
In Proceedings of International Conference on Application-Speci�c Array Processors, S.Y. Kung

et. al. (eds), IEEE Computer Society Press, 1990, pp. 133{144.

ANALYSING PARAMETRISED DESIGNS

BY NON-STANDARD INTERPRETATION

WAYNE LUK

Programming Research Group,

Oxford University Computing Laboratory,

11 Keble Road, Oxford, England OX1 3QD

Abstract. We examine the use of non-standard interpretation to analyse parametrised

circuit descriptions, in particular for array-based architectures. Various metrics are em-

ployed to characterise the performance trade-o�s of generic designs. The objective is to

facilitate the evaluation of such metrics for estimating design quality, so that feasible

design alternatives can be compared at an early stage of development.

INTRODUCTION

Constructing digital systems involves two challenges: to develop one or more circuits that

perform the desired function, and to analyse design alternatives in order to select the

optimal design. Our previous work [3], [4], [5] has described an algebraic framework and

the associated computer-based tools for developing array-based architectures. We have

shown how such a framework can be used to simplify the parametrisation, structuring and

re�nement of designs.

This paper builds on this algebraic framework and examines the analysis of para-

metrised descriptions by non-standard interpretation. The objective is to facilitate the

comparison of feasible design alternatives at an early stage of development. Our research

centres on techniques for extracting various performance attributes, such as critical path

and latency, from a single generic design representation. The features of this approach

include:

� uniformity. Algebraic representations are succinct and simplify the production of

composite designs. They provide a common structure for a range of metrics for

estimating design quality;

� modularity. The method is hierarchical and allows blocks of components to be anal-

ysed. It is also straightforward to incorporate boundary conditions in the analysis;

� reusability. The metrics characterise performance trade-o�s of entire classes of

designs, allowing di�erent con�gurations to be chosen depending on the require-

ments. Moreover, one may be able to distinguish between implementation-speci�c,

technology-speci�c and process-speci�c parameters to facilitate adapting a generic

design to di�erent implementation media;

�
exibility. Depending on the information available the designer can use the appropri-

ate procedure to obtain either a rough numerical estimation or a detailed symbolic

analysis. This enables designs to be incrementally developed;

� computerised support. The techniques proposed have been implemented in a soft-

ware package, thereby automating detailed numerical or symbolic calculations. This

will also provide a basis for driving a design transformation system [5].

1

THE LANGUAGE AND ITS STANDARD INTERPRETATION

Our approach will be illustrated on a simple functional language, derived from the language

�FP [7], for describing hardware. We shall begin by introducing the standard semantics

of this language as functions on input data. This interpretation is clearly capable of

representing the behaviour of combinational circuits; later we shall adopt the same style

to explain the algorithms for extracting useful design properties.

A distinct feature of our language is the use of higher-order functions, or combinators,

to capture common patterns of computations as parametrised expressions. For instance,

sequential composition is a combinator which corresponds to connecting the output of one

component to the input of the other:

(F ; G) x = G (F x):

Note that we use reverse functional composition (;) to conform with the convention that

signals
ow from left to right and also to preserve compatibility with relational description

of circuits [8]. To avoid confusion function application will be replaced, where appropriate,

by sequential composition: instead of writing Inv 1 = 0, we write 1 ; Inv = 0 where 1

and 0 now denote constant functions delivering respectively a bit one and a bit zero. A

constant function like 0 or 1 belongs to the set of signal generators, SigGen. A symbolic

signal generator will usually be denoted by a single lower case letter, so that we can de�ne

the squaring operation by x ; Square = x

2

. This style of de�nition follows the form

(signal generator) ; (circuit expression) = circuit behaviour;

and clearly circuit behaviour is itself expressed as a signal generator, since the left-hand

side of the equation involves composing a signal generator with a circuit expression, which

gives a signal generator. When (x ; F) = (x ; G), we shall just write F = G .

For components with multiple inputs and outputs we need the combinator construction,

which corresponds to broadcasting a signal to each component of a composite circuit:

x ; [F ;G] = [(x ; F); (x ; G)]:

Hence an adder can be speci�ed as [x ; y] ; Add = x + y . We shall use [x

i

j 0 � i < N] to

denote [x

0

; x

1

; . . . ; x

N�1

].

Another common form of composing circuits involves two components operating inde-

pendently on a pair of signals:

[x ; y] ; (F k G) = [(x ; F); (y ; G)]: (1)

It is simple to show that (A ; B) k (C ; D) = (A k C) ; (B k D). Our language

contains a set of such algebraic theorems, which equate distinct expressions with identical

behaviour, and can be used to transform an obvious but ine�cient design to make it more

complex but e�cient [3].

Given that Id is the identity function such that (Id ; x) = (x ; Id) = x , F k Id and

Id k G will be abbreviated to fst F and sndG . The �rst and the second element of a pair

can be extracted by the projection functions �

1

and �

2

,

[x ; y] ; �

1

= x ;

[x ; y] ; �

2

= y :

2

Their respective inverses, �

1

�1

and �

2

�1

, pair an item with an unde�ned object, so that

(�

1

�1

; �

1

) = (�

2

�1

; �

2

) = Id .

Next, examples of combinators that capture common cases of spatial iteration will be

given. Repeated sequential composition (Figure 1a) is given by

F

0

= Id ;

F

n+1

= F ; F

n

;

while repeated parallel composition (Figure 1b) is given by

[x

i

j 0 � i < N] ; /F = [(x

i

; F) j 0� i < N]:

(/F is often pronounced as \map F"). Triangular arrays of latches often arise at the

boundaries of pipelined circuits, so we have the 4 combinator (Figure 1c),

[x

i

j 0 � i < N] ; 4F = [(x

i

; F

i

) j 0 � i < N]:

Continued sums and similar kinds of computations can be achieved by left reduction (Fig-

ure 1d):

[0; [x

0

; x

1

; x

2

]] ; rdlAdd = (((0 + x

0

) + x

1

) + x

2

):

This corresponds to the recursion pattern

[u

0

; [x

i

j 0 � i < N]] ; rdlF = u

N

(2)

where [u

i

; x

i

] ; F = u

i+1

for 0 � i < N .

- - - -

F F F

a. F

3

? ? ?

F F F

? ? ?

b. /F

?

F

?

F

F

?

F

F

F

?

c. 4F

- - - -

F F F

? ? ?

d. rdlF

x

y

s

s

F

- -

?

e. loopF

F

F

-

0

-

x

-

f. P (loopF)

Figure 1 Pictures of some combinators.

NON-STANDARD INTERPRETATION

The purpose of non-standard interpretation is to provide an alternative meaning of repre-

sentations expressed in a formal language. This technique can be used either to extend the

language in order to capture a wider range of entities, or to provide additional information

about the properties of an expression.

Devising a non-standard interpretation for a language involves two steps. First, data

structures in the standard interpretation are altered to encapsulate the information re-

quired for the new interpretation; second, non-standard versions of operations are de�ned

to transform the new data structures to achieve the desired e�ect. Essentially the method

exploits the syntax for operators in the language to provide a scheme for evaluating an

3

expression to a range of values corresponding to its various properties. The following equa-

tion provides a general form for de�ning a non-standard interpretation for our language:

(non-standard data structure generator) ; M (circuit expression) = property of circuit;

where M is a \meaning function" that characterises the non-standard interpretation in

terms of the standard interpretation. As before, the property of the circuit is expressed

as another generator producing the appropriate non-standard data structure.

The rest of this section will be dedicated to a simple example. One way to accommodate

the description of sequential circuits is to adopt the stream data structure which consists

of an in�nite sequence of data representing values at successive clock cycles [7]. A circuit

expression can then be interpreted as a function transforming an input stream to an output

stream. A combinational circuit F will perform the same operation in every cycle, so its

meaning, SF , is obtained by repeated parallel composition of F , /F , on the input stream.

That is,

S F = /F ; if F 2 CombinCirc

where CombinCirc is the set of combinational circuits. The meaning of a composite

expression can usually be given as a function h of the meaning of its components, so for

example

S (F ; G) = h (S F) (S G):

In this case h is the same as that for the standard interpretation, so the above equation

becomes

S (F ; G) = (S F) ; (S G):

To derive the meaning of parallel composition, S (F k G), we need the matrix transposition

function tran to manufacture a stream by pairing the corresponding elements from the

streams generated by x and y :

[[x

t

j t 2 T]; [y

t

j t 2 T]] ; tran = [[x

t

; y

t

] j t 2 T];

where T may, for example, be the set of natural numbers. The e�ect of this operation

should be the same as sequentially composing x with the stream version of F , S F , and

similarly composing y with S G , and then pairing the corresponding elements for these

two streams by tran to form a stream,

[x ; y] ; tran ; S (F k G)

= [(x ; S F); (y ; S G)] ; tran (by de�nition of S (F k G))

= [x ; y] ; (S F) k (S G) ; tran (from Equation 1)

= [x ; y] ; tran ; tran ; (S F) k (SG) ; tran (since tran ; tran = Id).

Hence S (F k G) = tran ; (S F) k (SG) ; tran (since x and y are arbitrary). The

meaning of other combinators can be obtained in a similar way.

A latch, D, can be modelled by appending a \don't care" value, generated by ?, to a

stream of signals:

x ; S D = [?; x] ; apl

where apl , short for \append left", is given by [a; [x

0

; x

1

; x

2

; . . .]] ; apl = [a; x

0

; x

1

; x

2

; . . .].

We shall also have D

�1

, a �ctitious element which can predict its next input, such that

4

D ; D

�1

= Id . Although D

�1

is not implementable, it can be useful in reasoning about a

design.

A loop construct can also be de�ned (Figure 1e),

x ; S (loop F) = y

where [s ; y] = [x ; s] ; tran ; S F ; tran, and s is a stream containing the \state" of F . To

avoid asynchronous loops, F must have at least one latch on its feedback path.

Jones and Sheeran [1] provide further discussions on giving a stream semantics to an

algebraic language.

CIRCUIT METRICS

The preceding section illustrates the use of non-standard interpretation to cover a wider

range of designs { namely to describe sequential circuits. We shall now elucidate how non-

standard interpretation can be used to compute circuit metrics. As before the two steps

are (a) to determine an appropriate data structure that facilitates the representation and

manipulation of information required for a given property, and (b) to formulate a meaning

function that allows the designated property of a composite design to be deduced from the

properties of its components. The metrics introduced in this section include cell count,

latency, and critical path evaluation.

Cell count

The data structure for evaluating the number of a given cell in a composite design con-

sists of two components. The �rst component contains information for instantiating a

parametrised representation, such as deciding the number of F in /F . The simplest rep-

resentation for this component is to adopt the same data structure used in the standard

interpretation, although the actual numerical or symbolic values of atomic expressions are

not needed. The second component in the data structure is a counter to accumulate the

number of the given cell.

Let us consider the meaning function N

F

G for counting the number of F 's in a given

expression G. The �rst rule states that, given instantiation information x and counter n,

if F = G then increment the counter n and evaluate (x ; G) according to the standard

interpretation to propagate the instantiation information; otherwise if G does not contain

combinators then preserve the value of n and just evaluate (x ; G).

[x ; n] ; N

F

G = [(x ; G); n + 1] if F = G ,

= [(x ; G); n] if F 6= G and G does not contain combinators.

Since the standard interpretation is originally intended for describing combinational cir-

cuits, sequential constants such as D are not de�ned; it is, however, evident that we

should take D as Id in this non-standard interpretation to propagate the instantiation

information.

To count the number of F in (G ; H), we simply accumulate the number of F in G

and in H one after the other,

N

F

(G ; H) = (N

F

G) ; (N

F

H):

5

For parallel composition, the number of F in G and H can be accumulated independently

and the results are then combined,

[[x ; y]; n] ; N

F

(G k H) = [[u; v]; n + p + q]

where [x ; 0] ; (N

F

G) = [u; p] and [y ; 0] ; (N

F

H) = [v ; q]. The meaning of other

combinators can be derived in the same manner: for instance, N

F

(G

N

) = (N

F

G)

N

and, given that x = [x

i

j 0 � i < N],

[x ; n] ; N

F

(/G) =

2

4

(x ; /G); n +

X

0�i<N

([x

i

; 0] ; N

F

G ; �

2

)

3

5

;

[x ; n] ; N

F

(4G) =

2

4

(x ; 4G); n +

X

0�i<N

([x

i

; 0] ; N

F

G

i

; �

2

)

3

5

:

These de�nitions can be used to derive results like

[x ; n] ; N

G

(4G) ; �

2

= n + N (N � 1)=2:

As for the loop construct, we disregard the feedback path and use �

�1

1

and �

2

to match the

types in the �rst component of the data structure: N

F

(loopG) = fst �

�1

1

; N

F

G ; fst �

2

.

Of course, one must remember to initialise the counter to zero before the evaluation.

A simple example showing how our method works is given below.

[x ; 0] ; N

F

(G ; F k F) = [[y ; y]; 0] ; N

F

(F k F) (given x ; G = [y ; y])

= [[(y ; F); (y ; F)]; 2] (given [y ; 0] ; N

F

F = [(y ; F); 1]).

It is obvious that the cell count metric can be used to give a lower bound of the area and

power required for a composite cell, if the area and power of each of its components are

known.

Latency evaluation

To extract the latency of a design, we compute the maximum number of latches for all

paths from input to output. The data structure is the same as that for the standard

interpretation except that numerical expressions represent counters for accumulating the

number of latches. Constant numerical functions are used to generate boundary conditions,

such as the latency of a component whose output is connected to the input of the circuit

under evaluation. However, this representation of boundary conditions may necessitate

changing those signal generators embedded in a circuit expression for this non-standard

interpretation.

Given that max x returns either the maximum of x or x itself depending on whether

x is composite (e.g. max [2; [1; 3]] = 3 and max 4 = 4), the meaning function L for

expressions not containing combinators can be summarised as follows:

x ; L F = F if F 2 SigGen,

= x + 1 if F = D,

= x � 1 if F = D

�1

,

= max x otherwise.

The meaning of combinators is the same as that for the standard interpretation, so for

instance L (G ; H) = (L G) ; (L H) and L (G k H) = (L G) k (L H). The exception is

the loop construct, the meaning of which is not de�ned in this interpretation since there

is no universal model for initialising the latch on the feedback path.

6

Critical path evaluation

There are two components in our data structure for estimating the critical path of a design.

The �rst component has the same structure as that for standard interpretation, and is

used to accumulate the combinational delay of the current path. The second component

records the maximum combinational delay for paths evaluated so far.

Consider �rst the meaning function P F for evaluating the critical path of a non-

composite circuit F . For each latch in the circuit the �rst component of the data structure

is cleared and its previous value is compared with that of the second component so that the

greater of the two will be stored in the second component. As discussed in the preceding

section, signal generators are used to capture boundary conditions { in this case the

critical path of components whose outputs are connected to the inputs of the circuit under

evaluation. For each combinational cell in the circuit with a composite input, the delay of

the cell is added to the maximum of the input delays to give the new value of the current

delay path; the second component of the data structure remains unchanged. The critical

path delay corresponds to the maximum of all components at the output.

So given that �F denotes the combinational delay of F , the rules in the preceding

paragraph can be expressed as:

[x ; n] ; P F = [0;max [x ; n]] if F = D,

= [F ;max [x ; n]] if F 2 SigGen,

= [(�F +max x); n] otherwise.

As far as projection functions are concerned, we need to check whether the eliminated

output is linked to the critical path; so for instance

[[x ; y]; n] ; P �

2

= [y ; max [x ; n]]:

The meaning of sequential and parallel composition is reasonably obvious and is given

below:

P (G ; H) = (P G) ; (PH);

[[x ; y]; n] ; P (G k H) = [[u; v]; max [p; q]]

where [x ; n] ; (P G) = [u; p] and [y ; n] ; (P H) = [v ; q]. Similarly, given that x = [x

i

j 0 �

i < N], Equation 2 is altered to become

[[u

0

; x]; c

0

] ; P (rdlF) = [u

N

; c

N

] (3)

where [[u

i

; x

i

]; c

i

] ; P F = [u

i+1

; c

i+1

] for 0 � i < N .

The meaning of other combinators can be developed in a similar way { except for the

loop construct, whose meaning is derived by \unwinding" the iteration once (Figure 1f):

[x ;m] ; P (loopF) = [[x ; s]; n] ; P (F ; �

2

)

where [x ;m] ; P (�

�1

1

; F ; �

1

) = [s ; n]. According to this model, if the feedback path

is not latched properly then the loop construct will contribute an incremental delay equal

to the sum of the incremental delays at the vertical and the horizontal output of F . The

absence of such asynchronous loops can be assured by checking that the incremental delay

at the bottom truncated output in Figure 1f does not exceed the open-loop delay for the

corresponding vertical output of F .

7

DERIVING PARAMETRISED EXPRESSIONS FOR METRICS

The application of this approach will be illustrated by an adaptive convolver design. Given

N coe�cients w

1

. . .w

N

, the circuit is to calculate

P

i

w

i ;t�N

� x

t�i

, with 1 � i � N . Our

architecture consists of a linear array of M identical clusters of cells, with each cluster

itself consisting of a linear array of K latched multiply-accumulators (Figure 2, with

latches represented by heavy dots). Given that the total number of cells is �xed such that

K �M = N , by varying K one can obtain a range of designs with di�erent trade-o�s in

speed, latency and the number of latches as shown in Table 1. It will be shown how to

compute the formulae in this table using the techniques outlined in the preceding section.

u u u u u uu u

u u

u u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Add

Mult

Add

Mult

Add

Mult

Add

Mult

Add

Mult

Add

Mult

P

@

@R

0

x

output

w

6

w

5

w

4

w

3

w

2

w

1

Figure 2 adaptive convolver design (K = 3, M = 2, N = 6).

Table 1 metrics for parametrised adaptive convolver design.

Minimum clock Latency Number of Number of

period (cycles) skewing latches latches in array

(K � 1)�P + �M + �A N (K + 1) N (N +NK � 2K) N (K + 2)

K 2K K

�M ; �A: the combinational delay of cell Mult, Add,

�P : the propagation delay of broadcasting horizontally across cell P .

We �rst capture this design as a parametrised representation, Cv , in our language:

Cv = snd InSkew ; rdl (CvCells ; D k D) ; �

1

;

InSkew = 4D ; Group

M

; 4(/D);

[x

i

j 0 � i < KM] ; Group

M

= [[x

i ;j

j0 � j < K] j 0� i < M];

CvCells = rdl (fst (fst D) ; CvCell);

[[y ; x];w] ; CvCell = [y + (x � w); x]:

8

Cell count. Let us �rst check the number of skewing latches in the design. This step

involves sequentially composing N

D

InSkew with an appropriate input,

[[x

i

j 0 � i < KM]; 0] ; N

D

(4D ; Group

M

; 4(/D))

=

2

4

[x

i

j 0 � i < KM];

0

@

X

0�i<KM

i

1

A

3

5

; N

D

(Group

M

; 4(/D))

=

2

4

[[x

i ;j

j0 � j < K] j 0� i < M];

0

@

X

0�i<KM

i

1

A

3

5

; N

D

(4(/D))

=

2

4

[[x

i ;j

j0 � j < K] j 0� i < M];

0

@

X

0�i<KM

i

1

A

+

0

@

K

X

0�i<M

i

1

A

3

5

:

Now the sum of the two continued sums is equal to KM (KM +M � 2)=2 = N (N +NK �

2K)=2K , which is the result given in Table 1.

Latency. Given that w = [w

i

j0 � i < N] and w

i+1

� w

i

for 0 � i < N � 1,

[[y ; 0];w] ; L CvCells = [[y ; 0];w] ; L (rdl (fst (fstD) ; CvCell))

= [max [y + N ; last w]; 0]

where last w = w

N�1

. Let

~

0

L

= [0 j 0 � i < L]. To calculate L InSkew , we sequentially

composed it with

~

0

KM

,

~

0

KM

; L (4D ; Group

M

; 4(/D)) = [i j 0 � i < KM] ; L (Group

M

; 4(/D))

= [[Ki + j j 0 � j < K] j 0 � i < M] ; L (4(/D))

= [[(K + 1)i + j j 0 � j < K] j 0 � i < M]

= w

0

; say.

Now consider

[[0; 0];

~

0

KM

] ; L Cv = [[0; 0];w

0

] ; L (rdl (CvCells ; D k D) ; �

1

)

= [[0; 0];w

0

] ; rdl (L (CvCells ; D k D)) ; �

1

= max [M (K + 1); 1 + last w

0

]

= M (K + 1)

since last w

0

= (K +1)(M � 1)+K � 1 = M (K +1)� 2. By de�nition M = N =K , so the

latency of Cv is N (K + 1)=K as given in Table 1.

Critical path. It is assumed that the skewing circuit InSkew does not contribute to the

critical path. Hence

[[[y ; x]; 0]; c] ; P CvCell = [[max [x + �M ; y] + �A; x + �P]; c]:

Let CvCell

0

= fst (fstD) ; CvCell . Recall that [x ; n] ; P D = [0;max [x ; n]]. Hence

[[[y ; x]; 0]; c] ; P CvCell

0

= [[x + �M + �A; x + �P]; max [c; y]]: (4)

9

Since there is no D

�1

in CvCells , P (rdl (CvCells ; D k D)) = P CvCells = P (rdl CvCell

0

).

We shall show by induction that

[[[0; 0];

~

0

K

]; 0] ; P (rdl CvCell

0

) = [[(K � 1)�P + �M + �A; K �P]; c

K

] (5)

where c

K

= 0 if K = 1, otherwise c

K

= (K � 2)�P + �M + �A.

The base case is straightforward: [[a; [b]]; c] ; P (rdl F) = [[a; b]; c] ; P F , so we just

use Equation 4 to check that Equation 5 is valid when K = 1. Now consider the induction

case:

[[[0; 0];

~

0

K+1

]; 0] ; P (rdl CvCell

0

)

= [[[(K � 1)�P + �M + �A; K �P]; 0]; c

K

] ; P CvCell

0

(Equation 3)

= [[K �P + �M + �A; (K + 1)�P]; max [c

K

; (K � 1)�P + �M + �A]] (Equation 4)

= [[K �P + �M + �A; (K + 1)�P]; (K � 1)�P + �M + �A] (def. of c

K

)

= [[(K

0

� 1)�P + �M + �A; K

0

�P]; (K

0

� 2)�P + �M + �A] (K

0

= K + 1)

which corresponds to the hypothesis (Equation 5) when K

0

is substituted for K . If we

assume that �M + �A � �P , then the formula for critical path in Table 1, (K � 1)�P +

�M + �A, is correct.

COMPUTERISED SUPPORT

The circuit metrics described in this paper have been incorporated into a prototype

computer-based tool for regular array design [5]. They provided a numerical charac-

terisation of a composite circuit given the numerical characterisation of its components.

This section illustrates how the design system can be used in analysing the convolver

architecture presented earlier.

First of all, we de�ne the input to Cv and instantiate M ,

> ws = [w6,w5,w4,w3,w2,w1]

> in = [[0,x],ws]

> M = 2

The symbolic simulator can then be used to check the correctness of our design:

> sim in ; Cv

0: ?

1: ?

2: ?

3: ?

4: ?

5: ?

6: ?

7: ?

8: ((((((x_1 * w6_1) + (x_2 * w5_1)) + (x_3 * w4_1)) + (x_4 * w3_1))

+ (x_5 * w2_1)) + (x_6 * w1_1))

9: ((((((x_2 * w6_2) + (x_3 * w5_2)) + (x_4 * w4_2)) + (x_5 * w3_2))

+ (x_6 * w2_2)) + (x_7 * w1_2))

10: ((((((x_3 * w6_3) + (x_4 * w5_3)) + (x_5 * w4_3)) + (x_6 * w3_3))

+ (x_7 * w2_3)) + (x_8 * w1_3))

11: ((((((x_4 * w6_4) + (x_5 * w5_4)) + (x_6 * w4_4)) + (x_7 * w3_4))

+ (x_8 * w2_4)) + (x_9 * w1_4))

10

Cell count. We can count the number of CvCells and D in this con�guration,

> count CvCells in ; Cv

2

> count D in ; Cv

28

Composite expressions such as D k D can also be counted,

> count D||D in ; Cv

2

Latency. Now let us check the latency of our design,

> latency in ; Cv

8: 0 -> D -> Add -> D -> Add -> D -> Add -> D -> D -> Add -> D -> Add -> D

-> Add -> D.

Notice that in addition to providing a numerical value, the system also displays the path

with the maximum number of latches. This facility should be helpful if the designer wants

to alter the design to reduce its latency.

If it happens that the input x comes from a circuit with a latency of 5, then we can

incorporate this boundary condition into the evaluation of latency:

> latency [[0,5],ws] ; Cv

12: 5 -> Mult -> Add -> D -> Add -> D -> Add -> D -> D -> Add -> D -> Add

-> D -> Add -> D.

We can also add an arbitrary amount of latency to a component without altering its

de�nition. For instance, if we assign a latency of 3 to the multiplier, then we get

> latency in ; Cv

10: w5 -> Mult(3) -> Add -> D -> Add -> D -> Add -> D -> D -> Add -> D

-> Add -> D -> Add -> D.

Of course, this result will no longer agree with the simulation of the circuit, which remains

unchanged.

Critical path. Let �P = 1, �A = 3, and �M = 6. With these values, the critical path

of Cv can be computed,

> crpath in ; Cv

11: x -> P(1) -> P(1) -> P -> Mult(6) -> Add(3).

This shows that the critical path consists of two broadcasting delays. If we change M to

6 to obtain a fully pipelined design, then we get

> crpath in ; Cv

9: x -> P -> Mult(6) -> Add(3).

On the other hand we may be satis�ed with a non-pipelined design. This can be produced

by instantiating M to 1 to get

> crpath in ; Cv

14: x -> P(1) -> P(1) -> P(1) -> P(1) -> P(1) -> P -> Mult(6) -> Add(3).

In reality di�erent size adders, with di�erent delays, may be used in each CvCell to cope

with word length growth. This situation can be modelled by using a heterogeneous version

of rdl [2].

11

CONCLUSION

The purpose of this paper is to illustrate how non-standard interpretation can be used

in analysing performance attributes of a parametrised design representation. We have

illustrated that the proposed techniques can produce both parametrised expressions and

numerical values for a variety of circuit metrics. The rest of this section reviews related

work and suggests a number of extensions to our approach.

Non-standard interpretation has been employed to deduce various properties of a design

description; for instance Sheeran [8] has shown how directional information can be obtained

from a relational circuit expression, and Singh [9] has also presented interpretations for

testability analysis and for deductive fault simulation. A similar technique, called abstract

interpretation, has been used in strictness analysis for functional programming languages

[6].

Providing multiple interpretations for a design description helps to eliminate possible

inconsistencies that may arise if the circuit is represented in more than one way; it is a

step towards an environment for developing parametrised hardware representations. Fu-

ture work will include extending the class of circuits amenable to this treatment, improving

the e�ciency of data structures and algorithms that can be used, investigating how per-

formance attributes (such as area and power estimates) can be captured more accurately,

and linking our tools to synthesis systems, circuit design tools and cell libraries.

Acknowledgement. I am grateful to Geraint Jones and Mary Sheeran for providing useful

comments, and to Rank Xerox (UK) Limited for �nancial support.

References

[1] G. Jones and M. Sheeran, \Timeless truths about sequential circuits," in: S. Tewksbury,

B. Dickinson and S. Schwartz (eds.), Concurrent computations: algorithms, architectures and

technology, p. 245, Plenum Press, 1988.

[2] W. Luk, \Specifying and developing regular heterogeneous designs," in: L.J.M. Claesen (ed.),

Formal VLSI speci�cation and synthesis, p. 391, North-Holland, 1990.

[3] W. Luk and G. Jones, \The derivation of regular synchronous circuits," in: K. Bromley,

S.Y. Kung and E. Swartzlander (eds.), Proceedings of International Conference on Systolic

Arrays, p. 305, IEEE Computer Society Press, 1988.

[4] W. Luk and G. Jones, \From speci�cation to parametrised architectures," in: G. Milne (ed.),

The fusion of hardware design and veri�cation, p. 267, North-Holland, 1988.

[5] W. Luk, G. Jones and M. Sheeran, \Computer-based tools for regular array design," in: J. Mc-

Canny, J. McWhirter and E. Swartzlander (eds.), Systolic array processors, p. 589, Prentice

Hall, 1989.

[6] S. Peyton Jones, \The implementation of functional programming languages," Prentice Hall

International, 1987.

[7] M. Sheeran, \�FP { a language for VLSI design," D.Phil. Thesis, Programming Research

Group, Oxford University, November 1983.

[8] M. Sheeran, \Describing and reasoning about circuits using relations," in: K. McEvoy and

J. Tucker (eds.), Theoretical foundations of VLSI design, Cambridge University Press, 1990.

[9] S. Singh, \An application of non-standard interpretation: testability," in: L.J.M. Claesen

(ed.), Formal VLSI correctness veri�cation, North-Holland, 1990.

12

