
Published in Systolic Array Processors, J. McCanny, J. McWhirter and E. Swartzlander Jr.(eds.), Prentice Hall International, 1989, pp. 589{598.COMPUTER-BASED TOOLS FORREGULAR ARRAY DESIGNWayne Luk and Geraint JonesProgramming Research Group, Oxford University Computing Laboratory,11 Keble Road, Oxford, England OX1 3QDMary SheeranComputing Science Department, Glasgow University, Glasgow, Scotland G12 8QQAbstract. We present an overview of a prototype system based on a functionallanguage for developing regular array circuits. The features of a simulator, oorplannerand expression transformer are discussed and illustrated.INTRODUCTIONImplementing algorithms on a regular array of processors has many advantages. Be-sides o�ering an e�cient realisation of parallel structures, regular patterns of inter-connections also provide an opportunity for simplifying their description and theirdevelopment. Various approaches for regular array design have been proposed; exam-ples include methods based on dependence graphs [5], recurrence equations [14], andalgebraic techniques [16].This paper presents an overview of a prototype system for regular array develop-ment. The system is based on �FP [15], a functional language with mechanisms forabstracting spatial and temporal iteration. These abstractions result in a succinct andprecise notation for specifying designs. Moreover, the explicit representation of vari-ous forms of spatial iteration simpli�es the production of layouts, and the declarativenature of the language allows designs to be re�ned by simple equational reasoning.Our aim is to exploit these features of �FP to provide an integrated set of tools forcapturing, exploring, re�ning and evaluating regular array designs.Various versions of the tools have been written in the functional language Orwell[18], whose simplicity and conciseness make it easy to investigate alternative imple-mentations. We have prototyped facilities for simulation, oorplanning and expressiontransformation; these will be reviewed and demonstrated in the following sections.THE LANGUAGEDesigns are represented as expressions in �FP, a descendant of the functional languageFP [1]. Objects in �FP are either atoms (such as numbers) or tuples of objects: forinstance the object h0; h1; 2ii is a 2-tuple containing the number 0 and the tuple h1; 2i.A stream is an in�nite tuple of objects which one can regard as the values of a signal atsuccessive clock cycles. The behaviour of a design is captured by a function that mapsan input stream to an output stream; so Add hh1; 2i; h3; 4i; h5; 6i; . . .i = h3; 7; 11; . . .i.Since one can describe a stream by a function that delivers the stream irrespective ofits argument, the use of streams abstracts time indices from circuit descriptions.1

A higher-order function takes one or more functions as argument and returns afunction as result. Combinators are higher-order functions that capture common pat-terns of computation as parametrised expressions. These patterns can be used todescribe behaviour, in which case the behaviour of a composite device is expressedin terms of the behaviour of its components; or they can be used to encapsulate thespatial organisation of a circuit, in which case they describe the wiring together ofcomponents to form the composite device.Consider �rst of all the combinator sequential composition, which corresponds toconnecting the input of one component to the output of another:(F ; G) x = G (F x)(we use reverse composition to conform with the convention that signals ow fromleft to right and also to preserve compatibility with relational description of circuits[17]). Construction, on the other hand, corresponds to broadcasting the input to eachcomponent of a composite circuit. The output will be a stream of n-tuples where nis the number of components in the construction. Figure 1 shows possible geometricinterpretation of (F ; G) and [F ;G]. F -- G --F- G --Figure 1 Sequential composition and construction.It is not di�cult to see that (F ; [G ;H]) = [(F ; G); (F ; H)]. �FP contains a setof such algebraic theorems, which equate distinct expressions with identical behaviour.They can be veri�ed by the semantics of �FP [15], but we do not go into the detailshere.A stream of tuples can be manufactured by left- and right-handed append functions[x ; [y0; y1; . . . ; yn�1]] ; AppL = [x ; y0; y1; . . . ; yn�1];[[y0; y1; . . . ; yn�1]; x] ; AppR = [y0; y1; . . . ; yn�1; x];and one can also select the �rst or the second of every element of a stream of pairs,[x ; y] ; El1 = x ;[x ; y] ; El2 = y :Their respective inverses, El1�1 and El2�1, pair every item of a stream with an un-de�ned object, so that (El1�1 ; El1) = (El2�1 ; El2) = Id where Id is the identityfunction: (Id ; x) = (x ; Id) = x .Since pairs of circuits frequently arise, we have[x ; y] ; fst F = [(x ;F); y] (apply to �rst);[x ; y] ; snd F = [x ; (y ;F)] (apply to second):2

A pair of circuits with orthogonal interconnections can be placed beside or above eachother (Figure 2),[a; [b; c]] ; F!G = [[p; q]; r] where [a; b];F = [p; s] and [s ; c];G = [q ; r];[[a,b],c] ; F#G = [p; [q ; r]] where [b; c];F = [s ; r] and [a; s];G = [p; q]:G? -- ?F? --ab csp qrF?- ? G? -- ?a b csp q rFigure 2 Beside and above.Next, examples of combinators that capture common cases of spatial iteration will begiven (Figure 3). Repeated sequential composition is given byF 0 = Id ;F n+1 = F ; F n ;while repeated parallel composition is given by[x0; x1; . . . ; xn�1] ; /F = [(x0;F); (x1;F); . . . ; (xn�1;F)](/F is often pronounced as \map F").Triangular arrays of latches often arise at the boundaries of pipelined circuits, sowe have the combinators right and left triangle[x0; x1; . . . ; xn�1] ; 4RF = [x0; (x1;F); . . . ; (xn�1;F n�1)];[x0; x1; . . . ; xn�1] ; 4LF = [(x0;F n�1); (x1;F n�2); . . . ; xn�1]:Horizontal and vertical forms of reduction can be used to implement continuedsums and similar kinds of loops. For example, [0; [x0; x1; x2; . . .]];=HAdd =P xi , where0 is the function that produces a constant zero output. Horizontal and vertical arraysare generalisation of reduces that provide an immediate output after each iteration.These circuit forms also obey various theorems which can be used for circuit opti-misation. For instance, provided that (D;A) = Id , one can prove by induction thatnHF = snd(4RD) ; nH (F ; sndD) ; AppR ; 4RA: (1)Such �FP theorems are especially useful for optimising regular array circuits by pipelin-ing [16].THE TOOLSWe now provide an overview of the design tools for the notation introduced in thepreceding section. A user interacts with the tools through a command interpreterwhich acts as an interface to the main modules and the support facilities. The supportfacilities perform a variety of housekeeping functions and convert between external andinternal data representation; the main modules include a simulator, a oorplanner, andan expression transformer. 3

- - - -F F FF 3? ? ?F F F? ? ?/F ? F? FF? FFF?4RF ?F?FF?FFF? 4LF FFF?---=VF - - - -?F? ?F? ?F?nHF- - - -F F F? ? ?=HFFigure 3 Geometric interpretation of some combinators.Housekeeping functionsThe housekeeping functions include support for maintaining a menu-driven systemand on-line help facilities, for summarising, examining and editing contents of thedatabases, and for interfacing the databases to the external �le system.Currently the system contains two databases: one for storing expressions in abstractsyntax, and the other containing geometric information for oorplanning.Converting between representationsThe external representation of �FP expressions is in concrete syntax; it is the formthat humans prefer to use. Alternative representations of concrete syntax are usedfor symbols not normally found on a typewriter keyboard { so for example /F isrepresented by @F, F#G by F \|/ G, and 4RF by /\R F.Tree structures are used in the abstract syntax of �FP. They form the internalrepresentation which is interpreted and manipulated by the main modules.There is a parser for converting expressions in concrete syntax to the correspondingrepresentation in abstract syntax. The two main operations involved are identifyingthe type of an expression { for example, whether it is a primitive or a combinator {and converting in�x operators to pre�x form. The \unparser" does the opposite: itconverts the internal representation to the external syntax for pretty printing.SimulatorThe simulator is basically a behaviour-interpreter for �FP expressions; it also con-tains various functions for generating constant or varying streams. Multi-phase clocksystems and n-slow circuits [7] can be simulated by functions interleaving n streamsor selecting every nth element of a stream; the latter can also be used for selectingspeci�c cycles of simulation output. Stream functions are implemented by translatingthem to object-level functions using the rules in [15] { so for example stream additionis implemented by mapping integer addition over an in�nite tuple of pairs of integers.The implementation of the simulator has been simpli�ed since Orwell itself allowshigher-order functions and in�nite data structures.Most simulators only accept numeric inputs and produce numeric outputs. Formany problems it is often more instructive to obtain a symbolic description of theoutputs in terms of the inputs. A novel feature of our simulator is its ability to handleboth numeric and symbolic data: this enables the use of the same circuit description4

for producing both numeric and symbolic results. Symbolic simulation is especiallyuseful for locating errors in the circuit description.Other features of the simulator include the simulation of designs at various levels ofabstraction simultaneously (for instance part of the circuit can be described at word-level while other parts are represented at bit-level), and output can be produced asrectangular waveforms for bit-level signals.FloorplannerThe oorplanner sketches a picture of a design. It takes the same circuit and inputdescriptions as those for the simulator. The circuit can be drawn with the input andoutput connections aligned to the horizontal, or to the vertical, or to both horizontaland vertical if the data is in the form of a two-tuple. The size and connection positionscan be supplied by the user and are stored in the relevant database; if not, defaultvalues are used.There are four components in the oorplanner: a placer, a sizer, a router and anoutput generator. The placer produces from the internal representation of the design ahierarchical description of the layout. The subcircuits are placed according to a set ofrules currently embedded in the code of the placer. Next, the sizer adds the dimensionsand the connection positions to the description of the primitive cells, and the result isthen passed to the router which ensures that the connections between adjacent cellsare joined together properly. The output of the router is fed to an output generator.Currently, output can be produced in one of the following three formats:1. a format that can be displayed on an ordinary text terminal and is suitable fora line printer,2. a format for a bit-mapped screen using high-resolution graphics,3. in LaTEX [6] format.The oorplanner also includes facilities for drawing particular parts of a circuit andfor producing layouts to a speci�ed level of detail.Expression transformer�FP has many theorems for re�ning designs. The application of these theorems consti-tutes a sequence of transformations which can be used for documenting and justifyingdesign decisions. The expression transformer is an experiment to discover the rudi-ments of providing mechanical support for this style of development. It interpretsde�nitions and algebraic theorems as symmetric rewrite rules. These rules are cur-rently embedded in the code of the transformer. At present the transformation ofexpressions is completely user-guided: the user selects a subexpression by a pattern-matching mechanism, and then speci�es the rule to be applied. The system performsthe transformation and reports the substitutions and the assumptions used.AN EXAMPLE: CONVOLVER DESIGNSWe shall provide a avour of using the tools by developing some simple designs forconvolution. Given the data stream x , and the coe�cient stream [w0 . . .wN�1], a5

convolver computes the result stream y such that8 t : yt = X0�n<N xt�n � wn;t :We shall need adders, multipliers and latches, which are described respectively by theprede�ned primitives Add , Mult and D.Let us �rst show how the input signals, wn;t and xt , can be generated. Of courseone can only simulate or draw a circuit of a particular size; we choose N = 4. Inresponse to the prompt \>" for a user command, we type> sims [x,[w0,w1,w2,w3]]The simulator treats a symbol as a constant function and produces a stream of time-stamped symbols laid out vertically:0: <x_0, <w0_0, w1_0, w2_0, w3_0>>1: <x_1, <w0_1, w1_1, w2_1, w3_1>>2: <x_2, <w0_2, w1_2, w2_2, w3_2>>Output interrupted!The in�nite output stream can be interrupted at any time. Alternatively one canspecify the number of cycles for the simulation. A constant stream of numbers can beproduced in a similar manner. To save typing we de�ne ws = [w0,w1,w2,w3].Now a straightforward way to implement convolution is to broadcast delayed ver-sions of x to each wn , forming N products which are then added together. Arbitrar-ily we choose to use a horizontal array of broadcast cells. Each cell, described by[Id ;El1; D], passes the pair hxt 0 ;wi;ti downward unaltered and outputs xt 0�1 to theright. The rightmost x output is disposed of by sequentially composing nH [Id ;El1;D]with El1.> sims [x,ws] ; \H [Id,El1;D] ; El10: <<x_0, w0_0>, <?, w1_0>, <?, w2_0>, <?, w3_0>>1: <<x_1, w0_1>, <x_0, w1_1>, <?, w2_1>, <?, w3_1>>2: <<x_2, w0_2>, <x_1, w1_2>, <x_0, w2_2>, <?, w3_2>>3: <<x_3, w0_3>, <x_2, w1_3>, <x_1, w2_3>, <x_0, w3_3>>4: <<x_4, w0_4>, <x_3, w1_4>, <x_2, w2_4>, <x_1, w3_4>>Output interrupted!One can sketch this circuit using the oorplanner. The same input signals for thesimulator, which de�ne the size of the array, can be used. The expression placed tothe left of \>>" will be excluded from the picture.> draw [x,ws] >> \H [Id,El1;D]| | | || | | || +-+ | +-+ | +-+ | +-+--+-|->|D|--+-|->|D|--+-|->|D|--+-|->|D|-->| | +-+ | | +-+ | | +-+ | | +-+| | | | | | | |V V V V V V V V 6

A horizontal reduce of multiply-adders,MAdds = =HMac whereMac = sndMult ;Add ,can then be used to form the result.> sims [0,[[a,u],[b,v],[c,x],[d,y]]] ; MAdds0: ((((a_0 * u_0) + (b_0 * v_0)) + (c_0 * x_0)) + (d_0 * y_0))1: ((((a_1 * u_1) + (b_1 * v_1)) + (c_1 * x_1)) + (d_1 * y_1))Output interrupted!> draw [0,[[a,u],[b,v],[c,x],[d,y]]] >> MAdds|| || || ||VV VV VV VV+----+ +----+ +----+ +----+|Mult| |Mult| |Mult| |Mult|+----+ +----+ +----+ +----+| | | |V V V V+---+ +---+ +---+ +---+->|Add|-->|Add|-->|Add|-->|Add|--->+---+ +---+ +---+ +---+To put the broadcast circuit and the multiply-adders together, we rewite MAdds inthe form of a horizontal array by applying the theorem called \/H.\H" in the expressiontransformer,> select MAddsMAdds = {/H Mac}MAdds> apply /H.\HMAdds = {\H (Mac ; El2^-1) ; El2}using /H f -> \H (f;El2^-1);El2 with f = Mac.(the curly brackets indicate the expression transformed by the theorem). Our �rstconvolver, Cv1, is formed by placing the broadcast circuit above MAdds . Cv1 can besimpli�ed by combining the two horizontal arrays into one:> select Cv1Cv1 = {(\H [Id, El1 ; D]) \|/ (\H (Mac ; El2^-1))}Cv1> apply \H.\|/Cv1 = {\H ([Id, El1 ; D] \|/ (Mac ; El2^-1))}using (\H f) \|/ (\H g) -> \H (f \|/ g)with f = [Id, El1 ; D] and g = Mac ; El2^-1.Hence one can de�ne Cv1 = nHCvCell1 where CvCell1 = [Id ;El1;D] # (Mac;El2�1).> sims [[0,x],ws] ; Cv1 ; El2 ; El10: ((((x_0 * w0_0) + (? * w1_0)) + (? * w2_0)) + (? * w3_0))1: ((((x_1 * w0_1) + (x_0 * w1_1)) + (? * w2_1)) + (? * w3_1))2: ((((x_2 * w0_2) + (x_1 * w1_2)) + (x_0 * w2_2)) + (? * w3_2))3: ((((x_3 * w0_3) + (x_2 * w1_3)) + (x_1 * w2_3)) + (x_0 * w3_3))4: ((((x_4 * w0_4) + (x_3 * w1_4)) + (x_2 * w2_4)) + (x_1 * w3_4))Output interrupted! 7

> draw [[0,x],ws] >> Cv1| | | || | | || +-+ | +-+ | +-+ | +-+----+-|->|D|----+-|->|D|----+-|->|D|----+-|->|D|-->| | +-+ | | +-+ | | +-+ | | +-+| | | | | | | ||++ |++ |++ |++VV VV VV VV+----+ +----+ +----+ +----+|Mult| |Mult| |Mult| |Mult|+----+ +----+ +----+ +----+| | | |V V V V+---+ +---+ +---+ +---+->|Add|------>|Add|------>|Add|------>|Add|------->+---+ +---+ +---+ +---+To make the clock period independent of the array size, one can pipeline Cv1 toget Cv2 = nH (CvCell1; snd/D). The oorplanner can be used to sketch Cv2 and theassociated skewing circuitry given by snd(4RD).> draw [[0,x],ws] >> snd /\R D ; Cv2| | | || | | V| | | +-+| | | |D|| | V +-+| | +-+ || | |D| V| V +-+ +-+| +-+ | |D|| |D| V +-+| +-+ +-+ || | |D| V| | +-+ +-+| | | |D|| | | +-+| | | || | | +-------------------------------------+| | +-------------------------+ || +-------------+ | || | | || +-+ +-+ | +-+ +-+ | +-+ +-+ | +-+ +-+----+-|->|D|->|D|----+-|->|D|->|D|----+-|->|D|->|D|----+-|->|D|->|D|-->| | +-+ +-+ | | +-+ +-+ | | +-+ +-+ | | +-+ +-+| | | | | | | ||++ |++ |++ |++VV VV VV VV+----+ +----+ +----+ +----+|Mult| |Mult| |Mult| |Mult|+----+ +----+ +----+ +----+| | | |V V V V+---+ +-+ +---+ +-+ +---+ +-+ +---+ +-+->|Add|-->|D|----->|Add|-->|D|----->|Add|-->|D|----->|Add|-->|D|------>+---+ +-+ +---+ +-+ +---+ +-+ +---+ +-+8

> sim [[0,x],ws] ; snd /\R D ; Cv2 ; El2 ; El10: ?1: ?2: ?3: ?4: ?5: ?6: ?7: ((((x_3 * w0_3) + (x_2 * w1_3)) + (x_1 * w2_3)) + (x_0 * w3_3))8: ((((x_4 * w0_4) + (x_3 * w1_4)) + (x_2 * w2_4)) + (x_1 * w3_4))9: ((((x_5 * w0_5) + (x_4 * w1_5)) + (x_3 * w2_5)) + (x_2 * w3_5))Output interrupted!Notice the use of sim rather than sims suppresses displaying the structure of outputscontaining unde�ned objects. The simulation suggests that Cv2 is a delayed versionof Cv1, that snd4RD;Cv2;El2;El1 = Cv1;El2;El1;DN . Equation (1) can be used toverify this observation.The design can be carried down to bit-level by replacing the components and thesignals by their bit-level counterparts. Furthermore, data-conversion functions can beused to map one form of data representation to another: for instance the function[0; Id];=H (fst([Id ; 2];Mult);Add) converts a stream of tuples of bits (most signi�cantbit �rst) into a stream of the corresponding unsigned integers. This allows the speci-�cation and simulation of designs containing components described at di�erent levelsof abstraction.EXPERIENCE AND EXTENSIONSThe tools have been exercised on various word-level and bit-level regular array designs,including convolvers, rank evaluators [9], multipliers [10], recursive �lters [11], sorters[17], and motion estimators [4, 3]. One of the motion estimator circuits [3] is shortlydue for fabrication. The tools have also been used for undergraduate and graduateteaching.Although the current set of tools is intended for experimenting with di�erent waysof interpreting and manipulating expressions in our notation rather than for use ina production environment, early designer experience [2] has been encouraging. It iscon�rmed that the simplicity and succinctness of our notation enable circuits to bedescribed very elegantly and quickly with practice, and that the system facilitates therapid exploration of choices in designing a circuit to perform a particular function.Similar bene�ts have been reported for other hardware development tools [13, 12]based on functional languages.Our work has provided a basis for a design environment which enables the cost-e�ective production of regular array circuits. Current research is directed towardsenhancing the completeness, e�ectiveness and robustness of our tools, and extendingthem to encompass relational [17] and heterogeneous [8] array descriptions. Otherpossible extensions include: improving the interface to designers and to other tools(such as conventional computer-aided design tools and theorem provers), and the de-velopment of a comprehensive library of cells and transformation strategies.9

Acknowledgement. We are grateful to A. S. Bhandal, K. Page and K. Thapar for provid-ing valuable feedbacks about our tools and documentations. This work had been undertakenas part of the UK Alvey Programme (Project ARCH 013) whose support is gratefully ac-knowledged. The �rst author also expresses his gratitude to the Croucher Foundation for itssupport.References[1] J. Backus, `Can programming be liberated from the von Neumann style? A functionalstyle and its algebra of programs'. Commun. ACM, vol. 21, no. 8, p. 613, 1978.[2] A. S. Bhandal, `Early feelings on muFP and the Orwell system'. Plessey Research CaswellLimited, 1987 (unpublished).[3] A. S. Bhandal, V. Considine, and G. E. Dixon, `An array processor for video picturemotion estimation'. In Proceedings of International conference on systolic arrays (thisvolume), Killarney, 1989.[4] A. S. Bhandal, D. J. Gri�n, and V. Considine, `Array architectures'. In Proceedings ofAlvey Conference, Swansea, 1988.[5] S. Y. Kung, VLSI array processors. Prentice-Hall, New Jersey, 1988.[6] L. Lamport, LaTEX: a document preparation system. Addison-Wesley, 1986.[7] C. E. Leiserson and J. B. Saxe, `Optimizing synchronous systems'. Journal of VLSI andComputer Systems, vol. 1, no. 1, p. 41, 1983.[8] W. Luk, `Specifying and developing regular heterogeneous designs'. In preparation.[9] W. Luk and G. Jones, `The derivation of regular synchronous circuits'. In K. Bromley,S. Y. Kung, and E. Swartzlander, editors, Proceedings of International conference onsystolic arrays, p. 305, San Diego, 1988.[10] W. Luk and G. Jones, `From speci�cation to parametrised architectures'. In G. Milne,editor, Proceedings of International conference on the fusion of hardware design and veri-�cation, p. 263, Glasgow, 1988.[11] W. Luk and G. Jones, `Systolic recursive �lters'. IEEE Transactions on Circuits &Systems, vol. 35, no. 8, p. 1067, 1988.[12] J. T. O'Donnell, `Hydra: hardware description in a functional language using recursionequations and higher order combining forms'. In G. Milne, editor, Proceedings of Inter-national conference on the fusion of hardware design and veri�cation, p. 305, Glasgow,1988.[13] D. Patel, M. Schlag, and M. Ercegovac, `�FP: an environment for the multi-level spec-i�cation, analysis, and synthesis of hardware algorithms'. In J-P. Jouannaud, editor,Functional programming languages and its applications, p. 238. Springer-Verlag, 1985.[14] P. Quinton, `Automatic synthesis of systolic arrays from uniform recurrent equations'. InProceedings of the 11th Annual Symposium on computer architecture, p. 208, 1984.[15] M. Sheeran, �FP { a language for VLSI design. D.Phil. Thesis, Programming ResearchGroup, Oxford University, November 1983.[16] M. Sheeran, `Designing regular array architectures using higher order functions'. InJ-P. Jouannaud, editor, Functional programming languages and its applications, p. 220.Springer-Verlag, 1985.[17] M. Sheeran and G. Jones, `Relations + higher-order functions = hardware descriptions'.In Proceedings of CompEuro, p. 303, Hamburg, 1987.[18] P. L. Wadler, `An introduction to Orwell'. Programming Research Group, Oxford Uni-versity, 1985. 10

