therefore a satisfactory sme is
sme ¥ [«rev; ['0, zip); / g smb,id2)
= [ocrev, id2]; fst([!0, zip); / ysmbd) since [f; g, h] = [f, h]; fstg,
= zip; tj2; zip; (rev; [10, id]; / g smb) || zip
since [ocrev, 1d2] = zip; xtj2; zip; (rev; zip) || zip,
= zip; [id,!0]; \ v smcell; sndzip where smeell &' [rev2; smb, el]
since o«j2; zip; fst(rev; [lc,id]; /uf) = [id,!c]; \v[rev2; f, ely].
addc, the bit level implementation of add, is similar to adds developed in the section on data
refinement except that the inputs are assumed to be small enough not to affect the most significant
bit which will be stripped off: abs (addc(zs,y)) = abs zs + y where addc %f \v hadd; el,.
Given that S and 4 are the number of rows of Smcell and Hadd cells respectively, and using

Tj‘(,"); Ela; !0 to implement at bit level the constant generator !0 in the definition of Rel, a bit
level circuit corresponding to Rel is given by

[ij); Ely; !0, T72]; (snd(fstD); Relcellc)”; EL
which can be transformed to Rebl where
Rebl 4 [Id,[xTj2, H]); Smlarray | Haddlarray; El,
Smiarray ¥ snd( Tj,(,N); Eh; 10); \'S¥) Smicell,
Smilcell fst(fstD); Smcell,
Haddlarray ¥ fst(Ti); Ely; <!0); \(4"¥) Hadd; El,.
Using retiming theorem (6), Rebl can be pipelined by every K by K cluster of cells (K > 0,
PxK=S8,QxK=Aand M x K = N), giving
Reb2 ¥ [H,[ALD; xx Tj2, Id]]; Sm2array 1 Hadd2array; Eb; D-(P+Q), A D1,
4f snd Tjoy; \PM)(trail K)(Smicell, Smlcell; D)),
mion ¥ (/00 T2 Bh xexto,
Hadd2array % fst Tj0y; \ (@M (trail ) Hadd, Hadd; D)); Eb,
oy (P T2 By xoxto.

Sm2array



Mapping Methodology 313

A bit level circuit corresponding to Re4 is given by

Reb3 ¥
Sm3array ¥
Sm3cell &f

Hadd3array def

[Id,[xEL™Y, Id]]; Sm3array 1 Hadd3array; El,
snd(Tj,(,N); Ely; !0); \(S'N)Sm3cell; sndx 5271,
Smecell; snd(fstD=1),

fst(Ti; Ely; 0); \“4¥) Hadd; El,.

Reb3 can be fully pipelined by making it 2-slow and then applying retiming theorem (3):
Reb4 % [Id,[A;D; xEh~!, Id]); Smdarray [ Hadddarray; El; D~S+4; A D1,

Smdarray def snd(TjI(,N);

El; x!0); \(S'N)Sm4cell; sndx 5271,

Smacell ¥ Smeell; D || (D! || D),
Hadddarray ¥ fst(Ti; Bly; «10); \(4¥)(Hadd; D); El,.

Alternatively, using retiming theorem (6) Reb3 can be pipelined by every K by K cluster of
cells (K>1,PxK=5,QxK=Aand M x K = N), giving

Reb5 ¥ [Id,[A;D; xxEL™Y, H]J; Smbarray | Hadd5array; El; D~(P+Q); A D1,

Sm5array ¥ snd Tj0g; \PM) (trail K)(Sm3cell, Smb5cell)); sndox Tj271,

Smbeell % Smcell; D || (sndD),
HaddSarray % fst Tj0y; \(@M)(trail (X)( Hadd, Hadd; D)); Eb.

| l |

=] smeen =] Smeet [ = —{ Hadd |~
! ' !
! | |

= ol Smecell - j:l:):t = Smeell : = —»{ Hadd |®>
¢ ¢ ¢

Figure 7. Design Reb2 (K=M=P=Q=12) Figure 8. Design Reb5 (K=M =P =Q =2)



314  International Conference on Systolic Arrays

Some simple measures of design tradeoff for these bit level circuits are given in Table 2.

Table 2. Comparison of bit level rank evaluator designs

Min. clock period Slow- Number of
Data flow Design (for a particular Latency doun latches
computation) by 2 in array
Unidir. Reb2 KTmes N(K+1)+S No SN(K+3)+24AN
flow (K>0) K K
Contra- Reb4 2T mas 3N+ S Yes 3SN + 2AN
flow
Reb5 KTmes NE+1)+5 No OSN(K+1)T24N
(K >1) K K
N: number of columns of Smecell
S: number of rows of Smcell
A: number of rows of Hadd
K: clustering cells in groups of K by K cells
Tmu: maz (T5mce"7 THadd)
CONCLUSION

The importance of specifying and verifying regular array designs has been clear [1]. We have
presented a framework for the coherent development of a parametrised architecture from the speci-
fication of a system. It has the advantage of being modular, separating concerns of accurate speci-
fication and of adequate performance. Precision and correctness can be maintained and checked at
every stage of the design, and successive transformations summarise the design decisions made at
each step. The tradeoff resulting from different design options can be evaluated.

Our work also provides the basis for computer-aided design tools facilitating the construction
of regular array circuits. Simulators, floorplanners and transformation assistants have been proto-
typed; we intend to develop them further to cater for more sophisticated designs.

Acknowledgement. We thank Andrew McCabe for suggesting the rank evaluation problem and
Stuart Wilson for discussions on rank evaluator designs. This work has been undertaken as part of
the UK Alvey Programme (Project ARCH 013) whose support is gratefully acknowledged. The first
author also expresses his gratitude to St. Edmund Hall, Oxford for a Brockhues Senior Scholarship.

References

[1] H.T. Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, p. 37, 1982.

[2] W. Luk and G. Jones, “Structuring and reasoning about regular array designs,” submitted for
publication.

[3] LN. Parker, “VLSI architecture,” in VLSI image processing, R.J. Offen (ed.), Collins, London,
p. 99, 1085.

[4] M. Sheeran, “Describing and reasoning about circuits using relations,” to appear in Proc. 1986
Leeds workshop on theoretical aspects of VLSI architectures.

(5] M. Sheeran and G. Jones, “Relations + higher order functions = hardware descriptions,” Proc.
CompEuro, Hamburg, p. 303, 1987.



