
Reprint from Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines, IEEE Computer Society Press, 2000.

Customising Graphics Applications:
Techniques and Programming Interface

Henry Styles and Wayne Luk
Department of Computing, Imperial College

180 Queen’s Gate, London SW7 2BZ, England

Abstract

This paper identifies opportunities for customising ar-
chitectures for graphics applications, such as infrared sim-
ulation and geometric visualisation. We have studied
methods for exploiting custom data formats and datap-
ath widths, and for optimising graphics operations such
as texture mapping and hidden-surface removal. Tech-
niques for balancing the graphics pipeline and for run-
time reconfiguration have been implemented. The cus-
tomised architectures are captured in Handel-C, a C-
like language supporting parallelism and flexible data
size, and compiled for Xilinx 4000 and Virtex FPGAs.
We have also developed an application programming in-
terface based on the OpenGL standard for automatic
speedup of graphics applications, including the Quake 2
action game.

1 Introduction

Despite tremendous progress in the last thirty
years, real-time generation of realistic images still of-
fers many challenges. The demand for realism re-
quires improvement in algorithms, frame rate and
resolution, while the variety of applications involves
an increasing number of image formats. The situa-
tion is exacerbated by the need for reducing develop-
ment time and costs, and for short turnaround due to
changes in specification.

There are ASICs (application-specific integrated
circuits) and high-end workstations for graphics ac-
celeration, and microprocessors with graphics in-
structions have been introduced. However, they may
not be cost effective or fast enough, for instance, when

dealing with customised processing or non-standard
image formats.

This paper presents a new approach to meet the
challenges of real-time image generation. The key
ideas are to:

� identify opportunities and techniques for cus-
tomising architectures for graphics applications;

� prototype the customised architectures using
hardware compilation and FPGAs;

� develop an API (application programming inter-
face) based on the OpenGL standard for auto-
matic speedup of graphics applications.

Two applications involving infrared simulation and
geometric visualisation will be used to illustrate our
approach. Table 1 shows the average results we
have achieved, comparing software on a 400 MHz
Pentium-II PC, software on this PC accelerated by an
FPGA, and ASIC or a high-end workstation. Perfor-
mance is given by frame rate, the number of frames
that a system can generate each second.

The results for the geometric visualisation appli-
cation show that the FPGA platform is approaching
the performance of a dedicated graphics ASIC for
general-purpose graphics applications. Infrared sim-
ulation, on the other hand, requires a custom pixel
format which is not supported by standard graphics
ASICs. The Onyx2 Reality Engine from SGI, a high-
end graphics workstation, can deal with custom pixel
formats. The frame rate estimated from its peak per-
formance is given in Table 1 [12]. However this ma-
chine costs approximately 140,000 dollars in January
2000: it contains two 180 MHz MIPS processors,
two Geometry Engine processors and two rasteriser
ASICs, with a memory bandwidth of 6.4 GB/sec.



Table 1 Performance of case studies. Frame rate is
given by the number of frames per second (fps).

Application Implementation Clock rate Frame
medium (MHz) rate (fps)

Infrared Software on PC 400 96
simulation Xilinx XC40150 20 167

Xilinx XCV1000 40 330
SGI Onyx2 Reality 180 2750

(estim.)

Geometric Software on PC 400 24
visualisation Xilinx XC40150 25 26

Xilinx XCV1000 40 41
NVidia TNT2 Ultra 170 55

This represents approximately ten times the cost and
memory bandwidth of our FPGA-based platform.

The performance of the infrared application
demonstrates that the FPGA renderer is an effec-
tive low-cost platform for custom graphics applica-
tions. Although the Onyx2 workstation is approx-
imately eight times faster, a lower-cost alternative
would be preferable for applications not requiring the
additional performance. The FPGA-based renderer
meets these requirements. The development time of
a customised FPGA renderer is comparable to opti-
mised software, enabling a reconfigurable rendering
platform to be used effectively for custom graphics
applications.

Our approach would be attractive in developing re-
configurable designs where an ASIC solution is not
available or too expensive; it would also be useful in
exploring desirable algorithms and architectures for
ASICs. The techniques that we have developed will
be described in the following sections.

The use of FPGAs for graphics acceleration has
been advocated several years ago [13]; more recently
FPGA-based rasterisers have been proposed [3].
Other relevant research includes volume visualisation
architectures for the Teramac custom computer [2],
procedural texture mapping for the TM–2 rapid proto-
typing system [15], and the graphics codesign frame-

Rasterisation

Geometry
Subsystem Transformation

Lighting

Scan Conversion

Hidden Surface
Removal

ShadingTexture Mapping

Mixer

Frame Buffer

Figure 1 The graphics pipeline.

work based on C++ and VHDL [5]. However, we
are not aware of work similar to ours on customis-
ing architectures based on hardware compilation and
graphics API, and on using a commercially available
platform (RC1000–PP from Embedded Solutions) for
implementation.

2 Custom rendering architectures

This section motivates the development of custom
rendering architectures to cater for the requirements
of different graphics applications.

Graphics applications can be characterised by the
rate at which images are generated. Real-time ren-
dering applications require smooth animation which
must be responsive to user input. A common method
is to represent solid objects using sets of connected
triangles which are projected onto the frame buffer.
The system for this operation is commonly referred
to as the graphics pipeline (Figure 1), where each
pipeline stage can be implemented in software or
hardware, and executed in sequence or in parallel.

The geometry subsystem transforms the poly-
gon model from three-dimensional space to two-
dimensional space. It then calculates the light in-
tensity at each polygon vertex using a physical light-
ing model. During rasterisation, polygons are filled
to maintain depth coherency by removing the hidden



Table 2 Graphics applications which customise the graphics pipeline in Figure 1. Each table entry denotes a
non-standard rendering effect or property which is unsupported by ASIC rendering architectures.

Application Transformation Scan conversion Hidden-surface Shading Texture Frame
and lighting removal mapping rate

Infrared simulation point source low resolution simple scenes per-pixel lighting sparse high
Stylised depiction effect specific effect specific per-pixel lighting
Deformable model NURBS evaluator complex scenes
Scan line rendering Phong lighting non-polygon complex scenes per-pixel lighting low
Radiosity methods scene occlusion spline based

surfaces and mixing the textures and shading. The re-
sulting image is then accumulated in the frame buffer.

Real-time rendering algorithms are characterised
by parallel computation and parallel memory ac-
cess patterns. General-purpose architectures are not
always well-suited to meeting these two require-
ments. Modern microprocessors facilitate instruc-
tion pipelining to improve performance in tight in-
ner loops. This optimisation cannot easily be applied
to calculations in the graphics pipeline because of
its length and the complexity of arithmetic operators.
Furthermore super-scalar execution cannot improve
the performance of coarse-grain parallel operations
which account for much of the computation within the
graphics pipeline. Traditional microprocessor mem-
ory architectures also serve as a bottleneck because
parallel memory access patterns common in graphics
effects, such as texture mapping, must be serialised.

Custom rendering architectures usually include
one or more ASIC graphics processors and parallel
memory. The rendering architecture can be integrated
with a microprocessor to provide the required degree
of device specialisation, ranging from tight coupling
in a high performance workstation, to loosely-coupled
PC-based consumer products.

The standard range of features supported by ASIC-
based graphics rendering architectures is not suffi-
cient for all graphics applications. High performance
graphics applications in the fields of animation, visu-
alisation, simulation, and cinematic effects often em-
ploy non-standard graphics algorithms, which are un-

supported by ASIC-based graphics rendering archi-
tectures. Furthermore, the fabrication of a new high
performance ASIC-based platform for each custom
application is prohibitively expensive. These appli-
cations are usually serviced by software renderers,
which are flexible but have lower performance than
ASICs. Reconfigurable devices offer an attractive al-
ternative, since they provide the flexibility of software
and performance comparable to custom hardware.

Table 2 shows several applications which require
non-standard customisation of the graphics pipeline.
These customisations are not supported by low-cost
off-the-shelf graphics accelerator chips. An appli-
cation typical of this set is infrared simulation. In-
frared simulators are used in applications involving
heat sensing. The simulator must generate real-time
images of objects as viewed by an infrared camera.
Commercial infrared simulation applications, such as
Paradigm Simulator’s “SensorVision”, operate at cus-
tom resolutions, refresh rates and pixel formats; typ-
ically 12 bits greyscale per pixel, 128 by 128 resolu-
tion at 60 Hz. Moreover, infrared simulation requires
non-standard post-processing filter effects to model
the interaction of the environment with an infrared
camera. The infrared simulation application has been
used to test the performance of our graphics render-
ing architecture for applications which require non-
standard customisations of the rendering pipeline.

Applications such as Mathematica and Matlab use
three-dimensional graphics for geometric visualisa-
tion. Geometric visualisation involves the use of stan-



dard graphics rendering techniques, such as texture
mapping, uniform-direction lighting and Gouraud
shading, with high volume polygon models at high
texture fill rates. The fill rate limits performance
when objects move close to the viewer, while poly-
gon setup becomes the bottleneck when objects move
away. This application allows us to compare the per-
formance of our rendering architecture with existing
products as it requires only standard graphics effects.

Custom rendering architectures can be prototyped
using an FPGA-based system. Such systems en-
able the use of reconfiguration to improve both func-
tional diversity and performance. Table 2 demon-
strates the breadth of graphics effects required by cus-
tom graphics applications. Most graphics applica-
tions, however, require only a small set of common
effects which are supported by graphics ASICs. It is
uneconomical to produce ASICs which support the
vast breadth of graphics effects required by custom
graphics applications. An FPGA-based architecture
however, is capable of customising relevant hardware
stages of the graphics pipeline critical to the perfor-
mance of a given application.

For instance, hidden-surface removal and polygon
culling algorithms can be varied according to poly-
gon model complexity and level of scene detail; load
balancing between pipeline stages can be achieved by
adaptively managing resources and minimising com-
putational bottlenecks. Moreover, parallel memory
bank assignment can be varied to improve fill rate by
controlling memory bandwidth for texture mapping.
Reconfiguration can be applied when the application
is loaded initially, or throughout execution in response
to changes in application performance characteristics.
These techniques will be described in later sections.

3 Design flow and partitioning

This section covers the prototyping of custom ar-
chitectures using reconfigurable devices, and outlines
the tools and platform that we use.

The design flow in our framework for developing
custom rendering architectures is as follows. A soft-
ware model of the application is created and profiled
to determine performance characteristics. The devel-
oper then decides how the application is partitioned

between hardware and software, produces the hard-
ware components, and interfaces them to the revised
software components.

We have developed a framework for rapid customi-
sation of graphics architectures based on the Handel-
C language from Embedded Solutions which sup-
ports hardware compilation. Compile-time parametri-
sation of the framework sets pixel format and datapath
width, and its modularity allows developers to quickly
plug-in custom designs for scan conversion, hidden-
surface removal, shading and texture mapping.

The customised architecture is then compiled for
the RC1000-PP board shown in Figure 2 which in-
cludes four parallel 2 MB memory banks, bus mas-
ter PCI communication to the host, and a user-
programmable Xilinx XC4000 or Virtex series FPGA.

There are several reasons for using Handel-C in
this project. First, it enables rapid and incremental
development, starting from a design almost directly
translated from a software C description, to highly-
optimised pipeline implementations, all in Handel-C.
Second, the adoption of a syntax close to C facilitates
variation of the hardware/software boundary. Third,
Handel-C offers a degree of portability: designs can
be re-targeted to different technologies. Fourth, the
compilation strategy follows a particular timing dis-
cipline [9], allowing performance in number of cy-
cles to be easily estimated. Fifth, the language con-
tains constructs to specify bit-level operations, allow-
ing precise resource management and control of cir-
cuit propagation delay. Finally, Handel-C is well-
integrated with the RC1000-PP platform to provide a
useful experimental vehicle. However, currently par-
allel designs have to be developed by hand, since par-
allelisation is not automated.

4 Customising data formats and operations

This section discusses the use of reconfiguration
to improve the diversity of applications supported by
hardware rendering platforms.

4.1 Custom output formats

Custom pixel formats are required by applications
which service non-standard display devices. ASIC-



PCI DMA controller

FPGA

M0

M1

M2

M3

Figure 2 The RC1000-PP platform. The four mem-
ory banks are labelled M0: : :M3. The unlabelled
boxes denote switches enabling the memory to con-
nect to the FPGA or the DMA controller.

based renderers support up to 32 bits per pixel, made
up of four 8-bit colour components. High accuracy
pixel formats required by simulation applications are
only supported by high-end graphics workstations.
Reconfigurable platforms can be configured to sup-
port custom width datapaths and pixel formats.

Our graphics architecture framework adopts the
C pre-processor for compile-time parametrisation of
pixel format. The developer can select RGB� or
greyscale colour components, and can set the accu-
racy of each component up to 32 bits per pixel.

The infrared simulation application requires a non-
standard pixel format for which colour component
and pixel accuracy parameters are set to greyscale, 14
bits per pixel. Geometric visualisation requires a stan-
dard 16 bit pixel format, for which the RGB� colour
model is selected with 5 bit red, 5 bit green, 5 bit blue,
and 0 bit � colour components.

4.2 Custom lighting and shading models

A shading model approximates a mathematical
lighting model across the surface of polygons. Cur-
rent ASIC graphics architectures evaluate lighting
model equations in software at each polygon vertex,

then bi-linearly interpolate these intensities across
each polygon face using hardware Gouraud shading.

Physically-based lighting models such as Phong
and Torrance-Sparrow illumination, which require
that lighting equations be evaluated at each pixel, are
poorly approximated by Gouraud shading in exising
ASIC renderers. Alternative approximations involve
light-mapping, in which two textures are applied to
each polygon: a surface texture and a dynamic light-
map texture. However, this method compromises
the performance gains of hardware rendering as light
maps must be constructed and updated in software.

A reconfigurable rendering architecture can in-
clude a custom lighting and shading unit to support
non-standard and accurate lighting models which are
not supported by ASICs. For example, a custom
shader can be constructed for spline-based interpola-
tion methods based on quadratic Bezier patches, cu-
bic Bezier patches, or Clough-Tocher interpolation to
improve image quality when visualising radiosity il-
lumination. Alternatively, one of many stylised depic-
tion lighting models can be implemented in hardware
to improve the readability of technical illustrations.

We have customised the graphics architecture
framework with custom plug-in shading units for our
two case study applications. Infrared simulation re-
quires point-source lighting effects and depth cueing
to approximate the radiance of heat between surfaces.
The rasterising hardware has been customised to eval-
uate a point-source lighting model to approximate this
effect. Each pixel intensity is calculated as propor-
tional to the distance of the object from a heat source.
This lighting model cannot be approximated using ex-
isting ASIC renderers.

The geometric visualisation application requires
directional lighting: uniform lighting from a constant
direction. It is accurately represented by vertex light-
ing and Gouraud shading, with straight-forward hard-
ware implementations.

4.3 Texture mapping

Texture mapping is a standard function supported
by all new graphics rendering hardware. Graphics
applications require a diverse set of texture mapping
effects, a subset of which is supported by ASIC-
based renderers such as the NVidia TNT2 and graph-



ics workstations such as the Onyx2 Reality Deskside.
An FPGA rendering architecture can be rapidly cus-
tomised to accelerate unsupported texture mapping
effects such as the ones below.

� Custom projection and mapping functions.
� Non-standard and variable quality texture sam-

pling schemes such as summed area tables [1]
for anisotropic filtering.

� A variable length texture blending cascade for
multitexturing.

� Custom texturing methods, such as paraboloid
environment mapping [11], and true bump-
mapping [4].

� Procedural texture mapping [15].

As the quality of texture mapping effect increases,
the complexity and size of hardware increases. Al-
though there are many texture mapping algorithms
and effects, a single graphics application typically
employs only a few during execution. ASIC renderers
de-activate circuits for extraneous algorithms, while
an FPGA-based rendering architecture can instanti-
ate a custom texture-mapping unit for each applica-
tion. The latter is therefore more likely to be able to
support a set of texture effects with greater diversity,
since there is no need to have hardware for the com-
plete set of effects concurrently.

We have customised hardware texture mapping for
our two case study applications. Infrared simula-
tion does not require high quality texture mapping,
as the effect is sparsely applied. We have customised
the texture mapping subsystem to support fixed delta
affine texture mapping, which is a simple approxima-
tion used in ASIC-based rendering architectures such
as the Sony Playstation.

Geometric visualisation benefits from accurate
perspective-correct texture mapping which requires a
highly-accurate division operation for each pixel. It
has been implemented with a pipelined divider.

5 Optimising resources and performance

This section describes techniques which improve
performance by reconfiguring the hardware renderer
to exploit application specific optimisations.

5.1 Optimising datapath widths

Throughout rasterisation, fixed-point number rep-
resentations are used for polygon setup, scan conver-
sion and interpolations. Datapath width parameters
control image quality and circuit size, and can adapt
a design to FPGA devices with different capacity. For
example, the Xilinx 40150 is sufficiently large to ac-
commodate an RGB� rasteriser with 16-bit fractional
accuracy for all interpolation calculations. However
datapath width must be parameterised to 9-bit frac-
tional accuracy to accommodate the reduced circuit
area of a Xilinx 4085 device.

We provide sufficient control to decouple the qual-
ity of lighting and texture interpolation. This allows
numerical accuracy and circuit area to be targeted at
graphics effects which are important for each applica-
tion. Once the datapath width is optimised, compu-
tational operators can then be effectively pipelined to
maximise throughput.

The datapath parameter is set to 9 bits fixed point
accuracy for infrared simulation, and 16 bits for ge-
ometric visualisation. Infrared simulation uses 128
by 128 resolution, compared to 512 by 384 for geo-
metric visualisation, resulting in shorter interpolation
runs. Furthermore, texture mapping is only applied
sparsely, and artifacts introduced by computational
inaccuracy have a minimal impact on image quality
for this application.

5.2 Algorithm Selection

For each stage of the graphics pipeline, several al-
gorithms exist which implement the required func-
tionality but offer different performance characteris-
tics. To maximise the performance of a specific ap-
plication, the algorithm instantiated in graphics hard-
ware must best match the performance characteristics
of the application.

The importance of application-specific algorithm
selection is illustrated by the contrasting performance
characteristics of our case study applications. Two
algorithms for hidden-surface removal, one based on
span buffering and the other on depth buffering, will
be introduced.

Infrared simulation requires high frame rates and
low frame latency when rendering simple polygon



models. For this application, a custom hidden-surface
removal algorithm is selected which optimises perfor-
mance for these conditions.

Span buffer hidden-surface removal divides raster-
isation into two operations: span insertion and fill.
During span insertion, new spans are inserted into a
database which maintains lists of visible spans. By
determining full hidden-surface removal before each
polygon is filled, expensive pixel overdraw is min-
imised, and the fill rate load is reduced. Clearing
the span buffer between frames is an order of mag-
nitude faster than the equivalent operation for the al-
ternative hidden-surface removal algorithm of depth
buffering. For applications such as infrared simula-
tion which process low volume polygon models at
high frame rate, the overall performance is improved
by using span buffer hidden-surface removal.

There exist two possible hardware/software parti-
tioning schemes when span buffer hidden-surface re-
moval is employed. For large FPGAs, both span in-
sertion and fill are placed in hardware, and polygon
vertices are passed between software and hardware
through the DMA controller (Figure 2).

Figure 3 shows a span buffer implementation for
small FPGAs, in which span insertion is carried out
in software. The span database is then passed to an
FPGA-based fill unit. Progressive migration of the
span buffer rasteriser to hardware using successive
partitioning schemes affords the developer a fall-back
position if the complete hardware rasteriser is found
to be too large for the target FPGA device. Bench-
mark results for Xilinx XC40150 implementation in
Table 1 show how application-specific selection of the
span buffer algorithm directly benefits performance.

Consider now geometric visualisation applications,
which process high volume polygon models. As
scene complexity increases and occlusion reduces,
span width tends towards one pixel, and span inser-
tion becomes expensive. The performance of depth
buffering degrades less rapidly as scene complexity
increases, and the technique is better suited to ren-
dering complex scenes with low occlusion: a depth
buffer records the depth of the nearest primitive ren-
dered to each pixel. Pixels within new primitives are
only written to the frame buffer if they are nearer to
the viewer than entries in the depth buffer, which is

M2

Frame Buffer
M3

Frame Buffer

M0

Span Buffer
M1

Textures
Frame Buffer

FPGA

Figure 3 Span buffer hidden-surface removal on the
RC1000–PP. Memory banks M0..M3 are shown in
Figure 2

updated accordingly.
To be effective, the entire depth buffer rasteriser

must be placed in hardware. Figure 4 shows the
dataflow for the RC1000-PP depth buffer rasteriser.
This circuit is comparable in size to a span-buffer ras-
teriser with both span insertion and fill in hardware.

These case studies show how application-specific
selection of hidden-surface removal algorithms can
benefit performance. In addition, the case studies
have shown increased importance of this technique
when targeting larger FPGA architectures. For in-
stance, the Xilinx XC4085 can only support the span-
buffer implementation, whereas the Xilinx XC40150
can support both span and depth buffering. The
larger device demonstrates an increased capability for
application-specific algorithm selection by enlarging
the set of candidate algorithms.

5.3 Balancing the graphics pipeline

The FPGA-based graphics renderer can easily be
modified to improve application-specific load balanc-
ing of the graphics pipeline. In particular, circuit area
and memory bandwidth resources must be assigned
correctly throughout to balance the graphics pipeline



M2

Depth Buffer
M3

Frame Buffer

M0

Vertex FIFO
M1

Texture
Cache

FPGA

Figure 4 Depth buffer hidden-surface removal on
the RC1000–PP.

and avoid performance bottlenecks.
Each stage of the hardware rasteriser, polygon

setup, texture mapping and shading, can be cus-
tomised and assigned hardware resources commensu-
rate with its contribution to performance. For some
applications, the computational and memory through-
put of one subsystem may have to be reduced, in order
that other pipeline stages can be improved to optimise
overall performance.

For our case studies, hardware resources attributed
to each stage of rasterisation are optimised to best
match hardware and software performance require-
ments. Infrared simulation is characterised by low
volume polygon models and by sparse application
of texture mapping within each frame. The perfor-
mance requirement for non-textured Gouraud shaded
pixels is greater than that for texture-mapped pixels,
which account for only a small proportion of ren-
dering pipeline fill load. Hence memory capacity,
bandwidth and circuit area associated with the texture
mapping unit and the polygon setup unit are reduced,
such that hardware resources available to accelerate
Gouraud shading can be increased.

Specifically, two modifications have been made to
the texture mapping and polygon setup units to best

balance the graphics pipeline. Arithmetic operations
such as multiply and divide are evaluated over several
cycles, freeing circuit area to implement pipelined
arithmetic for lighting calculations. Moreover, a sin-
gle memory bank, M1, is used to store texture maps
and to implement part of the frame buffer, as shown
in Figure 3. The use of three memory banks, M1,
M2 and M3, for frame buffering maximises memory
bandwidth available to the shading unit. The render-
ing pipeline thus has a peak fill rate of six Gouraud
shaded pixels every cycle, and one texture-mapped
pixel every two cycles.

Geometric visualisation, on the other hand, pro-
cesses high volume polygon models and requires
high fill rate for texture mapping. More hardware
resources are therefore used in optimising polygon
setup and texture mapping throughput for the depth
buffer. Arithmetic operations are more extensively
pipelined, while pipelining in the shading unit is min-
imised. In particular, parallel hardware is used in the
polygon setup unit to improve polygon throughput.
As a result, setup time is reduced from 187 cycles per
polygon in the span buffer to 54 cycles per polygon
in the depth buffer. A single memory bank, M1, is
dedicated to storing texture maps (Figure 4). The ren-
dering pipeline has a peak fill rate of one Gouraud
shaded, texture-mapped pixel every cycle.

These applications demonstrate how the graphics
pipeline can be balanced to match the performance
characteristics of hardware and software, resulting in
higher performance.

6 Run-time reconfiguration

Section 5 has illustrated the benefits of reconfigu-
ration to improve the performance of different appli-
cations using the same hardware platform. The hard-
ware renderer is customised to maximise performance
for each application, and the FPGA is configured be-
fore execution. The use of reconfiguration to improve
performance is motivated by the differences in perfor-
mance of different graphics applications, depending
on the graphics effects applied during rendering, and
the behaviour of the application in presenting graph-
ics primitives to the rendering pipeline. Load-time
reconfiguration can effectively optimise against vari-



ation in graphics effects, but cannot maintain opti-
mality against the application’s dynamic behaviour in
presenting graphics primitives, which is a function of
the application’s run-time state.

For example, the geometric visualisation applica-
tion transforms geometric objects and animates them
in a path towards then away from the viewer. During
animation, the performance of the application soft-
ware varies according to the distance between the
graphical objects and the viewer. When the objects
are near to the viewer, the load within the graphics
pipeline is concentrated on the shading and texturing
fill units of the rasteriser. Fill rate limits performance,
and polygon setup hardware stalls while waiting for
the fill unit to complete. Conversely, when the ob-
jects move away from the viewer, the load on the fill
units diminishes, and polygon setup load increases
until the fill units are stalled, waiting for the polygon
setup hardware to complete. Hardware optimality can
therefore be maintained by run-time reconfiguration
of the graphics renderer, to ensure that the graphics
pipeline is always balanced.

Two rasterisers have been implemented: one is op-
timised for high polygon throughput, and the other
for fill rate. Hardware for profiling performance has
also been developed to measure the time taken by
each stage of the rasterisation pipeline. As each
frame is recovered from the frame buffer, profiling
information is sent from the RC1000-PP to software
which assesses the performance of the current ras-
teriser against the predicted performance of the alter-
native rasteriser. When the difference in performance
reaches a threshold level, the FPGA is then reconfig-
ured with the new optimised rasteriser and rendering
continues.

The reconfiguration time for the XCV1000 device
on the RC1000-PP has been measured to be 23.6 ms,
which allows for a 40 Hz frame rate with only one
frame dropped during reconfiguration. If reconfigura-
tion occurs once each second for every 40 frames, it
causes no noticeable break in animation.

Run-time reconfiguration can also be applied to
graphics applications such as radiosity form-factor
calculations, which demand high throughput but do
not require consistent low frame latency.

7 Application programming interface

A graphics API is an abstract software layer which
improves compatibility between graphics applications
and graphics rendering architectures. Graphics ap-
plications benefit as they do not need to be modified
to support a diversity of graphics rendering architec-
tures. Hardware vendors also benefit, as they have
a standard for their rendering architectures allowing
compatibility with existing graphics applications.

We have constructed an interface between our re-
configurable rendering architecture and a subset of
OpenGL [8], a widely-used and supported API for
two- and three-dimensional graphics. This API al-
lows us to run OpenGL graphics applications on our
reconfigurable rendering architecture, and benchmark
our hardware designs against existing rendering plat-
forms. Both infrared simulation and geometric visu-
alisation can be supported by this approach.

Our API is based on Mesa3D [10], a graphics li-
brary for OpenGL applications. We have constructed
a Mesa3D driver for our reconfigurable rendering ar-
chitecture which routes calls to the API through the
Mesa3D state machine to the hardware rasteriser de-
scribed in Handel-C. Our Mesa3D device driver con-
trols reconfiguration of the RC1000-PP, synchronises
dataflow between hardware and software elements of
the graphics pipeline, and manages texture placement
on RC1000-PP memory.

The most challenging aspect of this work is the de-
velopment of an effective way of caching textures on
the RC1000-PP as they are required by OpenGL ap-
plications. The FPGA rasteriser can output one 32-bit
texture-mapped pixel every cycle at a clock rate of 40
MHz, meaning 160 MB of texture map is read by the
rasteriser each second. Clearly it is infeasible to use
the PCI bus, with a peak bandwidth of 133 MB per
second, to transfer texture-mapped pixels from main
memory to the RC1000-PP on demand.

To maximise rasteriser throughput, the texture map
associated with each polygon must be made resident
on the designated RC1000-PP memory bank before
each polygon is drawn. It is desirable to upload all
the textures required for a sequence of rendering to
the RC1000-PP before rendering begins to minimise
PCI bus traffic during rendering. However, the typical



volume of texture data required to render a scene ex-
ceeds the 2 MB size of a memory bank dedicated for
this purpose. We have therefore constructed a soft-
ware texture cache, which manages run-time place-
ment and removal of texture maps on the RC1000-PP
texture memory bank, to minimise transfer of textures
between host and FPGA memory, and minimise PCI
traffic during rendering.

Figure 5 shows the action game Quake 2 running
on the RC1000-PP through our Mesa3D driver. Ta-
ble 3 compares the performance of the RC1000-PP
against software and ASIC implementations. Other
OpenGL applications, such as LightWave3D and
VRML browser, have also run on the RC1000-PP us-
ing our API.

Table 3 Quake 2 benchmark performance. The first
two demonstrations come from the Quake 2 pack-
age, while the other two can be downloaded from
http://www.planetquake.com/sda/. Software runs on
a 400 MHz Pentium-II PC. The ASIC is a 170 MHz
NVidia TNT2 Ultra.

Demonstration Software XC40150 XCV1000 ASIC
(fps) (fps) (fps) (fps)

demo1.dm2 0.2 6.5 14.4 71.6
demo2.dm2 0.2 6.4 14.2 68.8
jail5059.dm2 0.2 6.8 15.0 72.6
jail3a020.dm2 0.3 7.0 15.6 71.5

8 Scalability

This section identifies opportunities for short-term
improvements in performance, and prospects for
long-term performance scalability.

As an example, Quake 2 is characterised by large
textures which cannot be cached efficiently on the
RC1000–PP. For this application, 8 or 16 MB tex-
ture banks would be more appropriate. Performance
would benefit from moving the RC1000–PP from the
PCI bus to the Advanced Graphics Port (AGP), a ded-

Figure 5 Quake 2 running on RC1000-PP.

icated point-to-point connection which allows for up
to 1 GB/sec bandwidth between graphics hardware
and memory. The use of 8 or 16 MB texture banks
and AGP connectivity would provide a marked short-
term improvement in performance by increasing the
texture cache hit rate, and reducing the texture cache
miss penalty. Given that a texture cache hit occurs, an
improved memory subsystem containing more paral-
lel memory banks and fast memory would improve
throughput. A single additional memory bank would
allow the rasteriser based on depth buffer to output
two pixels per cycle, effectively doubling the perfor-
mance for applications limited by fill rate, such as in-
frared simulation.

In the long term, our graphics rendering archi-
tecture framework can be scaled up by retargeting
new FPGA architectures. We have demonstrated de-
sign re-use when targeting the same design to Xilinx
XC4085, Xilinx XC40150, and Xilinx XCV1000 de-
vices on the RC1000–PP board. For each new FPGA
platform, an initial version of the rasteriser is created
by recompiling our Handel-C source code. Future
FPGA architectures will offer scalable performance
and image quality through increased clock rate and
higher density of FPGA resources.

Improved density will allow earlier stages of the
graphics pipeline to be integrated into hardware.



ASIC graphics architectures, such as the NVidia
GeForce256 [7], already use dedicated hardware for
geometry subsystem operations. A larger FPGA will
increase the candidate set of algorithms for each hard-
ware stage of the graphics pipeline, and allow for
more aggressive algorithm selection and pipeline bal-
ancing optimisations. Multiple FPGAs can also be
used, although finding an optimal chip partitioning
may not be straightforward. Finally, an FPGA cus-
tomised for graphics will need to have sufficient on-
chip memory for the frame buffer and texture data to
maximise fill rate.

9 Concluding remarks

We have described various techniques for improv-
ing cost effectiveness of graphics applications. The
key elements of our approach include the adoption
of custom data formats and datapath widths, the opti-
misation of common operations such as texture map-
ping and hidden-surface removal, and the deploy-
ment of pipeline balancing and run-time reconfigu-
ration where appropriate. Customised architectures
have been prototyped using hardware compilation and
FPGAs, and an OpenGL-based API has been devel-
oped for automatic speedup of graphics applications.

The compiled hardware at present has not exploited
many device-specific features, such as embedded
memory or partial dynamic reconfiguration. Current
and future work includes refining our designs to take
advantage of such features, and exploring automatic
techniques for producing optimised pipelines [14] and
run-time reconfigurable designs [6].

Acknowledgements

Many thanks to Matt Bowen, Glynn Clements, George
Constantinides, Arran Derbyshire, Tom Egan (DERA UK),
Roger Gook, Patrick Kane, Brian Paul, Charles Sweeney,
David Thomas, Richard Sandiford, Shay Seng, Tim Tod-
man, and Markus Weinhardt for their comments and as-
sistance. The support of Embedded Solutions Limited,
UK Engineering and Physical Sciences Research Council
(Grant number GR/24366, GR/54356 and GR/59658), and
Xilinx, Inc. is gratefully acknowledged.

References

[1] F.C. Crow, “Summed-area tables for texture map-
ping”, SIGGRAPH’84, July 1984, pp. 207–212.

[2] W.B. Culbertson et. al., “Exploring architectures for
volume visualisation on the Teramac custom com-
puter”, FCCM’96, IEEE Computer Society Press,
1996, pp. 80–88.

[3] L. del Pino, “FPGA-based 3-D graphics rasterizers”,
in Advances in Information Technologies, J.-Y. Roger
et. al. (eds.), IOS Press, 1998, pp. 514–521.

[4] I. Ernst et. al., “Hardware supported bump mapping:
a step towards higher quality real-time rendering,”
10th Eurographics Workshop on Graphics Hardware,
1995, pp. 63-70.

[5] J.P. Ewins et. al., “Codesign of graphics hardware
accelerators”, Proc. SIGGRAPH/Eurographics Hard-
ware Workshop, 1997.

[6] W. Luk, N. Shirazi and P.Y.K. Cheung, “Compi-
lation tools for run-time reconfigurable designs”,
FCCM’97, IEEE Computer Society Press, 1997,
pp. 56–65.

[7] NVidia, “Geoforce 256: The world’s first GPU”,
http://www.nvidia.com/geoforce256.nsf.

[8] “The OpenGL library”, http://www.opengl.org/.

[9] I. Page, “Constructing hardware-software systems
from a single description”, Journal of VLSI Signal
Processing, Vol. 12, 1996, pp. 87–107.

[10] B. Paul, “The Mesa 3D graphics library”,
http://www.mesa3d.org/.

[11] H. Seidel et. al., “View-independent environment
maps”, 1998 Eurographics/SIGGRAPH workshop on
graphics hardware, 1998, pp. 39-45.

[12] SGI, “Silicon Graphics Onyx2 Product Guide”,
http://www.sgi.com/.

[13] S. Singh and P. Bellec, “Virtual hardware for graphics
applications using FPGAs”, FCCM’94, IEEE Com-
puter Society Press, 1994, pp. 49–58.

[14] M. Weinhardt and W. Luk, “Pipeline vectorization for
reconfigurable systems”, FCCM’99, IEEE Computer
Society Press, 1999, pp. 52–62.

[15] A.G. Ye and D.M. Lewis, “Procedural texture map-
ping on FPGAs”, FPGA’99, ACM Press, 1999,
pp. 112–120.


