Visualising Reconfigurable Libraries for FPGAs

Wayne Luk and Scott Guo
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, England
wl@doc.ic.ac.uk, srg@doc.ic.ac.uk

Abstract

This paper describes a framework and tools for visu-
alising hardware libraries for Fleld-Programmable Gate
Arrays (FPGAs), which should also be useful for cir-
cuit design in general. Our approach integrates the vi-
sualisation of design behaviour and structure, supports
various simulation modes, and assists the development
of run-time reconfigurable designs in FPGAs such as
Xilinx 6200 devices. Our tools can automatically gen-
erate a block diagram from a concise parametrised de-
scription. Design operations are animated by project-
ing a dataflow model on the block diagram. The user
can select to view data values on specific input and
output ports and internal paths. Numerical, symbolic
and bit-level simulation and their combination are sup-
ported, and the animation speed can be adjusted. The
tools should benefit both library users and suppliers,
since they can be used (a) to show the internal struc-
ture of a design, (b) to illustrate effective usage of li-
brary components, and (c) to present the consequences
of parametrising designs in different ways.

1. Introduction

Efficient and flexible libraries have been widely
recognised as the key to accelerating the production of
optimised FPGA designs [1]. As libraries are becoming
increasingly complex, it is no longer straightforward to
understand the design trade-offs necessary for their ef-
fective use. Moreover, while the run-time reconfigura-
bility [2] of some devices inspires novel optimisation
techniques such as morphing [3], the additional com-
plexity also provides much room for error.

Existing development tools can either simulate de-
sign behaviour or illustrate design structure, but they
seldom combine the two views effectively. Few com-
mercial tools support symbolic simulation or run-time

reconfiguration [4]. Moreover errors in library designs
could result in widespread damage; it is paramount to
be able to validate libraries before their release. Our
tools address these issues, and they should be useful for
both library users and library suppliers. A prototype
system that assists the evaluation, validation and doc-
umentation of designs will be described in the following
section.

2. Our System

A snapshot of the graphical user interface of our vi-
sualisation system is shown in Figure 1. Our tools can
automatically generate a block diagram from a concise
description in the Ruby language [1]. There are two
simulation modes: one supports simulating a design
cycle by cycle, and the other supports sub-cycle simu-
lation, showing how signals could propagate through a
combinational network. Figure 1 shows the visualiser
running symbolic simulation cycle by cycle.

The buttons at the top left-hand corner allow the
selection of simulation modes and input options; stim-
ulation data can be provided from a file or from the
command line input at the bottom. Various controls
are used to magnify designs, to choose step-by-step,
continuous or cyclic simulation, and to adjust the sim-
ulation speed.

Figures 2 to 4 demonstrate the visualisation of an
adder array in the sub-cycle mode, when a visual frame
is constructed in each sub-cycle. For each simulation
cycle in this example, there are five visual frames. Fig-
ures 2 to 4 depict an animation sequence in the first
simulation cycle with the inputs XO0,...,X4. Note that
all wires are initialised to an unknown value “?”.

3. Requirements

Our work is intended to provide versatile and infor-
mative tools which help users to improve their design.

CycleMode InputMode
s
w0 wl wa w3
(20 * w0)
% w3
(0 + (0 * =)
0+ (0wl + (7wl
d LL0 + (20 " wl)) + (7% wel)+ (7wl
d
(000 + (0" wll)) + (77wl (7% w2y + (7% w3))
= = L] =
| I-_E
Speed
18
Simulation Data: | <0 w0 wl wZ w3 Exit.
Data File: convolverdat

Figure 1. A snapshot of our visualiser carrying out symbolic simulation. D represents a register.

X1 X2 X3 X4

X0
+ >+ >+ > + >

Figure 2. Frame 1 (sub-cycle 1 of simulation cycle 1).

This requires our visualisation system to provide:

a view of the design structure, which should be
concise, regular and easily understood,

a view of the design behaviour, including state
transition and the interaction between compo-
nents in a design,

an effective integration of the structural and be-
havioural views,

support for run-time reconfiguration, and

i(l X2 X3 X4
X0 ?
> + + >+ >+ >
2 2
(X0+X1)

Figure 3. Frame 2 (sub-cycle 2 of simulation cycle 1).

e a good graphical user interface.

From experience, a visualiser becomes more useful
if it supports both numerical and symbolic simulation.
Furthermore, the visualiser should provide values not
only for the input and output ports, but also for the
internal nodes of the design. Such values can be pro-
jected dynamically on the circuit diagram to provide a
coherent integration of design structure and behaviour.
It is also important to be able to view the simulation
results in different ways to cover, for example, both
cycle-by-cycle simulation and sub-cycle simulation.

X1 X2 X3 X4

\

X0 (((X0O+ X1) + X2) + X3) + X4)
P+ TP+ T+ P+ >

(X0 + X1) + X2) + X3)
((X0+ X1) + X2)
(X0+X1)
Figure4.Frame 5 (sub-cycle 5 of simulation cycle 1). Data
have been propagated to the output port of the whole
design.

4. System Architecture

A system designed to satisfy the above requirements
has been prototyped and includes the following major
components: a sketcher, a simulator and a visualiser.
Figure 5 shows the relationship between the three tools
in our system.

simulation data

|

extended sjmulator‘

Ruby design

extended sketcher DDG

circuit schematic

animation snapshots

state table

Figure 5. The three main components of the visualisation
system. DDG stands for directed dataflow graph.

Given a description in the Ruby language, our
sketcher produces a circuit schematic and a directed
dataflow graph. The directed dataflow graph is used
by a simulator to perform both numerical and sym-
bolic simulation. The simulation results are used to
construct a state table, which contains the values on
external ports and internal paths of the design at differ-

‘ mouse/keyboard ‘ ‘ display screen ‘
user input to display
controllers: view manager:
receive user inputs displays output
messages access model update display

animation manager:
maintains graphical model
interacts with the simulator
maintains animation frames

Figure 6. Software architecture of the visualiser.

ent instants. The visualiser can project the numerical
or symbolic data values onto the circuit schematic sup-
plied by the sketcher (Figure 5). The circuit changes
state with new inputs arriving cycle by cycle over the
total simulation period, and the visualisation sequence
is produced accordingly.

The software architecture of the visualiser is shown
in Figure 6. Users of the visualiser interact with vari-
ous controllers, which communicate with the animation
manager responsible for maintaining the graphical dis-
play.

In our current system, the view manager and the
controllers are combined into a single module. This
module handles mouse and keyboard input, and deals
with the screen display in a system-independent man-
ner. The animation manager handles all aspects of
internal storage and interacts with both the simula-
tor and sketcher. It also maintains the visualisation
sequence.

5. Implementation

The implementation of the visualiser is based on
the Rebecca system [1], an environment for Ruby de-
signs that we have been developing. Work is underway
to provide similar facilities for other design languages.
Our environment contains a design sketcher [5] which
automatically produces block diagrams, and a simula-
tor which supports numerical and symbolic simulation.
Since the sketcher and the simulator have been devel-
oped independently, numerous extensions have been

made so that they can be integrated seamlessly in a
coherent system.

The user interface of our visualiser is based on the
Tcl/Tk software package [6]. One of the key compo-
nents in the visualiser is the visual frame manager,
which supports two circuit models. In the cycle-by-
cycle model, there is no time delay in combinational
components of the circuit. In the sub-cycle model, ev-
ery component is given the same propagation delay.
Each simulation cycle contains several sub-cycles, each
having a visual frame, to provide the illusion of data
propagation.

6. Reconfigurable Designs

Many designers are beginning to exploit the flexi-
bility of FPGAs by reconfiguring them at run time.
Recent FPGAs, such as Xilinx 6200 devices, support
partial reconfiguration: part of the circuit can be re-
configured while other parts continue normal opera-
tion. Such capability improves resource sharing by re-
configuring the FPGA on demand, at the expense of
complicating the development of designs.

A simple model [2] has been proposed for visualising
reconfigurable designs. Reconfiguration is described
using virtual control elements, such as multiplexers and
demultiplexers, which connect a specific component to
its environment at a particular time. Our visualisation
tool can animate reconfigurable designs either by in-
cluding the virtual control elements and the associated
control signals, or by dynamically changing the com-
ponent at the appropriate instant. The former method
provides a bird’s eye view of all possible configurations,
but the resulting display tends to be cluttered. The
other method produces simpler diagrams, but the sig-
nals controlling the reconfiguration are hidden.

These two methods will be illustrated using a pat-
tern matcher example [4]. Component A in Figure 7
top represents an AND gate with its bottom input in-
verted, while component B represents a normal AND
gate. This design can be used to match the pattern
FTFT. Figure 7 bottom shows an instant when the
above pattern matcher has been reconfigured to match
the pattern TFTF. The design in Figure 8 is the same
as the one in Figure 7 bottom, but with the virtual
control elements — in this case the fanouts and the mul-
tiplexers labelled mux — made explicit.

We have been exploring a library-based approach
[1] for developing reconfigurable designs. Our visual-
isation tool should contribute to the exploration and
evaluation of different reconfiguration possibilities for
both library providers and users.

Figure 7. Top: pattern matcher for the pattern FTFT. Bot-
tom: pattern matcher for the pattern TFTF. A represents
an AND gate with inverted bottom input, and B represents
an AND gate.

7. Summary

A framework and tools for visualising reconfigurable
hardware have been presented. The key elements of
our approach include the integration of visualising de-
sign behaviour and structure, the availability of various
simulation modes such as symbolic and bit-level sim-
ulation, and the support for run-time reconfigurable
designs. Current and future work involves automat-
ing the production of animation sequences for FPGA
library documentation, integrating the visualisation
tools with other circuit analysis and synthesis tools [4],
and extending our facilities to support design languages
in addition to Ruby.

Acknowledgements

Thanks to Steve McKeever, Richard Sandiford and
Nabeel Shirazi for their comments and suggestions.

B |— m
T u
f X B I— m
— A — u
X
— — — A
- |-
D D
T F
—0— —_— —0— —_—

T F
B I— m
T u
X B I— m
A — u
X
(| A
|| T
D
T F F

Figure 8. Reconfigurable pattern matcher for the pattern TFTF using mux, a virtual control element.

The support of Xilinx Development Corporation and
UK Engineering and Physical Sciences Research Coun-
cil (Grant Number GR/L24366 and GR/L54356) is
gratefully acknowledged.

References

[1]

[2]

W. Luk, S.R. Guo, N. Shirazi and N. Zhuang,
“A framework for developing parametrised
FPGA libraries,” in Field-Programmable Logic,
Smart Applications, New Paradigms and Com-
pilers, R.W. Hartenstein and M. Glesner (eds.),
LNCS 1142, Springer, 1996, pp. 24-33.

W. Luk, N. Shirazi and P.Y.K. Cheung, “Mod-
elling and optimising run-time reconfigurable
systems,” Proc. IEEE Symposium on FCCM,
K.L. Pocek and J. Arnold (eds.), IEEE Computer
Society Press, 1996, pp. 167-176.

3]

[4]

W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Che-
ung, “Pipeline morphing and virtual pipelines,”
in Field-Programmable Logic and Applications,
W. Luk, P.Y.K. Cheung and M. Glesner (eds.),
LNCS 1304, Springer, 1997, pp. 111-120.

W. Luk, N. Shirazi and P.Y.K. Cheung, “Compi-
lation tools for run-time reconfigurable designs,”
in Proc. IEEE Symposium on FCCM, K.L. Pocek
and J. Arnold (eds.), IEEE Computer Society
Press, 1997.

S.R. Guo and W. Luk, “Producing design
diagrams from declarative descriptions,” in
Proc. Fourth Int. Conf. on CAD/CG, S. Yand,
J. Zhou and C. Li (eds.), SPIE, 1995, pp. 1084-
1093.

J.K. Ousterhout, Tcl and Tk toolkit. Addison-
Wesley, 1996.

