
Towards a Declarative Framework for Hardware-Software Codesign

Wayne Luk and Teddy Wu
Programming Research Group

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, England OX1 3QD

Abstract

We present an experimental framework for mapping
declarative programs, written in a language known as
Ruby, into various combinations of hardware and software.
Strategies for parametrised partitioning into hardware and
software can be captured concisely in this framework, and
their validity can be checked using algebraic reasoning.
The method has been used to guide the development of
prototype compilers capable of producing, from a Ruby
expression, a variety of implementations involving field-
programmable gate arrays (FPGAs) and microprocessors.
The viability of this approach is illustrated using a number
of examples for two reconfigurable systems, one containing
an array of Algotronix devices and a PC host, and the other
containing a transputer and a Xilinx device.

1 Introduction

Although it has been known for many years that, from a
functional point of view, there is little distinction between
hardware and software, in current practice they are mostly
developed using very different methods and tools. This
paper presents a coherent framework for describing and
producing implementations that contain one or more hard-
ware and software components. Our aim is to investigate
the features for a system-level language to provide a rapid,
reliable and cost-effective route for realising such designs.
The purpose of this paper is to provide an overview of
our techniques and tools, many of which are still under
development.

Much of our work is based on a declarative language
known as Ruby (see [4], [10]). Ruby has been used princi-
pally as a hardware description language in the past. Here
we shall explore its use as a system design language. Our
approach is particularly applicable to designs with a uni-
form structure, which can be found in, for instance, many
signal processing systems.

An overview of the design process in our current frame-
work is shown in Figure 1. The user first prepares a Ruby

program for the desired computation, indicating which
parts should be implemented in hardware and which parts
should be implemented in software. Our system-level com-
piler produces from this program an implementation in-
volving one or more hardware and software components,
depending on the target system. The appropriate inter-
face will be included in these components to allow them
to communicate with each other. Other hardware and soft-
ware tools can then be used to realise the implementation;
for instance, vendor-provided implementation tools can be
used to generate configuration data for field-programmable
devices.

system-level

Ruby compiler

system-level Ruby

software and
hardware tools

conventional software

(eg C, occam)

parametrised hardware descriptions

(eg Ruby, Handel)

�

���� �
� � � � �

�
machine code and/or hardware netlist

Figure 1 An overview of the design process in our frame-
work.

At present the partitioning into hardware and software
is carried out by the user, and we are exploring possibilities
for automating this process. While a fully-automatic design
tool can sometimes be very useful, we are aware of the
importance for the user to retain full control whenever the
need arises. Hence our framework is evolved in such a

way that it should be possible to use our techniques in
conjunction with other methods, or to optimise generated
designs further by hand or by other tools.

Let us explain in some detail the motivations behind the
use of Ruby. Declarative languages often have a simple
semantics that makes them easy to understand and to use
[2]. Ruby shares this advantage, and it has additional fea-
tures that are attractive for system design. First, there are a
number of primitives and functions in Ruby for describing
parametrised designs concisely; they allow the user to fo-
cus on the essential structure of the system and also serve as
high-level design documentation. Second, as we shall see
later, a Ruby expression can be implemented in a number of
ways, ranging from a sequential program to a piece of fast
parallel hardware – or a combination of both; this flexibility
provides the basis for a unified representation of heteroge-
neous systems. Third, Ruby has an algebra for transforming
designs based on simple equational reasoning, so one can
generate from an initial description a variety of designs
customised to specific requirements. This facility is par-
ticularly useful in checking the correctness of parametrised
transformation strategies, such as those for partitioning a
program into hardware and software parts. Finally, data
refinement is supported in our framework, thus a designer
may start with, for instance, a program involving integer
datatypes and explores the effects of different bit-level rep-
resentations, using formal techniques or simulation.

It should perhaps be made clear that our work is intended
to complement, rather than to replace, existing hardware
and software languages and tools. Our framework can be
used in an incremental way to produce and to assess designs
rapidly; once a promising implementation is found, then
other tools can be used to further optimise it if desired.

2 Primitives and compositions

This section introduces the way that computation and
wiring components are described in Ruby, and the com-
position functions which allow connection of components
with a compatible interface.

A design is represented in Ruby by a binary relation of
the form ���	� where � and � belong respectively to the
domain and range of � . For instance, a squaring operation
can be described by

��
��� � � 2 � �
or, more succinctly, by ��
���� 2 � In this paper we shall
focus on designs with inputs in the domain and outputs in
the range, so we can also define such components in the
usual way as in
��� � � 2.

Wiring relations can be used to replicate, extract or re-
arrange data. As an example, the relation ������ can be used

to duplicate a datum, since ���������� �"!��$# . Extracting an
element from a pair is achieved by the projection relations%

1 and %
2, defined by � �"!�&# %

1 � and �'�(!)�&# %
2 � . Some

wiring relations are parametrised: for example, *,+.-0/ re-
lates a pair of sequences of the same length to a sequence
of pairs,

�1� � 0 !,� 1 ! . . . !,� /&2 1 #�!�1� 0 !)� 1 ! . . . !� /&2 1 #�#
*3+4- / �5�'� 0 !)� 0 #,!)� � 1 !� 1 #,! . . . !)� � /&2 1 !)� /&2 1 #5# �

Wiring relations not only shorten description of data rear-
rangement – they also have useful properties that can be
used for optimising designs which will be explained later.

Two components 6 and � can be joined together by
sequential composition if they share a common interface

which is hidden in the composite program 6 ; � (Figure 2a),

�876 ; �:9"�;� <=
 � 71�>6�
9@?A75
B�C�&9 � (1)

Many readers would recognise that sequential composition
corresponds to relational composition. It is simple to show
from this definition that sequential composition is associa-
tive. Notice that � , � and
 can be composite: for instance
6 can be DFEGE , where � �"!�&#HDGEFEI75�KJL�&9 .

6 ��
 �

a. 6 ; �
6
�

� 0

� 1

� 0

� 1

b. MN6O!,�QP

Figure 2 Sequential and parallel composition.

If there are no connections between 6 and � , the com-
posite is represented by parallel composition [6O!,�], where

� � 0 !�� 1 #"MR6>!��QP$�1� 0 !� 1 #S� 71� 0 6�� 0 9@?A75� 1 ��� 1 9 (2)

as shown in Figure 2b. Given that T is the identity relation
(�KTU�), we use the abbreviations

VNW1X � � MY�Z![TYP5!W,\�] � � M.T5!��QP �
Repeated sequential composition of ^ copies of �

is given by � / , so � 4 � � ; � ; � ; � . Simi-
larly repeated parallel composition is given by _a`Fb / � :
_Z`Fb 3 � � Mc�Z!��Z!,�QP . There are functions for capturing
other patterns of replicating components and for building
state machines; details of these can be found in [4], [5],
[10] and [12].

3 Design mapping

It is possible to implement a Ruby expression in a num-
ber of ways. For instance, the expression 6 ; � can be
implemented in hardware as two connected circuit blocks
as shown in Figure 2a, or implemented in software in the
form of C and occam programs. In this case, if both 6 and
� are functions with inputs in their domain and outputs in
their range, then the code for 6 will be executed before the
code for � . Repeated compositions can be translated into
for-loops in software.

More interestingly, an implementation of 6 ; � can have
6 in hardware and � in software or vice versa, provided
that the interface between them follows the sequencing
constraint imposed by sequential composition. At present
we adopt synchronous communication [3] between com-
ponents executing in parallel – whichever completes ex-
ecution first has to wait for its partner to finish. If there
are several ways of interfacing between 6 and � , the user
should be able to indicate which one if the default option is
not preferred; we are also exploring methods for automat-
ing the selection of alternative interfaces.

To map the components of an expression into hardware
or software, we label them either by d or by e , as in df6 ;
eg� . For convenience, e and d will be distributed through
composite functions to their components and eL7hd�i:9 �
dji and dk7Re:lK9 � eHl , so em75n ; MR6O! do�QP ; pB9 is an
abbreviation for e�n ; M em6O! dq�QP ; e�p . It is possible to
have several physical hardware or software resources: the
implementation for

e�7 i ; ������ ; MYl>!'d 0 7r������ ; MRs>!'d 1 t PN9RPN9
contains (a) a software program for implementing i , l and
the first �)����� , specified by e ; (b) a circuit for implementing
s and the second ������ , specified by d 0; and (c) another
circuit for implementing t , specified by d 1.

4 Design tools

We have developed a set of compilation tools for a subset
of Ruby known as T. Currently a relation in T always has in-
puts in its domain and outputs in its range. Sequential prim-
itives [10] such as u have not been implemented. Many
of our tools are target-independent; the target-specific tools
correspond to compiler backends that produce the output
in a particular format.

The target-independent compiler converts a T program
into two parts: a hardware part H, and a software part S.
The execution of H and S can be simulated. Our simulator
supports both symbolic simulation and numerical simula-
tion involving integers and fixed-point numbers; a mixture

of numerical and symbolic simulation is possible as well.
The target-specific tools then generate device- or language-
specific files from H and S. The hardware part H can be
further processed by compilers [11] for various FPGA de-
vices, including those from Xilinx and Algotronix. S, the
software part, can be used to produce C or occam programs.

When designing with Ruby, one usually starts with a
high-level description of the computation without deciding,
for instance, how integers will be represented at bit-level.
In a separate step, often known as data refinement, the
implementation of high-level data structures is considered.
This method is useful in structuring design documents, and
in providing additional flexibility for realising designs. Our
design tools contain functions that convert between data
representations, facilitating the analysis of finite-precision
effects. For instance, given that DFEGE is integer addition
and
,+h^&v 2 w,+xv / and w�+yv 2
,+h^$v / respectively convert integers
to their ^ -bit two’s complement representations and vice
versa, the expression

Mhw�+yv 2
3+z^&v / !{w�+yv 2
3+z^&v / P ; DGEFE ;
3+z^&v 2 w�+yv /
models an ^ -bit adder. The trade-offs of adopting dif-
ferent data representation schemes, for both hardware and
software, can be explored by systematically replacing high-
level operations by their low-level models – a step which
is being automated.

5 Partitioning strategies

In accelerating performance-critical programs, a pure
hardware implementation may not be attractive due to
reasons such as cost; a mixed hardware-software imple-
mentation may be more appropriate. This section presents
parametrised strategies capable of rearranging the compu-
tations to achieve an effective partitioning for hardware-
software implementations. For simplicity we shall focus
on the case that we have a single hardware unit and a single
software unit, but it would be possible to develop partition-
ing strategies for multiple hardware and software units.

As our first example, consider implementing � / on a
piece of hardware that can only accommodate �}| , where
^�~�- . One solution is to find � and � such that ^ �
-����QJ�� in order to implement � / as

e�757zd�71� | 919,� ; ���9 � 7 3 9
There are two sequential loops in this implementation. The
first contains � iterations in software, and each of these
iterations invokes the hardware once for computing �H| ;
the second loop iterates � times to compute � � in software.

Clearly the above solution assumes that the hardware
implementation of � is faster than the software implemen-
tation, and that the time for communicating between the

1

1

1

1

1

1

1

1

x11

x12
x13

x14

x15

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0 1

y15

y14

y13

y12

y11

y10

y9

y8

y7

y6

y5

y4

y3

y2

y1

y011

1

1

1

1

w

w

w

w

w

w

ww

w

w

w

w

ww

w

w

w

4

2

6

5

3

76

2

4

6

2

44

4

4

4

Figure 3 Using a butterfly network to implement a 16-point fast Fourier transform.

hardware and the software components is much less than
the computation time.

To describe a partitioning method for parallel compo-
sition, we need two more wiring operations. The first,� �[���-0�:� / , relates a sequence of �A��^ elements to a se-
quence of � elements, each of which is a sequence of ^ el-
ements, so � 1 ! 2 ! 3 ! 4 ! 5 ! 6 # � �[���- 3 � 2 �1� 1 ! 2 #�!� 3 ! 4 #�!)� 5 ! 6 # # �
The second wiring operation, D�-G-0�:� / , relates a sequence
of two sequences of length � and ^ to the appended ver-
sion, so �1� 1 ! 2 ! 3 #�!)� 4 ! 5 # #�D�-F- 3 � 2 � 1 ! 2 ! 3 ! 4 ! 5 # . We shall
also need the converse operation, given by

�I� 2 1 �;� �O�L� �
The pattern n 2 1 ; 6 ; n – in words ‘ 6 conjugated by n ’
– will be abbreviated to 6K�$n .

The theorem that equates a repeated parallel composition
to its partitioned version is

_Z`Fb |���� �5���[�h��� �� MY71_a`Fb | 7[MY_Z`Fb � �Z!=_Z`Fb � ��PN��D3-G- � � � 959� � �����)- | � �5��� !�_a`Fb � ��PN��D3-G- |��0� �5���[� � � � (4)

While this theorem may appear complicated, it can be
proved algebraically using simpler laws. We can now label
the components on the right-hand side of this equation with
d and e , so that _Z`Fb |���� �1���[�h��� � can be implemented in
hardware using only � copies of � :

e�7�MY75_Z`Fb | 7[M d�71_a`Fb � ��9�!=_a`Fb � �QPN��D�-F- � � � 959� � �[���)- | � �5��� !�_Z`Fb � �QPN��D�-G- |���� �1���[� � � 9 �

There are two sequential loops in this implementation.
One involves - iterations, each implementing concurrently
_Z`Fb � � in hardware and _Z`Fb � � in software. The other
loop involves implementing _a`Fb � � in software. To min-
imise idle time, the parameter � should be chosen such that
the time for executing � copies of � in hardware is around
the same as that for executing � copies of � in software.
If necessary, serialisation strategies [10] can be applied to
the hardware part to balance the hardware load and the
software load.

Our next example involves partitioning of a butterfly
network. We shall need �,+ �m�3/ , a wiring operation similar
to *,+.-0/ but without some of the internal sequence structures
in the domain and range data, to describe a perfect shuffle
architecture [5]:

�'� 0 !�� 1 ! . . . !�� /&2 1 !)� 0 !)� 1 ! . . . !)� /&2 1 #
��+ �m� / �'� 0 !)� 0 !�� 1 !� 1 ! . . . !�� /&2 1 !� /&2 1 # �

One can show that �,+ �m�3/ � � �[���- 2 � / ; *,+.-0/ ; � �[���)- 2 1/ � 2. A
parametrised butterfly network can be defined using �,+ ���3/ :

��VN� / � � 7 ��VN������� / ��9 / � 1 !�,VR�{���0� / � � �,+ �m� 2 / ; 75_Z`Fb 2 / ��91� � �[���- 2 1
2 / � 2 �

Figure 3 illustrates the use of a butterfly network to
compute a 16-point fast Fourier transform. Each node
in this network takes in a pair �5�"!)�G# and computes
�1�� �D¡���"!)�:J�DO����# , where D is the coefficient for the
multiplication (the twiddle factor) and is labelled at each
node in the figure. This network can be described by an

“indexed” version of
��VN�

3, ¢ �,VR� 3, which takes into account
the variation of coefficients at each node.

When a butterfly network is too large to fit onto a given
piece of hardware, we can partition it in several ways. First,
since each column in a butterfly network is the same,we can
use Equation 3 to partition

��VN�
. Second, if the amount of

hardware is too small to implement even a single column
of a butterfly network, we can use the theorem below to
partition a

��VN�{�3���
:

�,VR�{���0� � � / � � ��+ �m� 2 � � � �[���)- 2 1
2 �}£ 1 � 2 / ;

71_a`Fb 2 � 7 ��VN������� / ��9195� � �����)- 2 1
2 � � 2 / £ 1

�
An instance of this theorem is shown in Figure 4. The
expression _a`Fb 2 � 7 ��VN�{�3��� / �:9 on the right-hand side of
the above equation can now be rewritten and optimised by
Equation 4.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 4
�,VR�{���0� � � / � � �,+ ��� 2 � � � �����)- 2 1

2 �}£ 1 � 2 / ;

71_a`Fb 2 � 7 �,VN�����0� / �:9195� � �[���)- 2 1
2 � � 2 / £ 1 , with � � 1 and

^ � 2.

As a final example, we have expressed in Ruby a
method for partitioning multidimensional programs [13].
The method involves a divide-and-conquer structure, with
the “divide” and “merge” phases carried out by a general-
purpose processor while the “conquer” phase is handled by
application-specific hardware. It can be expressed in Ruby
as:

e�73E�+h�)+NEG�3/ ; ¤���^������,�3/¥7hd��:9 ; �¦��� � ��/&9
where � is an ^ -dimensional program. [13] presents the
conditions such that the equation

E�+h�)+NEF� / ; ¤���^��,����� / � ; �¦��� � � / � � (5)

is true.
The application of some of these partitioning strategies

will be illustrated in the following sections. There are
other partitioning methods, for instance those involving
a combination of composition functions, which have not
been described above.

6 Edge detection on the CHS2x4

The divide-and-conquer partitioning strategy has been
used in implementing the Sobel edge detector on an FPGA-
based hardware accelerator known as CHS2x4 [1] (Fig-
ure 5). The CHS2x4 is a full-length IBM AT card which
communicates with the host computer through the AT bus.
The board consists of three subsystems: the Computation
Subsystem which holds eight CAL 1024 chips [6] arranged
in a two by four array, the Memory Subsystem which con-
tains 256 Kbytes of SRAM, and the Interface and Control
Subsystem which deals with the communication between
the board and its host machine. At present data transfer be-
tween the CAL chips and the on-board memory is restricted
to sequential input and output over a byte-wide channel,
controlled by invoking C-library routines provided by the
manufacturer. Each CAL chip is an FPGA consisting of 32
by 32 cells. Each cell has a one-bit input port and a one-bit
output port on each of its four sides. An input port can be
programmed to connect to one or more output ports, or to
a function unit which can be programmed to behave either
as a two-input combinational logic gate or as a latch.

The Sobel edge detection algorithm involves a two-
dimensional convolution using the masks

MyMY 1 !� 2 !� 1 P5!M 0 ! 0 ! 0 P§!)M 1 ! 2 ! 1 PcP
and

MyMY 1 ! 0 ! 1 P5!)M. 2 ! 0 ! 2 P§!)M. 1 ! 0 ! 1 PcP
to produce the image gradient in the horizontal and in the
vertical direction. The squares of the two gradients are then
summed together and compared against a threshold. Our
hardware implementation consists of adders, subtractors,
registers, multiplexers, magnitude extractors and a multi-
plier. Partitioning is necessary because the size of many
images requires a larger memory than is available in our
CHS2x4 system.

Our implementation is guided by the Ruby expression

e�7,E�+h�)+NEG� 2 ; ¤���^������,� 2 7zd�p(��E&9 ; �¦��� � � 2 9
(from Equation 5). In this expression the component
E�+h�+REG� 2, the two-dimensional version of E�+h�)+NEF� / , divides
an image into a series of smaller images, each of which
is then processed by ¤���^=�,����� 2 using the Hardware Sobel

RAMRAM

8
8

8

8

LD

HD

LD

LD

HD

HD

SUBSYSTEM
CONTROL

INTERFACE &

TO AT BUS

SUBSYSTEM

MEMORY

COMPUTATION SUBSYSTEM

CALCALCALCAL1,0 1,1 1,2 1,3

CALCALCAL 0,30,20,1CAL0,0

Figure 5 The CHS2x4 board.

edge detector p(��E , and the resulting edge maps are stitched
together in software according to �¥��� � � 2. The result pre-
sented below has been obtained by an implementation pro-
duced by hand, but it should be straightforward to automate
a substantial part of the work using our prototype com-
piler. In this case the hardware-software interface would
be implemented by calls to the library routines supplied by
Algotronix.

We have carried out some experiments to compare the
Sobel edge detector in software on a 386-based PC against
the FPGA-assisted version. Even with the slow software-
controlled FPGA execution, a speedup of over 20 times can
be obtained if data transfer overhead to and from disk is not
included, while a speedup of a factor of two is observed if
we include the data transfer overhead. In fact, the critical
path of our hardware design is found to be around 574ns,
which means that it should be capable of performing edge
detection for images of 128 by 128 pixels at 35 frames per
second, provided that data can be supplied at that rate. We
have also found that the time for dividing the image into
sub-images and combining the results is around 5% of the
total processing time; so our partitioning strategy appears
to incur a modest overhead for this system.

7 Implementing designs on HARP1

The HARP1 system is constructed as a platform for
developing hybrid hardware/software systems [8]. It inte-

grates a T805 transputer, 4Mbyte DRAM, a Xilinx 3090 (or
3195) FPGA chip with two local banks of 32K by 16-bit
SRAM, and a 100MHz variable clock frequency synthe-
sizer on an industry-standard (size 6) TRAM module (Fig-
ure 6). The speed of the FPGA depends on the critical path
of the logic that it implements, and it can be varied using
the frequency synthesizer. The board can be regarded as a
prototype of a future microprocessor, which has a conven-
tional RISC core closely integrated with a flexible hardware
coprocessor.

The transputer can communicate with the FPGA in a
number of ways. It can directly communicate with the
FPGA through the bus, or it can use the SRAM or the
DRAM as a shared memory with the FPGA. One common
mode of operation of HARP1 is as follows. The transputer
first loads the SRAM with data, and it then reconfigures the
FPGA to carry out the desired computation. The transputer
and the FPGA can then operate in parallel, exchanging data
over the bus if necessary. The result in SRAM, if any, can
be extracted at the end of the computation. Notice that
since the FPGA and the transputer can run in parallel, the
definition of E�+h�+REG� / , ¤���^������,� / and �¥��� � � / for the divide-
and-conquer partitioning method can be modified such that
the expression

e�73E�+h�+REG� / ; ¤���^=�,����� / M dq�a!=pUP ; �¥��� � � / 9
describes the concurrent execution of the software program
p and the hardware implementing � .

A variant of occam, called Handel, can be used to pro-

4Mbytes DRAM 64K SRAM

L
in

k
0

L
in

k
1

L
in

k
2

L
in

k
3

Event

64K SRAM
Frequency

Synthesizer

Xilinx FPGA I / O
T805

Transputer

Figure 6 The HARP1 system.

gram the FPGA on HARP1 (see [14],[15]). There are li-
brary routines in Handel that provide the interface to SRAM
and to the transputer bus for the FPGA, and it is possible to
describe the core computation using Ruby and the interface
using Handel. Hence our system-level compiler produces
from a Ruby source description three target programs for
HARP1: a Ruby program and a Handel program for the
FPGA, and an occam2 program for the transputer.

Using our compilers and other tools, we have imple-
mented a number of Ruby programs on HARP1, includ-
ing sequence matchers and several butterfly networks for
matrix transposition and for fast Fourier transform. The
FPGA clock typically ranges between 5MHz and 20MHz,
depending on the application. The implementation process
is completely automatic – although for large designs the
vendor software for placing and routing the FPGA may
take a long time to complete.

8 Concluding remarks

Our declarative framework offers a number of advan-
tages for parametrised hardware-software codesign, such
as concise descriptions, flexibility of target and support
for provably-correct development. It is particularly appli-
cable to designs with a uniform structure, which can be
found in, for instance, many signal processing systems.
Implementations can be produced rapidly if the hardware
is implemented by field-programmable devices.

While our experience of Ruby has been favourable, fur-
ther research is required before realistic designs can be
produced routinely. It would be useful to extend the ex-

pressive power of the system-level description language,
perhaps by incorporating the stream model of Ruby (see
[4], [10]) which provides additional primitives including
delay operators, rate converters and abstractions for run-
time configuration of components. Both the hardware and
the software code generators of our experimental compilers
can be optimised: part of this optimisation can be achieved
using the algebra of Ruby.

We have also been investigating techniques for assess-
ing the quality of hardware designs in Ruby [9]. Methods
for estimating performance are being extended to take into
account the effects of having multiple hardware and soft-
ware units, and the overheads of communication between
them. These techniques should facilitate the development
of appropriate cost measures for mixed hardware-software
systems, which can be used in algorithms and transforma-
tion systems for automatically optimising and partitioning
designs.

Acknowledgements

The hardware Sobel edge detector was implemented by
Steve Chiu. Thanks to members of the Oxford Hardware
Compilation Research Group for discussions and sugges-
tions, and to Vincent Lok and Geoffrey Randall for help in
producing some of the diagrams in this paper. The support
of Oxford Parallel Applications Centre, Esprit OMI/HORN
project, Scottish Enterprise and Xilinx Development Cor-
poration is gratefully acknowledged.

References

[1] Algotronix Ltd, CHS2x4 Custom Computer User
Manual, 1992.

[2] R. Bird and P. Wadler, Introduction to Functional
Programming, Prentice-Hall International, 1988.

[3] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall International, 1985.

[4] G. Jones and M. Sheeran, “Circuit design in Ruby,” in
Formal Methods for VLSI Design, J. Staunstrup (ed.),
North-Holland, 1990, pp. 13–70.

[5] G. Jones and M. Sheeran, Collecting Butterflies,Tech-
nical Monograph PRG–91, Oxford University Pro-
gramming Research Group, February 1991.

[6] T. Kean and J. Gray, “Configurable hardware: two
case studies of micro-grain computation,” in Sys-
tolic Array Processors, J.V. McCanny, J. McWhirter
and E.E. Swartzlander Jr. (eds.), Prentice Hall, 1989,
pp. 310–319.

[7] S.Y. Kung, VLSI Array Processors, Prentice Hall,
1988.

[8] A. Lawrence, A. Kay, W. Luk, T. Nomura and I. Page,
“Using reconfigurable hardware to speed up prod-
uct development and performance,” JFIT Conference,
Edinburgh, March 1994.

[9] W. Luk, “Analysing parametrised designs by non-
standard interpretation,” in Proc. International Con-
ference on Application-Specific Array Processors,
S.Y. Kung, E. Swartzlander, J.A.B. Fortes and
K.W. Przytula (eds.), IEEE Computer Society Press,
1990, pp. 133–144.

[10] W. Luk, “Systematic serialisation of array-based ar-
chitectures,” Integration, the VLSI Journal, Vol. 14,
No. 3, February 1993, pp. 333-360.

[11] W. Luk and I. Page, “Parameterising designs for FP-
GAs,” in FPGAs, W. Moore and W. Luk (eds.), Abing-
don EE&CS Books, 1991, pp. 284–295.

[12] W. Luk, V. Lok and I. Page, “Hardware acceleration
of divide-and-conquer paradigms: a case study,” in
Proc. IEEE Workshop on FPGAs for Custom Com-
puting Machines, D.A. Buell and K.L. Pocek (eds.),
IEEE Computer Society Press, 1993, pp. 192–201.

[13] W. Luk, T. Wu and I. Page, “Hardware-software code-
sign of multidimensional algorithms,” in Proc. IEEE

Workshop on FPGAs for Custom Computing Ma-
chines, D.A. Buell and K.L. Pocek (eds.), IEEE Com-
puter Society Press, 1994.

[14] I. Page and W. Luk, “Compiling occam into FPGAs,”
in FPGAs, W. Moore and W. Luk (eds.), Abingdon
EE&CS Books, 1991, pp. 271–283.

[15] M. Spivey and I. Page, How to program in Handel,
Technical Report, Oxford University Programming
Research Group, December 1993.

[16] A. Wenban, J. O’Leary and G.M. Brown, “Code-
sign of communication protocols,” IEEE Computer,
Vol. 26, No. 12, pp. 46–52, December 1993.

