
Reconfigurable Shape-Adaptive Template Matching Architectures

Jörn Gause1, Peter Y.K. Cheung1, Wayne Luk2

1Department of Electrical and Electronic Engineering, Imperial College, London SW7 2BT, England.
2Department of Computing, Imperial College, London SW7 2BZ, England.

Abstract

This paper presents reconfigurable computing strategies for
a Shape-Adaptive Template Matching (SA-TM) method to re-
trieve arbitrarily shaped objects within images or video
frames. A generic systolic array architecture is proposed as
the basis for comparing three designs: a static design where
the configuration does not change after compilation, a par-
tially-dynamic design where a static circuit can be reconfig-
ured to use different on-chip data, and a dynamic design
which completely adapts to a particular computation. While
the logic resources required to implement the static and par-
tially-dynamic designs are constant and depend only on the
size of the search frame, the dynamic design is adapted to the
size and shape of the template object, and hence requires
much less area. The execution time of the matching process
greatly depends on the number of frames the same object is
matched at. For a small number of frames, the dynamic and
partially-dynamic designs suffer from high reconfiguration
overheads. This overhead is significantly reduced if the
matching process is repeated on a large number of consecu-
tive frames. We find that the dynamic SA-TM design in a 50
MHz Virtex 1000E device, including reconfiguration time,
can perform more than 28,000 times faster than a 1.4 GHz
Pentium 4 PC when processing a 100×100 template on 300
consecutive video frames in HDTV format.

1 Introduction

The development of multimedia technology and associat-
ed standards like MPEG-4 for coding of audio-visual objects
in multimedia applications [1] and MPEG-7 for description
and search of audio and visual multimedia content [2] leads
to new types of video processing algorithms and therefore
new challenges for their hardware implementation. Compre-
hensive acceptance of new multimedia services and applica-
tions depends on the availability of inexpensive, compact
hardware delivering the high performance required. In addi-
tion to very high processing demands, many multimedia
processing algorithms tend to be characterised by a decreas-
ing regularity and predictability of operations. Typical exam-
ples are algorithms to process arbitrarily shaped multimedia
objects: the computations to be performed need to be adapted
to the size and the shape of the object. This calls for architec-
tures with increased flexibility at run time [3].

In this paper, a shape-adaptive template matching (SA-
TM) method to retrieve arbitrarily shaped objects within im-
ages or video frames is proposed. The algorithm is truly ob-
ject-oriented as it uses only the object of interest as template,
not the background pixels, and it does not divide the template
into a number of square blocks in accordance with future gen-
eration multimedia techniques [4]. Software solutions which
could provide the flexibility to adapt to different templates
are too slow to allow real-time processing at video frame rate,
whereas an ASIC implementation is impossible due to the in-
finite number of sizes of template and search frame. Hence,
the use of a reconfigurable computing architecture, such as
SONIC [5] is proposed to implement a fast and flexible SA-
TM design, as shown in Figure 1.

The purpose of this paper is to investigate reconfigurable
computing strategies regarding their suitability for imple-
menting the SA-TM method as an example of a typical mul-
timedia algorithm. A static design, which can match
templates stored in off-chip memory of all possible shapes
and sizes within a video frame using the same FPGA config-
uration is presented in this paper. A partially-dynamic design
which uses on-chip memory, available in most recent FPGAs,
to store the template is also introduced. While the circuit to
compute the algorithm is static, the template can be updated
by reconfiguring the memory portions of the device. In addi-
tion, this paper presents a dynamic design, where the config-
uration data are completely adapted to the shape and size of
the template object used, resulting in significant area savings.
A generic systolic array architecture provides the basis for the
implementation of the three reconfigurable SA-TM designs.
We compare their area usage and computation time, includ-
ing reconfiguration and recompilation overheads. It is shown
that the suitability of a particular design regarding total exe-
cution time of the algorithm strongly depends on the number
of consecutive frames the operations are carried out on.

Section 2 presents background information and previous
work on multimedia search and retrieval strategies and recon-
figurable computing, including run-time reconfiguration
(RTR). Section 3 describes the shape-adaptive template
matching method applied in this paper. A systolic array for
SA-TM is proposed in Section 4, which is used for a dynamic,
a static and a partially-dynamic realisation approach. These
designs are presented in Section 5. In Section 6 the FPGA im-
plementations results for all three designs are discussed. Fi-
nally, a conclusion follows in Section 7.

Figure 1 Reconfigurable Computing for SA-TM

2 Background

Multimedia search and retrieval have become an active
research field due to the increasing demand that accompany
many new practical applications. More and more video data
are generated every day. Amongst this large amount of mul-
timedia information, searching for specific video sections or
objects and retrieving them is a difficult task. The traditional
approach of fast-forwarding of video and looking at the
screen to find interesting information is time-consuming and
labour-intensive. Ideally, video will be automatically anno-
tated as a result of machine interpretation of the semantic
content of the video data. However, given the state of the art
in computer vision, such sophisticated data extraction may
not be feasible in practice [6].

Video object retrieval is concerned with returning similar
video clips to a user given a visual object as query. The rec-
ognition and retrieval can be feature-based or template-based.
Colour is most frequently used for feature-based retrieval, as
the retrieval algorithms using colour are characterised by reg-
ular operations and data accesses. Colour indexing and re-
trieval often involves the use of colour histograms which
record the number of pixels in an image for each colour [6].
However, simple histograms do not take the location of a pix-
el with a particular colour into account. Template matching is
a classical technique for locating the position of a given small
subimage inside a large image. It has been frequently used in
the applications of object detection, image registration and
pattern recognition. The matching process involves shifting a
template image over a search area, measuring the similarity
between the template and the current search area, and locat-
ing the best match position. Due to their regularity, template
matching algorithms are suitable for pipelined processing in

a systolic array. Various basic systolic array architectures
with different degrees of parallelism are presented in [7].
However, template matching entails great computational
complexity for large search areas and templates. Hence,
many practical video and image retrieval systems which are
generally software based, use colour histograms to search for
a query image. Often, the query image has to be the same size
as the search image or video frame, although the user may
only be interested in a particular object within an image. The
use of background pixels, not belonging to the object of inter-
est, can therefore lead to unwanted results.

Reconfigurable computing, based on Field Programmable
Gate Arrays (FPGAs) as processing devices, has been identi-
fied to be well suited to deal with the requirements of provid-
ing flexible, high-speed processing, since it combines the
advantages of software and application-specific hardware. It
allows user-level programmability at a low level and facili-
tates general purpose computing due to its reconfigurability.
Thus, many applications can use the same hardware [13], [8].

Dynamic or run-time reconfiguration (RTR) of FPGAs is
recognised as an advanced application area within reconfig-
urable computing. However, a lot of research still has to be
accomplished to fully understand and evaluate RTR and
quantify the trade-offs of run-time reconfigurable devices and
systems [8]. Currently only a small subset of available FP-
GAs are capable of being reconfigured in this way, but there
is a growing trend in the industry to provide dynamically
reconfigurable devices with varying degrees of configuration
flexibility [9]. Dynamically reconfigurable devices are char-
acterised by their ability to continue to operate without inter-
ruption while sub-sections of the array logic are being
reconfigured. The authors of [10] distinguish between two
modes of configurability: static -- where the configuration

Input
Frame

Output
Frame

Template Image

(Arbitrary Shape)

reconfigurable architecture
(SONIC) [5]

best match

data of the FPGA is loaded once, after which it does not
change during execution of the task, and dynamic -- where the
FPGA’s configuration may change at any moment. The most
cited motivations for using dynamic reconfiguration are the
acceleration of algorithms that might otherwise be imple-
mented on general-purpose computers, and the opportunity to
increase effective logic capacity of programmable devices by
mapping only active logic to FPGA resources at any given
time. It is predicted in [11] that the importance of dynamical-
ly reconfigurable logic will increase as FPGAs become larg-
er. This statement is based on the observation that with more
and more circuits present in a single chip, there is a reduced
probability of them all being required to operate at the same
time. Three FPGA reconfiguration strategies (compile-time,
run-time, and partial run-time reconfiguration) are evaluated
in [12], based on a systolic array implementation of a scalar
quantiser. It is shown that compile-time reconfiguration gives
the best area-time product for the application used, whereas
the suitability of run-time reconfiguration strongly depends
on the number of reconfigurations. However, it is concluded
that the results are application and technology dependent.

In [13], the suitability of using reconfigurable computing
for implementing computer vision algorithms of different
levels of regularity has been investigated. This includes a
systolic correlation that can be used for template matching.
However, the design presented there is not shape-adaptive,
and results are given only for relatively small and square
masks (3×3) and images (512×512). Video is not considered.
Configurable computing solutions for automatic target recog-
nition are presented in [14]. Here the templates are binary and
have a size of 16×16 pixels, whereas the search image is
128×128. The templates are mapped onto the FPGA as sim-
ple adder trees, and the image pixels are shifted through and
added at positions where the template bit is ‘1’. Hence, the
FPGA configuration can be optimised to adapt to the template
characteristics. It is shown in [15] that dynamic reconfigura-
bility is well suited to adapt to shape-adaptive image and vid-
eo processing algorithms if the reconfiguration overhead can
be kept small. However, the example used consisted only of
a limited number of possible configurations since only differ-
ent object shapes within an 8×8 block were considered.

3 Shape-Adaptive Template Matching

The aim is to find a template object of arbitrary shape and
size within a search image or video frame of any size using a
reconfigurable computing architecture, as shown in Figure 1.

The search image or frame consists of W×H pixels. The
template object consisting of p opaque pixels can have any
shape. It is given by its bounding box of size w×h, that is the
smallest rectangle surrounding the object as shown in Figure
2. Within this bounding box, each pixel contains one mask bit
which is ‘1’, if the pixel belongs to the object, or ‘0’ other-
wise, as defined in MPEG-4 [16].

Figure 2 Template object and search image

The template is shifted through every possible location of
the image that can contain the entire template and compared
to the respective subimage of the same size. There are

 of those locations. Only pixels of the
subimage that correspond to pixels belonging to the template
object are taken into account.

Simulations of various correlation and histogram based
matching and image retrieval algorithms have been carried
out in software to find a suitable and easily implementable
similarity measure. The sum of absolute distances (SAD),
carried out on luminance pixel values, was then chosen due to
good matching results and because of its simple structure.

For all possible positions (y,x) of
the template within the image, calculate

, (1)

where I is the pixel value of the search frame, and T and M are
pixel value and mask bit of the template object, respectively.
For one frame, absolute dis-
tance calculations need to be computed. A match is found at
a position (y,x) where SAD(y,x) is minimum and also smaller
than a certain threshold determined by the user. In this paper,
only the calculation of the SAD values is considered.

4 Systolic Array for SA-TM

Since in practice video data are often streamed in a hori-
zontal raster-scan fashion (line after line), we assume that one
pixel of the search frame becomes available with each clock
cycle [5]. As every pixel value of the search image or video
frame is read only once, it would be useful to perform in par-
allel all computations where this pixel value is required, so
that no input data need to be stored.

A simple example of an SA-TM process is shown in Fig-
ure 3. For various matching positions of the template on the
search image, the absolute difference (AD) computations to
be performed for that position and in which clock cycle, and
the SAD these ADs contribute to, are shown. In this example,
the pixel T(0,1) does not belong to the object, that is, it is
transparent. Therefore, this pixel value does not contribute to
the computations.

h

w

x

y

Template Image / Frame

Mask

H

W

0

1

T(i,j)

I(y,x)

W w– 1+() H h– 1+()⋅

W w– 1+() H h– 1+()⋅

SAD y x,() I i y j x+,+() T i j,()– M i j,()⋅()
j 0=

w 1–

∑
i 0=

h 1–

∑=

W w– 1+() H h– 1+() w h⋅ ⋅ ⋅

Figure 3 Example 1 of SA Template Matching

Considering that pixel I(0,0) is available in the first clock
cycle, pixel I(0,1) in the second cycle, and so on, if a line-by-
line raster-scan fashion is used, some computations can be
carried out in parallel. In the first step, only I(0,0) is available,
and using T(0,0) the first AD contributing to SAD(0,0) can be
calculated. In the second cycle, I(0,1) becomes available and
the first AD for SAD(0,1) is computed using T(0,0). As T(0,1)
is transparent, no further computation can be carried out in
this cycle. In cycle 3, I(0,2) is used to perform two computa-
tions in parallel: |I(0,2) - T(0,0)| which contributes to
SAD(0,2), and |I(0,2) - T(0,2)| which yields the second AD for
SAD(0,0). In cycle 4, when I(0,3) becomes available, no con-
tribution to SAD(0,0) is calculated, as this image pixel is not
necessary for the computation of SAD(0,0). Not until cycle

 = 17 can all possible eight pixels of the tem-
plate object be used in parallel.

Figure 4 Signal Flow Graph (SFG) for SA-TM Example 1

Example 1 can be represented by the Signal Flow Graph
(SFG) shown in Figure 4 which is proposed as a general SFG
for SA-TM. The nodes marked <i,j> represent the absolute
distance (AD) computations |I(y,x) - T(i,j)|. The pixel values
I(y,x) are broadcasted sequentially to all of those processing
elements (PEs), that is, all possible AD computations for a
particular image pixel are carried out in parallel. Note that
some of those computations (for example, |I(0,0) - T(0,2)|) do

not contribute to any valid result. The AD results are added to
the intermediate sums coming from the left and the new sum
is registered and shifted out at the right of the PE. The delay
nodes <D> are used as shift registers and are required at trans-
parent pixels within the bounding box of the template objects
and at all places where no AD contribution
for a particular SAD result is produced. For example, the in-
termediate sum |I(0,0) - T(0,0)| + |I(0,2) - T(0,2)| which is
computed in the third cycle in PE <0,2> needs to be at the left
input of PE <1,0> when I(1,0) is broadcasted to that node,
that is in cycle W + 1 = 8 when the first image or frame line
has been completed. Note that if the pixel values of the search
frame can be streamed in a vertical fashion (column after col-
umn), registers can often be saved as in reality video frames
are more wide than high.

In example 1, the first valid result, SAD(0,0), is at the out-
put of node <2,2> after = 17 cycles, followed
by SAD(0,1) after the next cycle. There will still be invalid re-
sults at the output after each template row, as certain SAD po-
sitions (for example, SAD(0,5), SAD(0,6)) are not defined
because at that position the template cannot cover the subim-
age. For instance, in example 1, there are W × Η = 42 pixels
in the search frame (and therefore 42 cycles are required to
produce all results), but only 20 SAD values are produced as
there are only 20 positions where the template fits completely
into the search frame. In the 42nd (and last) cycle, when the
last image pixel of that frame I(5,6) is broadcasted, the 20th
result SAD(3,4) is completed by adding |I(5,6) - T(2,2)| to the
intermediate sum in PE <2,2>.

Based on the SFG shown for example 1 we propose the
following generic systolic array adapted to the shape of the
template object. Each pixel belonging to the template object
is represented by a PE where the AD computation using the
value of that pixel is performed. The structure of a PE is
shown in Figure 5.

Example 1:
w = 3, h = 3, p =8

W=7, H = 6

1. 2. 5. 6. 20.
Matching position:

Template: Search image:
T(0,0)

I(0,0)

1. |I(0,0) - T(0,0)| 2. |I(0,1) - T(0,0)|
3. |I(0,2) - T(0,2)|
8. |I(1,0) - T(1,0)|

4. |I(0,3) - T(0,2)|
9. |I(1,1) - T(1,0)|

...
17. |I(2,2) - T(2,2)|

...
18. |I(2,3) - T(2,2)|

5. |I(0,4) - T(0,0)|

T(0,1) transparent

7. |I(0,6) - T(0,2)|
12. |I(1,4) - T(1,0)|
...
21. |I(2,6) - T(2,2)|

8. |I(1,0) - T(0,0)|
10. |I(1,2) - T(0,2)|
15. |I(2,0) - T(1,0)|
...
24. |I(3,2) - T(3,2)|

26. |I(3,4) - T(0,0)|
28. |I(3,6) - T(0,2)|
33. |I(4,4) - T(1,0)|
...
42. |I(5,6) - T(2,2)|

-> SAD(0,0) -> SAD(0,1) -> SAD(0,4) -> SAD(1,0) -> SAD(3,4)

Computations: clock
cycle

W h 1–() w+⋅

 0,0 0,2D

 1,0 1,1 1,2

 2,0 2,1 2,2

D D D D

D D D D

0

I(0,0)I(0,1)I(0,2)....

SAD(0,0) SAD(0,1)

W w–() h 1–()⋅

W h 1–() w+⋅

.

Figure 5 Structure of PE <i,j> for SA Template Matching

The word length of I(y,x) is c, and usually c=8. The pixel
values of the template object T(i,j) have the same word length
as I(y,x). The values are constant for a particular PE and can
be stored in ROM within the PE as shown, or come from out-
side the PE. The word width of Sum_in and Sum_out depend
on the position of the PE in the SFG. For the first PE, Sum_in
is 0, therefore m can be 0. Variable n needs to be at least the
maximum of m and c, in case of the first PE that is c. Further
along the SFG, m and n will increase, as more bits are re-
quired to represent the intermediate sums. The maximum ab-
solute distance (AD) for one PE is 2c-1, the maximum
intermediate sum of k of those ADs is for one PE,
which requires bits to be fully represent-
ed. The intermediate sum is then stored in a register.

The area of a PE consists of a constant part for the AD
module and a variable part which grows with the word length
n of the output and can therefore be calculated as:

APE(n) = = , (2)

where a and b are constants.
The logic resources required to implement p PEs can then

be calculated as

 . (3)

To calculate APE explicitly as a function of p the following es-
timation is derived from (3), given that :

 , (4)

which can be simplified further to

 . (5)

The sum term can be substituted as follows:

 , (6)

with , (7)

resulting in

(8)

 = (9)

 = . (10)

Hence, (5) leads to

 . (11)

All pixels within the template bounding box but not belong-
ing to the object are registers used to delay the intermediate
sums. PEs and registers are arranged according to the shape
of the template object. If a pixel belonging to the object is fol-
lowed by a pixel not belonging to the object in the same line,
the PE representing the object pixel is followed by a register,
and vice versa. After each line of PEs, additional W-w regis-
ters are required for all but the last line of the template to store
the intermediate sums until a valid input for that sum be-
comes available.
The register area is composed of the registers used for the wh
- p transparent pixels within the bounding box of the template
(AD

Reg1) and of the registers used to delay the
intermediate sums outside the template area (AD

Reg2).
As the exact value for AD

Reg1 depends on the position of
the transparent pixels within the template bounding box, the
average word length of the PEs is used to determine the aver-
age register size which is then multiplied by the number of
transparent pixels:

 , (12)

which can be estimated as

 , (13)

using the same value for q as in (7).
AD

Reg2 is estimated as

 , (14)

resulting in

 , (15)

with . (16)

AD

+

T(i,j)

I(y,x)

Sum_in
Sum_out

c

c
c

m
nD

2c 1–() k⋅
log2 2c 1–() k⋅()

a n b+⋅ a log2 2c 1–() k⋅() b+⋅

APE APE k()
k 1=

p

∑ a log2 2c 1–() k⋅() b+()
k 1=

p

∑= =

2c 1»

APE a c log2 k()+() bp+
k 1=

p

∑≈

APE a log2 k()() ac b+()p+
k 1=

p

∑≈

log2 k()()
k 1=

p

∑ log2 k()() log2 k()()

k 2q 1+=

p

∑+
k 1=

2q

∑=

q log2 p()=

log2 k()()
k 1=

p

∑ 2k 1– k⋅() q 1+()

k 2q 1+=

p

∑+
k 1=

q

∑=

2q q 1–() 1 p 2q–() q 1+()+ +

p q 1+() 2q 1+– 1+⋅

APE a p q 1+() 2q 1+– 1+⋅() ac b+()p+≈

W w–() h 1–()⋅

AD
Reg1 wh p–

p
----------------≈ log2 2c 1–() k⋅()

k 1=

p

∑

AD
Reg1 wh p–

p
----------------≈ p q 1+() 2q 1+– c p⋅+⋅()

AD
Reg2 W w–() log2 2c 1–() k w⋅ ⋅()

k 1=

h 1–

∑≈

AD
Reg2 W w–() h 1–() qh log2 c w⋅()+() 2

qh– 1+⋅()≈

qh log2 h 1–() 1+=

To summarise, in an efficient systolic array solution for
the presented SFG for SA-TM, the following points need to
be satisfied in order to search for a w×h template with p pixels
belonging to the object of interest, in a W×H search frame:
• p PEs are required to implement the AD computations

and summation of intermediate results
• the PEs are arranged in the same way as the pixels

belonging to the template object; the wh - p gaps repre-
senting transparent pixels are filled with registers

• for horizontal raster-scan, after each, but the last, row of
the PE array, W-w registers are added in the computation
flow to store the intermediate sums until the next search
frame pixel contributing to a particular SAD becomes
available

• the kth PE in the computation flow requires a

 bit adder

• the size of each register is the same as the output size of
the previous PE in the computation flow

5 Reconfigurable design strategies for SA-TM

The following design approaches for a systolic array for
SA Template Matching can be distinguished. As all PEs have
the same structure, apart from different word length, their
function can be changed to use a different number of pixel
values and/or a different similarity measurement in the future.

5.1 Dynamic design

In this approach, the device is reconfigured for every pos-
sible template size and shape, and for every possible search
frame size. This generally includes the re-compilation of the
design code, as there are an infinite number of solutions. As
the template can be part of the configuration data and word
lengths can be optimised, an efficient systolic array solution
as described above can be achieved. A PE as shown in Figure
5 can be used with the template pixel value stored in on-chip
memory. As one input of the AD computation is constant, the
AD module can be substituted by a look-up table (LUT) stor-
ing the AD value for each value of the incoming frame pixel
I(y,x). In addition to the p PEs, reg-
isters are required.

The area AD for the dynamic design consists of the area
used by the PEs (AD

PE) and the area required for the registers
(AD

Reg1 + AD
Reg2):

 , (17)

and can be estimated using (11), (13) and (15), respectively.
The total execution time TD for the dynamic design to find

a template object in N video frames consists of the computa-
tion time TD

computeN to calculate the SA-TM operations, the

reconfiguration time TD
reconf to update the FPGA configura-

tion for a new template, and the compilation time TD
compile

which is required in most cases as the number of template ob-
jects and therefore the number of different device configura-
tions is unlimited:

TD = TD
computeN + TD

reconf + TD
compile . (18)

The execution time for N frames can be calculated as

 , (19)

where fD is the clock frequency the circuit can run at. As a
systolic array is pipelined by each PE, fD is determined by the
critical path through the slowest PE, if additional FPGA rout-
ing delays are neglected.

The reconfiguration time and compilation time depend on
the size of the circuit to be implemented. The reconfiguration
time is generally proportional to the number of resources to
be reconfigured, but also depends on the device used and the
reconfiguration strategy. Compilation time depends on the
hardware and software used to translate and map the code and
is hard to estimate.

5.2 Static design

Due to long reconfiguration and recompilation overheads,
the dynamic design approach is expected to be useful only if
the a template object is searched for within a large number of
video frames of the same size. As an alternative, a static de-
sign is proposed, where the configuration of the FPGA is not
changed when a new template is used. As the number of dif-
ferent search frame sizes and template shapes and sizes is un-
limited, only a subset of all solutions can be implemented.

Figure 6 PE structure for static design

If the size of the search frame is fixed, the following solu-
tion is possible. The PEs have to be modified, as shown in
Figure 6, so that the template pixel values T(i,j) come from
external memory, and a multiplexer controlled by a further
input signal sel needs to be added to select between perform-
ing an addition, if the respective pixel belongs to the template
object, or otherwise just delaying the signal. All delay ele-
ments D have to be substituted with those modified PEs. By
changing the memory content, different templates can be

1 k p≤ ≤

log2 2c 1–() k⋅()

w h p W w–()+– h 1–()⋅ ⋅

AD AD
PE AD

Reg1 AD
Reg2+ +=

TD
computeN NWH

fD
---------=

AD

+

I(y,x)

Sum_in Sum_out

cc

c

m nD

T(i,j) sel

1
0

searched for. The word length n of the kth PE output is
, with , in order to cov-

er for all possible template sizes.
The area AS for the static design which consists of WH

PEs is calculated using (2) as

 , (20)

and hence estimated according to (11) as

 (21)

with .
The execution time TS for the static design to perform the

SA-TM algorithms on N frames can be calculated as

 . (22)

Advantages of this design are that no recompilation of the de-
sign code or reconfiguration of the device are necessary for a
constant search frame size as the template is stored off-chip.
However, the large, external RAM to store all possible WH
template pixels and mask bits are expected to make the design
slower and more complex than an optimal design. In addition,
for large frame sizes the number of I/O pins required for all
WH template pixels is extremely large. Another disadvantage
is that in all cases when p < WH (template smaller than search
frame), area is wasted because some of the PE logic is un-
used.

5.3 Partially-dynamic design

To combine the advantages of the dynamic and the static
design, a third design is proposed. The difference to the static
design is that this design stores the template pixels and mask
bits in on-chip memory available on most FPGAs. To change
the template, only a reconfiguration of the memory parts is
necessary, the rest of the circuit remains the same. As the
template is dynamic while the circuit remains static, this de-
sign is called partially-dynamic. The structure of a PE for this
design is shown in Figure 7. Both template pixel value T(i,j)
and mask bit M(i,j) for that pixel are stored within the PE. If
M(i,j) is ‘1’, that is, if the pixel belongs to the template object,
the absolute distance of I(y,x) and T(i,j) is added to the incom-
ing intermediate sum sum_in. Otherwise, sum_in is shifted
through and registered.

As the partially-dynamic design, like the static one, con-
sists of WH PEs, the area can be estimated in the same way:

 , (23)

using qWH as in the static design.

Figure 7 PE structure for partially-dynamic design

The total execution time TPD for the partially-dynamic
design to find a template object in N video frames consists of
the time TPD

computeN to calculate the SA-TM operations and
the reconfiguration time TPD

reconf to update the FPGA mem-
ory for a new template.

The execution time for N frames is calculated as

 , (24)

with fPD as the maximum clock rate the circuit can run at.
Considering a partially reconfigurable design is used, the

reconfiguration time to load the data for a new template into
memory can be calculated as

 , (25)

where tbit is the time to reconfigure 1 bit. Note that only the p
pixel values belonging to the object need to be loaded into
memory in addition to mask bits for all WH PEs, while any
possible pixel values belonging to an old object but not be-
longing to the new template object do not need to be changed
as their use will be disabled by the new mask bits.

6 FPGA Implementation and Results

 The PEs for the three reconfigurable designs described
above have been implemented for c=8 (eight bits per pixel)
targeting Xilinx Virtex XCV1000E devices.

Table 1 Number of LCs (A) and clock frequency (f) on
Xilinx Virtex 1000E, for PEs with different word length n, for
dynamic (D), static (S) and partially-dynamic (PD) design

n log2 2c 1–() k⋅()= 1 k W H⋅≤ ≤

AS AS
PE k()

k 1=

WH

∑ aS log2 2c 1–() k⋅() bS+()
k 1=

WH

∑= =

AS aS p qWH 2
qWH– 1+⋅() aSc bS+()p+≈

qWH log2 WH() 1+=

TS TS
computeN N 1+()WH

fS
--------- 1–= =

APD aPD p qWH 2
qWH– 1+⋅() aPDc bPD+()p+≈

n AD[LCs] fD[MHz] AS[LCs] fS[MHz] APD[LCs] fPD[MHz]

8 14 79.9 30 42.1 17 82.8

9 15 74.0 32 41.3 19 75.4

10 17 70.5 33 40.5 20 72.0

12 19 71.3 36 37.2 23 66.5

15 23 66.4 41 34.9 28 58.8

16 25 58.8 42 34.5 29 55.0

29 42 41.6 62 22.4 49 37.5

AD

+

I(y,x)

Sum_in Sum_out

c

c
c

m nD
1
0

T(i,j)
M(i,j)

1

TPD
computeN N 1+()WH

fPD
--------- 1–=

TPD
reconf c p W H⋅+⋅() tbit⋅=

Table 1 shows the results for area in logic cells (LCs) and
clock frequency in MHz for PEs of different word length n for
the dynamic (D), static (S), and partially-dynamic (PD) de-
signs. An LC contains a look-up table with four inputs (4-
LUT) and one flip-flop (FF).

Using the results shown in Table 1, the values a and b for
the area calculation of an PE, as in (2), and hence the area es-
timation for all PEs, can be determined for all three designs:
• dynamic design: aD = 1.5, bD = 1,

hence ,

and , (26)

with .
• static design: aS = 1.5, bS = 18,

hence ,

and , (27)

with .
• partially-dynamic design: aPD = 1.5, bPD = 5,

hence ,

and . (28)

6.1 Results for small example

For Example 1, considered in Section 4 (w = h = 3, p = 8,
W = 7, H = 6), the results are shown in Table 2.

Table 2 Results for Example 1, for dynamic (D), static (S)
and partially-dynamic design (PD)

It can be seen from rows 1 and 2 in Table 2 that the calcu-
lated areas using the area estimations described in Section 5
are fairly accurate and are used in further examples, where
compilation takes too much time or is impossible due to the
size of template and/or search frame. The reconfiguration
times to load the circuit for the dynamic design and to update
the memory of the dynamic design were calculated for a Vir-
tex 1000E device using a reconfiguration clock frequency of
50 MHz and 8 bits per clock cycle, as described in [17].

6.2 Results for HDTV format

For a more practical example, the following parameters
are used, as in the HDTV (SMPTE 260M) video processing
format: W = 1920, H = 1080, frame rate 30 Hz. Area and ex-
ecution time estimations were calculated according to the
equations given in Section 5. However, in most cases the de-
signs are too complex to fit into the largest currently available
FPGAs, such as Xilinx Virtex XC2V10000.

Table 3 shows the number of logic cells required to imple-
ment the dynamic design for different template sizes, separat-
ed into PE area and resources to register intermediate results,
according to (11), (13), and (15), respectively. The bounding
boxes are considered quadratic with 80% of the pixels be-
longing to the object to be mapped. It can be seen that the
number of LCs required grows with the size of the template
object. For relatively small templates, the largest share of re-
sources are required for the registers outside the template
bounding box necessary to delay intermediate results until
valid input signals become available. While for a 10×10 tem-
plate only 0.7% of the area is used for PEs, the rest for regis-
ters, this share grows to 28.7% for a 500×500 template and to
86.0% for a HDTV format size template with 80% opaque
pixels.

Table 3 Area results [in LCs] for dynamic design using
different template sizes and p=80% of wh

However, for all possible template object sizes and
shapes, the area for the dynamic design is at least 34% smaller
than the area required for the static design and at least 16%
smaller than the area of the partially-dynamic design, which
are both constant for all templates used and equivalent to the
logic resources of about 1,000 and 800 Xilinx Virtex
XC2V10000 devices, respectively.

Figure 8 shows the total area AD required to implement
the dynamic design for different templates with the same
number of pixels belonging to the object (p=32,000 = 80% of
wh), but of different shapes, that is different proportions of w
to h. It can be seen that the smaller the quotient w/h, the larger
the number of logic cells required to implement the design.
This is due to the fact that templates with a small width, but a
large height require far more registers to store intermediate
results. In fact, AD

PE and AD
REG1 are constant for all cases.

Note that this effect would be reversed if instead of a horizon-
tal raster-scan a vertical raster-scan fashion could be used to
stream in the video frame pixels.

Design D S PD

A measured [LCs] 223 1541 996

A calculated [LCs] 224 1544 998

f [Mhz) 73.40 32.32 58.63

Tcompute [ns] for 1 clock cycle 13.6 30.9 17.1

cycles for N frames 42N 42N+41 42N+41

Treconf [µs] 517.9 n/a 55.1

AD
PE n() 1.5 n 1+⋅=

AD
PE 1.5 p qp 2

qp– 1+⋅() 13p+≈

qp log2 p() 1+=

AS
PE n() 1.5 n 18+⋅=

AS 1.5 p qWH 2
qWH– 1+⋅() 30p+≈

qWH log2 WH() 1+=

APD
PE n() 1.5 n 5+⋅=

APD 1.5 p qWH 2
qWH– 1+⋅() 17p+≈

w×h 10×10 20×20 50×50 100×100 200×200 500×500

AD
PE 1,690 7,714 55,930 247,714 1,086,850 7,606,789

AD
Reg1 268 1,232 8,988 39,952 175,808 1,234,464

AD
Reg2 246,390 590,900 1,714,790 3,732,820 7,776,120 17,697,460

AD 248,348 599,846 1,779,708 4,020,486 7,951,928 26,538,713

Figure 8 Area AD [in LCs] for dynamic design using template
objects with different shape for p=32,000 = 80% of wh

Figure 9 shows the total execution times T required to per-
form an SA-TM operation on HDTV format video for a
10×10 size template and for a 100×100 template, depending
on the number of consecutive frames N, for all three reconfig-
urable designs. Included are the computation time and the
reconfiguration time, where applicable. There is only one
graph shown for the static design (dotted) as the execution
time does not depend on the template object used. For the dy-
namic designs (full lines) and the partially-dynamic designs
(dashed lines), the thin graphs show the results for the smaller
template whereas the results for the larger template are shown
as thicker lines.

Figure 9 Execution time T in ms using a 10×10 pixel tem-
plate and a 100×100 pixel template (p=80%), for dynamic (D),
static (S) and partially-dynamic design (PD)

While the execution time for the static design is shortest
if the algorithm is performed on only one frame as there is no
reconfiguration overhead, it increases more steeply due to a
lower maximum clock rate, and after about 35 frames the stat-
ic design will be slower than both dynamic and partially-dy-
namic designs with either template. Another noticeable fact is
that the execution times for the partially-dynamic design for
both templates are not very different due to similar reconfig-
uration overheads (quotient of reconfiguration time over
computation time), while the reconfiguration times for the

dynamic design depend much more on the size of the tem-
plate object. For the 10×10 template, the reconfiguration
overhead is very small, and hence the dynamic design is the
fastest for any number of N>1 and even allows real-time
processing, while the time required to reconfigure the device
for the 100×100 template is significantly larger, resulting in
the dynamic design being the slowest if less than 33 frames
are operated on. The reconfiguration overheads (in %), as a
function of number of frames N are diagrammed for the dy-
namic (full lines) and partially-dynamic (dashed lines) de-
signs for both 10×10 template (thin line) and 100×100
template (thick line). Not included in the results are addition-
al overheads due to possible recompiling the dynamic design
for a new template.

Figure 10 Reconfiguration overhead in %, using a 10×10 tem-
plate and a 100×100 template (p=80%), for dynamic (D) and
partially-dynamic design (PD)

For comparison, the SA-TM algorithm was also per-
formed on a 1.4 GHz Pentium 4 PC with 384 MB RAM, for
both templates on a HDTV format image (= 1 frame). We
measure the following execution times TPC, and estimate the
resulting speed-ups S of the dynamic (D), partially-dynamic
(PD), and static design (S), running at their respective maxi-
mum clock speeds (compare Table 1) and including reconfig-
uration time, where applicable, on a Virtex 1000E FPGA, for
300 consecutive frames (= 10 seconds), as shown in Table 4.

Table 4 Execution time TPC for computing SA-TM on 1
frame on 1.4 GHz Pentium 4 PC, and Speed-ups S of dynamic
(D), partially-dynamic (PD) and static (S) designs, for different
templates matched on 300 consecutive frames in HDTV format

It can be shown that significant speed-ups can be achieved
by using reconfigurable computing to perform SA-TM, espe-
cially for large templates, since many operations can be com-
puted in parallel.

Area Requirement for HDTV (w*h=40000, p=80%)

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

0.01 0.1 1 10 100
Template shape (w/h)

N
u

m
b

er
 o

f L
o

g
ic

 C
el

ls

Time Requirement for HDTV

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

Number of Frames N

E
xe

cu
ti

o
n

 T
im

e
T

 [
m

s]

T_D_10x10 T_D_100x100 T_PD_10x10 T_PD_100x100 T_S

w×h TPC SD SPD SS

10×10 22 sec 690 350 230

100×100 1,098 sec 28,600 17,600 11,800

Results for HDTV (p=80%)

1

10

100

1000

0 50 100 150 200 250 300

Number of Frames N

R
ec

o
n

fi
g

u
ra

ti
o

n
 O

ve
rh

ea
d

 [%
]

T_D_10x10 T_D_100x100 T_PD_10x10 T_PD_100x100

7 Conclusion

In this paper, a shape-adaptive template matching (SA-
TM) method to retrieve arbitrarily shaped objects within im-
ages or video frames was proposed. Different strategies of
reconfigurable computing regarding their suitability for im-
plementing the SA-TM method as an example of a typical
multimedia algorithm were investigated. A dynamic design,
where the configuration data is completely adapted to the
shape and size of the template object used, was presented in
this paper. A static design which can match templates, stored
in off-chip memory, of all possible shapes and sizes within a
video frame using the same FPGA configuration was also
presented. In addition, a partially-dynamic design which uses
on-chip memory, available in most current FPGAs, to store
the template was introduced. A generic systolic array archi-
tecture provided the basis for the implementation of the three
reconfigurable designs. Formulae have been developed to ex-
plicitly estimate the logic resources required to implement the
designs depending on the size of the search frame and the size
and shape of the template object.

While the number of logic cells to implement the static
design and the partially-dynamic design is constant for a cer-
tain frame size, the dynamic design is adapted to the template
object leading to significant savings in area, especially if rel-
atively small templates are used. The suitability of a particu-
lar design regarding total execution time of the algorithm
strongly depends on the number of consecutive frames the
operations are carried out on with the same template. Since
the static design does not suffer from reconfiguration over-
heads, it is most suitable for an operation on one or only a few
frames. However, as the partially-dynamic design and espe-
cially the dynamic design can operate at higher clock fre-
quencies, they perform better if the matching algorithm is
executed on a large number of frames. For the example of
matching a 100×100 template on an HDTV format frame, the
static design is fastest for an operation on up to 33 frames, at
which point the partially-dynamic design becomes faster. Af-
ter 38 frames the dynamic design, which has the highest
reconfiguration time for that template size, will be the fastest
design. Real-time SA-TM of HDTV video is possible using
the dynamic design for templates with up to 128 pixels. Com-
pared to a software implementation, all three reconfigurable
SA-TM designs can achieve significant speed-ups, especially
if large templates are used.

References

[1] MPEG Group, “Overview of the MPEG-4 Standard,”
ISO/IEC JTC1/SC29/WG11 N4030, March 2001.

[2] MPEG Group, “Overview of the MPEG-7 Standard,”
ISO/IEC JTC1/SC29/WG11 N4031, March 2001.

[3] P. Pirsch, C. Reuter, J.P. Wittenburg, M.B. Kulaczewski,
H.-J. Stolberg, “Architecture Concepts for Multimedia

Signal Processing,” Journal of VLSI Signal Processing,
vol. 29, no. 3, pp. 157-165, November 2001.

[4] L. Torres, M. Kunt, F. Pereira, “Second Generation Vid-
eo Coding Schemes and Their Role in MPEG-4,” Euro-
pean Conf. on Multimedia Applications, Services, and
Techniques, May 1996, pp. 799-824.

[5] S. D. Haynes, J. Stone, P. Y. K. Cheung, W. Luk, “Video
Image Processing with the SONIC Architecture,” IEEE
Computer, vol. 33, no. 4, pp. 50-57, April 2000.

[6] Y. A. Aslandogan, and C. T. Yu, “Techniques and Sys-
tems for Image and Video Retrieval,” IEEE Trans.
Knowledge and Data Engineering, vol. 11, no. 1, pp. 56-
63, January/February 1999.

[7] T. Komarek, P. Pirsch, “Array Architectures for Block
Matching Algorithms,” IEEE Trans. on Circuits and
Systems, vol. 36, no. 10, October 1989.

[8] J. Villasenor, B. Hutchings, “The Flexibility of Config-
urable Computing,” IEEE Signal Processing Magazine,
pp. 67-84, Sept. 1998

[9] G. McGregor, and P. Lysaght, “Self Controlling Dynam-
ic Reconfiguration,” in Proc. 9th International Work-
shop on Field-Programmable Logic and Applications,
FPL’99, 1999, pp. 144-154.

[10] E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A.
Stauffer, and A. Perez-Uribe, “Static and Dynamic Con-
figurable Systems,” IEEE Trans. on Computers, vol. 48,
no. 6, pp. 556-564, June 1999.

[11] P. Lysaght, “Aspects of Dynamically Reconfigurable
Logic,” in IEE Colloquium on Reconfigurable Systems,
Glasgow, Scotland, pp. 1-5, March 1999.

[12] J. O. Cadenas, G. M. Megson and T. P. Plaks “Quantita-
tive Evaluation of Three Reconfiguration Strategies on
FPGAs: A Case Study,” in HPC-Asia 2000. Proc. of the
Fourth Int. Conf. on High-Performance Computing in
the Asia-Pacific Region, May 2000, Beijing, China, pp.
337--342.

[13] N. K. Ratha, A. K. Jain, “Computer Vision Algorithms
on Reconfigurable Logic Arrays,” IEEE Trans. on Par-
allel and Distributed Systems, vol. 10, no. 1, pp. 29-43,
January 1999.

[14] J. Villasenor, B. Schoner, K.-N. Chia, C. Zapata, H. J.
Kim, C. Jones, S. Lansing, B. Mangione-Smith, “Config-
urable Computing Solutions for Automatic Target Rec-
ognition,” in Proc. FCCM, pp. 70-79, 1996.

[15] J. Gause, P. Y. K. Cheung, W. Luk, “Static and Dynamic
Reconfigurable Designs of a 2D Shape-Adaptive DCT,”
in Proc. FPL, 2000, pp. 96 - 105.

[16] MPEG Group, “MPEG-4 Video Verification Model Ver-
sion 13.0,” ISO/IEC JTC1/SC29/WG11 N2687, March
1999.

[17] Xilinx Inc., “Virtex Series Configuration Architecture
User Guide,” Application Note XAPP151, September
2000.

