Compiling Policy Descriptionsinto ReconfigurableFir ewall Processors

T.K. Lee,S. Yusuf,W. Luk, M. SlomanE. LupuandN. Dulay
Departmenbf Computing,Imperial College,
180Queens Gate,LondonSW72BZ, England
(tk197, sy99,w.luk, m.slomang.c.lupu,n.dulay)@doc.ic.ac.uk

Abstract

We describea framavorkfor capturingfirewall require-
mentsas high-level descriptionshasedon the policy spec-
ification language Ponder The framevork provides ab-
straction from hardware implementationwhile allowing
performancecontml through constaints. Our hardware
compilationstrategy for sud descriptionsinvolvesa rule
reductionstepto producea hardware firewall rule repre-
sentation. Three main methodshavealso beendeveloped
for resouce optimisation: partitioning, elimination, and
sharing A casestudy involving five setsof filter rules
indicatesthat it is possibleto reduce67-80% of hard-
ware resoucesover techniquesbasedon regular content-
addressablanemory and 24-63%over methodsasedon
irregular content-addessablenemory

1 Intr oduction

A commonelementof a firewall architecturg14] is an
InternetProtocol (IP) paclet filter to implementauthori-
sationpolicies[6]. A paclet filter works by checkingthe
contentof thelP pacletheadembeforedecidingif commu-
nicationis allowed, basedon a setof rules. The syntaxof
the rules[4, 15 is firewall specific. The orderingof the
ruleswithin a rule setis significant. A pacletis sequen-
tially checled againsteachrule, startingfrom the begin-
ning of arule set,until amatchfor the conditionsspecified
in aruleis foundor the endof therule setis reached.

Paclket filters [1, 9] usually rely on processorsun-
ning entirely in software. They suffer from increased
look-up times as the numberof filter rules grows. They
thereforehave difficulty in keepingup with the current
network throughput. With the recentadvancesin field-
programmablegate array (FPGA) technology custom-
developed hardware paclet filters [7, 11, 13, 16] that
out-performtheir software counterpartsbecomepossible.
However, limitations on the amountof available recon-
figurableresourcesnay restrictthe numberof concurrent
matches Somestudieq7, 11, 16] have beenconductedo

optimisethe usageof hardware resourceshowever, they
often do not take into accountthe redundang amongthe
firewall rulesin arule set,andhave not utilizedinformation
otherthanthoseofferedby theIP pacletheaders.

Firewall rules are notoriously difficult to maintain.
There are several attemptsto use high-level languages
[1, 4] or graphicaluserinterface[5] for their description.
However, with therapid expansionof the internetandthe
growing demandof large-scaleorganisationalnetworks,
rule setscomprisingl000rulesarenotuncommon.Conse-
guently the needfor appropriatehigh-level languagegor
firewall descriptionbecomesncreasinglyimportant.

Ponder[6] is a languagefor specifying security and
managemenpoliciesfor distributedobjectsystems.Poli-
cies can be written as parameterisedypes,and can have
constraints.

We describea framework to specify high-level firewall
rulesusingPonderandto implementsuchdescriptionsn
reconfigurablehardware. The contribtutions describedn
this paperinclude:

e a methodfor capturing authorisationpolicies in a
high-level description;

¢ a rule reductiontechniquethat corverts high-level
firewall descriptionto hardware firewall rule repre-
sentationthroughpartitioning, eliminationandshar
ing;

e a compilation schemefor the framework which in-
volvestherule reductiontechniqueand

e an evaluation of the effectivenessof the proposed
framework basedon a numberof casestudies.

Therestof the paperis organisedasfollows. Section2
givesanoverview of our designframenork. Section3 dis-
cusseghe designdecisionfor our high-level firewall de-
scription. Section4 explainsour rule reductiontechnique.
Section5 describesheimplementatiorscheme Section6
outlinesa compilationschemefor the designframework.
Section7 evaluatesour approactthroughsomecasestud-
ies, while Section8 provides a summaryof currentand
futurework.

2 Framework overview

This sectiongives an overview of our framework. It
outlinesthe designobjectives, and briefly describessach
stagein thedesignanddevelopmentlow.

Our framework allows usto specify high-level firewall
rulesandto implementsuchdescription®©nreconfigurable
hardware. Therearethreebasicdesignobjecties:

1. To provide a methodto simplify the designprocess
andto facilitatethe maintenancef afirewall. In par
ticular, to aid the managemenof authorisatiorpoli-
ciesfor acomplex large-scalerganisationahetwork;
andto expressfirewall rulesfor reconfigurablénard-
wareimplementation.

2. To separatea designinto software and hardware
phases;and allowing optimisationto be performed
in both phasesfor varioushardwareimplementation
schemes.

3. To achieve efficient hardware utilization. Emphasis
is on overcomingthe physicallimitations on the size
of reconfigurablédardware by methodssuchasshar
ing of hardwarefunctionalunitsandparameteriseti-
braryblocks.

To achieve theseobjectives,we have threemain phases
in the design flow: design phase, compilation phase
and hardware implementationphase. Figure 1 showvs an
overview of our framework for developingreconfigurable-
hardwarepacletfiltering firewalls.

At the designphase the formal requiremenbf a fire-
wall will begivenandadditionalinformationthatcanassist
theoptimisationof thefirewall implementatiowill bepro-
vided. Therequirementgor afirewall is usuallycontained
in anauthorisatiorpolicy, whichis thentransformednto a
high-level firewall description.Sucha descriptionconsists
of two parts: a firewall control specification,andthe do-
mainhierarchie®of thelP addresseandservices Optional
informationincluding network topology andthe available
servicegogethemwith the firewall descriptionform thein-
put to the next stageof the designflow. At the compila-
tion phasethe firewall descriptionwill be corvertedto a
hardwarefirewall rule representationyhichin turnwill go
througha seriesof optimisationsteps.Theresultis anop-
timised representatiomf a list of hardware firewall rules
readyto producea hardware designin the next stageof
the designflow. At the hardware implementationphase,
the representatiomf firewall ruleswill be corvertedto a
hardware designfor specifichardwaredevices. Hardware
specificoptimisationtechniqueganalsobeusedto further
optimisethe firewall rulesandthe overall design. Device
specifictools are thenusedto placeandroute the design

Authorisation policy

Design

phase Firewall control specification Network topology
+

available services

+
IP and service domain hierarchies

Rule reduction

Code translation

v
Named-address firewall rules

Address translation
Address tree construction

Numeric-address firewall rules
+

IP address trees
Compilation Sequencing, reordering and partitioning
phase
Ordered sets of partitioned firewall rules

Rule elimination

Reduced sets of firewall rules

Shared resources
Hardware firewall rule representation

with parameterised functional unit
library specifications

Hardware design representation

Hardware optimization
Device specific place and route

Hardware
implementation
phase

Hardware configuration bitstreams

Figurel: An overview of the designflow in our frame-
work.

andto generatehe necessarphardware configurationbit-
streamdor downloadingthedesignon to hardware.

Our framework employs a two-level optimisationap-
proach.Thisinvolvestheuseof hardwarefirewall rule rep-
resentatiorin the compilationphase andthe useof hard-
waredesigrrepresentatiom thehardwareimplementation
phase Therearetwo advantage®f having anintermediate
representationkirst, it allows both softwareandhardware
optimisationsto be performed,basedon differentsetsof
criteriaandinformationavailable. In particular it permits
usingplatform-specifiooptimisationsaswell asplatform-
independentechniques. Second,it enablesa choice of
differenthardwareimplementatiorscheme$asedn size,
speedgostor otherrequirements.

3 High-level firewall description

This sectiondiscusses novel methodthat we develop
to capturean authorisatiorpolicy in a high-level firewall
description.

To achieve our first designobjectie (Section2) of sim-

plified designprocess,we specify an authorisationpol-
icy in a high-level language.We believe sucha language
shouldat leasthave the following properties:simplify the
designprocessfacilitatethe maintenanceandallow easy
designre-use.In particulay it should

e supportabstractionfrom the hardware implementa-
tion, sothat changego the policieswill give a min-
imal or a controllableimpacton the hardware;and

e allow the policy administrator who may have little
knowledge of hardware, to specify performancere-
guirementsn a high-level description.

Ratherthancreatinganew languagewe comeupwith a
high-levelfirewall rule thatusesa subsebf thePonderAu-
thorisationPolicies syntaxand adoptdomainhierarchies
[6]. We alsoprovide acompilationschemeo convertsuch
descriptiongo a hardwarefirewall rule representation.

To allow a high level of abstractionand to facilitate
maintenanceye separat¢hecontrolrequiremendf afire-
wall rule, with the IP addressand the port addressfrom
the corventional syntaxof firewall rules. Consequently
our high-level firewall descriptionconsistsof two parts:a
firewall control specification,and the domainhierarchies
of the IP addresseandservices.In additionwe interpret
not only a particularaddressbut alsotreataddressanges
and addressnasksas objects. Furthermore both the ad-
dressesndportsareincludedin thedomainhierarchy

It is this designdecisionthatenableur high-level fire-
wall descriptiorto becomesimpleto useandeasyto main-
tain. Our methodis more compactand humanreadable
thanusingthe corventionalsyntaxof routerbasedirewall
rules. Changedo the control requirementandthe objects
specifiedarenow independento eachother Examplesof
thetwo domainhierarchiesanbefoundin Figure2.

We definepolicy types,asshavn in Figure3, to specify
the PERMIT andDENY requirementdor a firewall. The
control requirementanthenbe linked with the specified
objectsby instantiatingthe appropriatepolicy typeswith
thecorrespondinglomainhierarchies.

Constraintareaddedasanadditionalcontrolin thefire-
wall control specification.They canbe usedfor grouping
firewall controlspecificatiorasa hardwarepatrtition,deter
mining run-timereconfiguratioror hardware software co-
operation,or providing hints and criteria for introducing
delays,timing requirement,placementrequirement,and
sizerequirementfor hardware implementation. Figure 4
shavs somepossibleusesof the constraint.

Figure5 shavs an exampleof a high-level firewall de-
scription using our specificapproachfor describingfire-
walls. Our firewall descriptionis more abstractand can
usuallyresultin morecompactdescriptionjt permitseasy
designre-use.The sevenlinesexampleshovn in Figure5

10.0.0.0_0.255.255.255

127.0.0.0_0.255.255.255
172.16.0.0_0.15.255.255
192.168.0.0_0.0.255.255

net2 —

0.0.0.255_255.255.255.0
0.0.0.0_255.255.255.0

any netl net3

195.55.55.10
195.55.55.0_0.0.0.255

net4

1]

(a) An | P address domain hierarchy, which captures the
network topology into the donain path structure.
The object ‘10.0.0.0_0.255.255. 255" represents the
I P address ‘10.0.0.0" with a mask ‘0.255.255. 255" .
Depends on the operator applied, ‘net2 can
represent all address objects under its branches;
and simlarly "any’ can represent all objects
beneath it, or a ‘don’t care’ condition.

any ip icmp dns

P— smtp

tcp

— 20
— >1024
P— 2000-2003
P— 2049
+—=— 6000-6003

udp

unsafe

P— dns

server
>— 2049

Any set of services
Refer to (a)

(b) A service donain hierarchy.
can be grouped together and naned.
for interpreting a domain hierarchy.

Figure2: Exampleof IP addressandservicedomainhier-

archies.

would have to be describedby 16 linesin Cisco firewall
rules.If thenetwork topologyis morecomplex or involves
more addresseghe differenceswill be huge. For exam-
ple, if net2in Figure 2(a) has 100 extra addressesthen
no changesare requiredfor our high-level firewall con-
trol specificationput onewould have to write another100
morefirewall rulesthat correspondo thesel00 extra ad-
dresses.

4 Rule reduction mechanism

This sectionexplains how the high-level firewall de-
scriptionproducedn the previous sectionis corvertedto
a hardwarefirewall rule representationln addition,it de-
scribesour new techniquefor saving hardwareresources.

Thenumberof firewall rulesthatcanbe simultaneously
putinto hardwareis limited by the configurableresources
available. To achieve our secondandthird designobjec-
tivesin Section2, we comeup with a hardware firewall
rule representationyhich is largely implementatiorinde-
pendent.

Our two-level optimisationapproachallows software
optimisationand hardware optimisation[7, 11, 13, 16|
techniquego be usedsimultaneously Hardware optimi-

type auth+ Permit (subject SrclP, domain SrcService,
target DstlP, donain DstService,
string UserDef Constraint) {
action TCPconnect, UDP;
when User Def Constrai nt ;

type auth- Deny (subject SrclP, domain SrcService,
target DstlP, dommin Dst Service,
string UserDef Constraint) {
action TCPconnect, UDP;
when User Def Constrai nt;
}

Figure3: Policy typesin our framawvork. Permit allows a
TCP-connecandUDP pacletto passthroughif all speci-
fied conditionsarefulfilled. Similarly, Denydoesnotallow
the specifiedactionwhenthe conditionsaresatisfied.

inst auth+ Pernit(/any, /any, /any/net, /any/critical, "A waysHW);

(a) A constraint that restricts firewall rules to
hardware inpl ementation; assumng that there is a
har dwar e- sof tware partition.

inst auth+ Permit(/any/netl, /any, /any/netl, /any/,
inst auth+ Permit(/any/net2, /any, /any/net2, /any/,
inst auth+ Permit(/any/netl, /any, /any/net2, /any/,
inst auth+ Permit(/any/net2, /any, /any/netl, /any/,

"Partition=1");
"Partition=1");
"Partition=2");
"Partition=2");

(b) Constraints that restrict intra-network
comuni cations to take place on partition 1; while
inter-network communications can take place on
partition 2. The reasons behind this restriction
may be due to run-tine reconfiguration, so that a
hardware block will be reconfigured in the
appropriate region; or to restrict the size or
timng requirement of a partition.

inst auth- Deny(/any, /any, /any/nain, /any/gane, "Tinme<17:00");

A constraint that restricts the main servers from
runni ng gane services before the tine *17:00.

This specification nay be inplenented as a run-tine
reconfigurabl e hardware partition.

(c

-

Figure4: Exampleusesof constraintsn firewall specifica-
tion.

sationsfocus on reducingthe size for eachfirewall rule,
while softwareoptimisationfocusonreducingthenumber
of firewall rulesneededIn addition,softwareoptimisation
cansometimeenhanceheapplicability of hardwareopti-
misation.

Therule reductionmechanisntonsistf five stepsde-
scribedbelow.

4.1 Codetranslation

This stepinvolvescorversionof high-level firewall de-
scriptionto low-level firewall rule representationTheaim
is to generatea representatiothat canbe manipulatedor
variousoptimisationdeforeimplementingon hardware.

The codetranslationprocessemploys standardcompi-
lation techniques:it hasa parsingand a codegeneration
phase. However, the order of the statementdisted in a
specificatiordoesnotguarante¢heorderthatthey arepro-
cessedThisis in conflictto thestrictorderingrequirement

inst auth- Deny(/any/netl/net2, /any/ip, /any, /anylip);

inst auth- Deny(/any, /any/ip, /any/netl/net3, /any/ip);

inst auth- Deny(/any/net1/net4/195.55.55.0_0.0.0.255,/any/ip,/any,/any/ip);
inst auth+ Pernit(/any, /any, /any/net1/net4/195.55.55.10, /any/server);
inst auth- Deny(/any, /any, /any, /any/unsafe);

inst auth+ Permit(/any, /any/ip/tcp/20, /any, /any/ip/tcp/>1024);

inst auth+ Permit(/any, /any/icnp, /any, /any/icnp);

Figure5: An examplehigh-level firewall descriptioncap-
turinganauthorisatiorpolicy for checkingincomingpack-
ets using the domain hierarchiesin Figure 2. The first
statemeninstantiatego meetthe requirementor derying
pacletshaving sourcelP addresset? ary destinationlP
addressary sourceor destinationport addressand with
paclettypeip.

Tablel: An exampleof expandedirewall rulesgenerated
from the specificatiorin Figure 5 by codetranslation.

Source Source Destination Destination
Type |P address port | P address port Action
ip 127.0.0.0/ 0. 255. 255. 255 * * * deny
ip 10. 0. 0. 0/ 0. 255. 255. 255 * * * deny
ip 172.16. 0. 0/ 0. 15. 255. 255 * * * deny
ip 192.168. 0. 0/0. 0. 255. 255 * * * deny
ip * * 0. 0. 0. 255/ 255. 255. 255. 0 * deny
ip * * 0.0.0.0/255. 255. 255. 0 * deny
ip 195.55.55.0/0. 0. 0. 255 * * * deny
tep < * 195. 55. 55. 10 sntp pernit
tep ¢ * 195. 55. 55. 10 dns pernit
udp * * 195.55.55. 10 dns permt
tcp * * * 6000- 6003 deny
tcp * * * 2000- 2003 deny
tcp * * * 2049 deny
udp * * * 2049 deny
tcp * 20 * >1024 pernit
icnp * * * * pernit

of firewall rules. To rectify this, we provide an extra pre-
parsingstepwhich is explainedin Section6. Table1 tab-
ulatesthe resultsof cornverting the exampleof high-level
firewall descriptionin Figure5.

4.2 Addresstranslation and addresstree con-
struction

This step containstwo componentsnameconversion
and addressconstruction, which are performedin se-
guence Therearetwo aims:first, to producearepresenta-
tion of firewall rulesconsistingonly numericalvalues;and
secondto generatehe critical informationfor the optimi-
sationsn thelatersteps.

During thefirst stage all nameddentifiersarereplaced
by their correspondingnumeric values. At the second
stage two treestructuresare constructedor all the IP ad-
dressegontainedn thelist of firewall rules.

4.3 Sequencingreordering and partitioning

This stepinvolveslocatingsequencgointsandassign-
ing partition boundarieswithin a rule set. Therearetwo
aims: first, to provide a hint for the optimisationsin the
laterstepgo avoid violating theoriginal authorisatiorpoli-

ciesthatarule setis representedsecondto tailor thenum-
berof firewall rulesto fit on hardware. This maybe dueto
thereasonsuchasphysicalsizelimit, timing requirement,
andrun-timereconfiguration.

A sequencgointis wherechangego the orderingof a
rule within arule setwill affectthemeaningof thepolicies
beingrepresentednterchangingheorderof any two rules
is allowedif andonly if thereis no sequenc@ointbetween
them. Figure6 shavs an examplewherea sequenceoint
occurs,aswell asanexamplewherethereis none.

Partitioning divides a rule set into multiple smaller
groupsof rules. The size of eachgroup canbe specified
accordingto somepredefinecdtonditions suchas:

e theamountof availablehardwareresourcesor imple-
mentingfirewall rules;

¢ thecritical pathandtiming requiremenfor theresult-
ing hardwarecircuitries;and

¢ theuseof run-timereconfiguration.

The propertyof allowing the orderingof ruleswithin a
groupto befreely interchanged¢anbe usefulduringhard-
wareimplementation:

o first, it enablesmultiple rule matchingto be per
formedin parallelin hardware without the needfor
extra circuitry to checkor serializetheresults;

e secondrearranginghe rulesandre-partitioningcan
sometimeshangehessizeof a partitionasdesired.

Thesequencingrocestakesboththeresultsgenerated
in the previous stepastheinputs,which arethelist of fire-
wall rulesandthe P addresgrees.|t thentraverseshe IP
addresgreesandlooks for conflicting rules. A sequence
pointis locatedwheneer a conflictis found. In thatcase,
amarkwill be putin thelist of firewall rulesin between
the two rulesinvolvedto indicatethatthereis a sequence
point. Theprocessontinueguntil bothtreesareexhausted.

4.4 Rule elimination

This stepremovesunnecessarfirewall rules. Theaim
is to reducethe total numberof firewall rulesto beimple-
mentedon hardware.

Threetypesof elimination are performed: i) conflicts
dueto ruleswhich bothallow anddery paclets,ii) redun-
dantrule which is a subsetof anotherrule, iii) rulesthat
cannotbereachedueto rule ordering.

4.5 Rule sharing

This stepcheckdor similarity amongtherulesandthen
groupsthemtogetheiif closematchesarefound. Theaim
is to sharethe hardwarefunctionalunit amongthe rules.

#i 'net 1. subnet 1. subsubnet 1’ on condition Cwith action X

#] "netl.subnetl.all’ on condition Cwith action Y

(a) A fragnent of a rule set showing a rule on the
hi gher-1level network following a rule on its sub-
network with different actions; it is given that
rule #i precedes rule #.

netl
\
subnetl (#, condition C, action Y)
\

subsubnet1 (#i, condition C action X)

(b) An I P address tree constructed using the rule set

in (a). Fromsubnetl to subsubnetl woul d involve
rule #i placing a restriction on subnetl over the
rule #.

#i 'net 1. subnet 1. subsubnet1' on condition Cwith action X

<§equence poi nt >

#] "netl.subnetl.all’ on condition Cwith action Y

(c) A sequence point is marked between rule #i and #
for the rule set in (a).

netl net 2
\ \
subnet 1
\
subsubnet1 (#i, condition C action X)

subnet1 (#j, condition C, action Y)

(d) An I P address tree constructed using the rule set
in (a) BUT supposing rule # is indeed on
"net2.subnetl.all’. Traversing fromnetl to its
subsubnet1l or fromnet2 to its subnetl does not
result in any conflict anpng the two rules.

Figure6: An exampleof locatingand marking sequence
point.

Therearetwo typesof sharing:field level andbit level.

Field-level sharing

Firewall ruleshave a numberof datafields. Ruleshaving
identical valuesin correspondinglatafields are grouped
together In this case,hardware functional units includ-
ing parameterizedariable-bitcomparatorganbe shared.
Thereis no limitation on how mary datafields canhave
different values, within a group of rules. However, the
greatetthe numberof fieldsthatcanbedifferent,thefewer
thenumberof fieldsthatcansharethe correspondindpard-
wareamongthe rules. In addition, the complexity of the
patternmatchingprocesdor finding the similarity among
the rulesgrows by allowing a highervalue for the num-
ber of differentdatafield valuesexistedamonga groupof
rules.Figure7(a)shavs anexampleof two rulesthathave
identicaldatavaluedn all correspondindieldsbutthe Type
field. Therearetwo methodsf grouping,andtheir effects
andrequirementn hardwareimplementatioraredifferent.

Sour ce Source Destination Destination
Type | P address port | P address port Action
tcp * * 195.55. 55. 10 dns pernmit
udp * * 195.55.55. 10 dns pernmit

(a) Afragnent of a rule set with two rules which differ

in the Type field.

Sour ce Source Destination Destination
Type | P address port | P address port Action
tcpludp * * 195.55. 55. 10 dns permit

(b) Method 1: The rule set in (a) is grouped together
to forma single rule, where the Type field becones
a list of alternative values. Hardware conparators
except the Type field are now shared.

Source Source Destination Destination
Type | P address port | P address port Action
tcp * 195. 55. 55. 10 dns permt
udp + + + + +

(c) Method 2: The rule set in (a) is grouped together
to share the hardware conparators. A '+ nark in

the fields indicates that the values of a particular

field of arule is identical to the corresponding
field in the rule precedes it.

Figure 7: An exampleof field-level sharing. The com-
monality in the datafields amongthe rules are exploited.
Correspondinglatafields having identical valuesamong
theruleswill sharethecorrespondindpardware.

e Methodl usesallist of alternatve valuesto represent
datafieldsthataredifferent,andasinglevalueto rep-
resentdatafieldsthatareidenticalamongtherules. A
numberof rulesaregroupedogetherto form asingle
rule. An exampleis shavn in Figure7(b).

e Method2 keepsthe samenumberof rulesin a group.
However, a markis usedto indicatethata particular
field in arule is having anidenticalvalueto the cor-
respondindield in otherrulesamongthe group. An
exampleis shovn in Figure7(c).

Bit-level sharing

Bit-wise numericoperationcanbe usedto deducethe re-
dundang betweentwo or more numericvaluesof IP or
port addressesThis methodlooks for commonalityin bit
level, regardles®f thenumericvaluegthatthe dataarerep-
resented. It matchesthe binary '1’s and’0’s at bit-level
amongthe correspondindields in the rules. The results
aretwo setof matchvalues. Onesetcontainsa maskand
thebits of the datafield thatareidenticalamongtherules.
The othersetcontainsa maskanda list of bits of the data
field thataredifferentamongtherules. Two examplescan
befoundin Figure8.

The sharingprocesstakes the list of firewall rules as

Source Source Destination Destination

Type |P address port | P address port Action
ip 172.16.0.0/0. 15. 255. 255 * * * deny
ip 192.168.0.0/0. 0. 255. 255 * * * deny

(a) A fragnent of a rule set.

172.16.0. 0/ 0. 15. 255. 255
192.168. 0. 0/ 0. 0. 255. 255

1010 1100 0001 XXXX XXXX XXXX XXXX XXXX
1100 0000 1010 1000 XXXX XXXX XXXX XXXX

Mask for identical bits

1001 0011 0100 0000 XXXX XXXX XXXX XXXX
Identical bit

1..0 ..00 .0.. .

Mask for different bits
Difference bit (1)
Difference bit (2)

0110 1100 1011 1111 0000 0000 0000 0000
L0010 11.. 0.01 XXXXl
.10. 00.. 1.10 1000

(b) Bit-wi se deduction for the rule set in (a).

Sour ce Source Destination Destination

Type |P address port | P address port Action
tcp * * 62.189.241.2 ww pernit
tcp * * 62.189.241.4 ww pernit
tcp * * 62.189.241.3 ww pernit
tcp * * 62.189.241.1 ww pernit

(c) A fragnent of a rule set.

62.189.241. 2 = 0011 1110 1011 1101 1111 0001 0000 0010
62.189.241. 4 = 0011 1110 1011 1101 1111 0001 0000 0100
62.189.241.3 = 0011 1110 1011 1101 1111 0001 0000 0011
62.189.241.1 = 0011 1110 1011 1101 1111 0001 0000 0001

Mask for identical bits
Identical bit

1111 1111 1111 1111 1111 1111 1111 1000
0011 1110 1011 1101 1111 0001 0000 O...

Mask for different bits = 0000 0000 0000 0000 0000 0000 0000 0111

Difference bit (1) = . .o010
Difference bit (2) = . .100
Difference bit (3) = . 011

Difference bit (4)

(d) Bit-w se deduction for the rule set in (c).

Figure8: Examplesof bit-level sharing. The commonal-
ity of the’l’sand’0’s for a datafield amongthe rulesis
deduced.

input andsearchegor closematchingfor the correspond-
ing datafields amongthe rules. The criteria for the pat-

ternmatchingprocessncludethenumberof fieldsthatcan

have differentvaluesamongthe rules and the numberof

rulesthatcanbe groupedtogetheiin a match.

Groupingof rulesseparatetly sequenceointscanlead
to violation to the original authorisatiorpolicy thatarule
setis representedn orderto avoid sucha situation,arule
setis dividedinto segmentavhereeachsggmentbeginsand
endswith a sequenceoint (seeSection4.3). The match-
ing processs performedindependentlyon eachsegment.
Reorderingcan be performedamongthe ruleswithin the
samesegmentin orderto facilitatea grouping.

Techniquefor implementingthe two methodsof field-
level rule sharingis explainedin Section5.

5 Implementing hardware sharing

This section describeshow resourcesharing can be
achiezedon hardware.In particular it explainstherequire-
mentsandpropose&nimplementatiorschemdor thetwo
differentmethodsof hardwarefirewall rule representation
generatedby therule reductionmechanism.

A hardwarefirewall ruleis usuallyimplementedsaset
of comparatorasin Figure9(a). Eachcomparatorcorre-
spondgo oneof thedatafieldsin afirewall rule. Whether
the comparatorsare physically separatear cascadedo-
getheris implementationdependent. However, in terms
of hardware-resourceonsumptionsthey arebasicallythe
same.

Figure 9 shows the differenceshetweena set of rules
with andwithout sharingthe resource®n hardware. The
sharingprocessdoesnot changethe hardwareimplemen-
tation of just a singlefirewall rule. Indeed,the represen-
tation of a group of sharednhardwarefirewall rulesis im-
plementedasan overlappingcluster To achieve a higher
saving of hardwareresourcesachieve alargeroverlapping
area.Thisin turnis determinedy the numberof rulesin
thesharinggroup,andthefieldsthataresharecamongthe
rules.

In the following, we provide implementationdor the
two field-level rule sharing methodsdescribedin Sec-
tion 4.5:

¢ Method1: Siamesdwins
Individual fields of the firewall rules having identi-
cal datavaluesare simply sharedby usingthe same
hardware functional units. Fields that can not be
sharechavetheircorrespondingartsOR-edtogether
An exampleof which is shovn in Figure 9(b). Ad-
vantage<f this methodinclude simple design,and
large savings in hardware designs. However, it pro-
ducesirregular hardware circuitries that exhibit dif-
ferencesin size andtiming behaiour. It posesdif-
ficulties when implementingpipelining and regular
hardwaredatastructuressuchascontent-addressable
memory On the otherhand,it is suitablefor imple-
mentationghatinvolve irregularhardwaredatastruc-
tures. Figure 10 shows the implementationschemes
for Siamesélwins.

e Method?2: Propaganda
Individual fields of the firewall ruleshaving identical
datavaluesare sharingthe correspondinghardware
functionalunitsthroughtheuseof extra 2-inputAND
gates. It is this relatively little extra costthat com-
pensatefor the removal of the much larger cost of
the correspondindhardware comparatorof the data
fields. An exampleof whichis shavn in Figure9(c).

Type
comparator

v

Src IP addres: Src port Dst IP addres: Dst port
comparator comparator comparator comparator
Type Src IP addres: Src port Dst IP addres: Dst port

comparator comparator comparator comparator comparator

(a) Two firewall rules w thout sharing any resources on
har dwar e.

v

Type
comparator

v

Src IP addres: Src port Dst IP addres: Dst port
comparator comparator comparator comparator

Type
comparator

(b) Sianese Twins: two firewall rules sharing the
functional units on hardware. In this exanple, all
but the type conparator are shared through the use
of an OR-gate.

Type
comparator

v

Src IP addres Src port Dst IP addres: Dst port
comparator comparator comparator comparator
T T 1 T

1 1 I 1
e e ——{a—{a—{]

(c) Propaganda: two firewall rules sharing the
functional units on hardware. In this exanple, all
but the type conparator are shared through the use
of 2-input AND gates.

Figure9: An exampleshawing the differenceof firewall
ruleswith andwithout sharingthe resource®n hardware.

The adwantageof this methodis the regular design
andsimpleto implement. Hardware techniquegisu-
ally favour regular designs,and hardware coresthat
areavailablecommerciallyor in public domainstend
to useregulardatastructures.Therefore this method
is suitablefor adoptionby currentdesignswith little
modifications. Figure 11 shaws the implementation
schemedgor Propaganda.

Noticethata hardwarefunctionalunitis usedin ahard-
warefirewall rule only whenthe correspondindield con-
tainsa normaldatavalue. A 'don't care’ conditionis nor-
mally implementedasa by-passingwire anddoesnot re-
quireary logic gatesatall.

Implementatiorusingour rule reductiontechniqueand
in particularthe rule sharingmethod,requireslesshard-
warefor a setof firewall rules. A reductionin hardware
consumptiomwith asmallerhardwarecircuitry will, in gen-
eral, have lessrouting and gatedelays. Therefore,it is
reasonabléo expectthat designsincorporatingrule shar
ing will have shortercritical pathsor atleastcanmeetthe
samdiming requiremenasthosewithoutusingit. In other
words,it canmaintainthe speedperformanceif notbetter

input
A

Y. L 4 Y Y

Type Src IP addres: Src port Dst IP addres: Dst port Action
comparator comparator comparator comparator comparator

N
!

input
A

—
| | | | |
¥ A A ¥ A A ¥

Action

T T T T
| [) | [
. 4 L 4 Y. ¥ L 4

Type Src IP addres: Src port Dst IP addres: Dst port
comparator comparator comparator comparator comparator
T

Src IP addres: Src port Dst IP addres: Dst port Action
comparator comparator comparator comparator

Type
comparator

Type
comparator

)
Y.

Src IP addres: Src port Dst IP addres: Dst port Action
comparator comparator comparator comparator

comparator
i I T 2 B = 1 BN

& é L";['T_, L-'I‘T_l Action
I D10 1.0l Bl B D6l

Type Src IP addres: Src port Dst IP addres: Dst port Action
comparator comparator comparator comparator comparator

Y
Type Src IP addres: Src port Dst IP addres: Dst port Action
comparator comparator comparator comparator comparator

result

A pipelined structure showing a group of shared hardware
firewall rules with other non-shared rules. Results are
obtained fromthe | ast stage of the pipeline. Parallel
structure will have simlar |ayout, except without the
pi peline stages and results are obtained in parallel.

Figure10: Implementatiorschemedor Siameselwins.

6 Compilation scheme

This section outlines a compilation schemefor the
framework. In particular it discusseshe issuesinvolved
in eachstagesduring the corversionof a high-level fire-
wall descriptionto the desiredhardware configurationbit-
stream.Lastly, we describehow our existing tools arere-
latedto the framework.

Figure 12 shavs an overview of the compilationsteps.
Therearethreestagesn the compilationflow:

e Parsing

We usethe PondefToolkit asthe PondefParser How-
ever, specificationshave no orderingin Ponderand
thisis in contrastwith thefirewall ruleswhichrequire
strict ordering. Therefore,we provide a pre-parsing
stepthatput atagto every statementsn the firewall
description.This tagis simply a numberthatgetsin-
crementecby one eachtime after a statemenfrom
a firewall descriptionis read. This pre-parsingstep
allows the orderingto be presered both during and
afterthe PonderParser

e Codegeneration

Therearetwo phasesatthis stageandthey correspond
to eachof thelevelsin our two-level optimisationap-
proach.We designthe codegeneratormhich corverts
the firewall description(seeexamplein Figure5) to
the hardwarefirewall rule representatiorfseeexam-
ple in Table 1) at Phasel. Variouschoicesof hard-
waredesigncodecanbe generatedt Phase?.

e Hardwareimplementation
Platformanddevice specificervironmentsaswell as

retull

(a) A pipelined structure showing a group of shared
hardware firewal | rules with other non-shared rules.
Results are obtained fromthe |ast stage of the
pipeline. Notice that the pipeline registers my
increase the size of the design.

input

/
|
A A
Src IP addres:
cumparatur comparator
]
A A
iy
[

:
I
A &

_{s

|
A A A A
Src port Dst IP addres: Dst port
comparator comparator cumparator
]]
A A A A
¢ IP addres: rc port Dst IP addres: Dst port
omparator comparator comparator comparator

w { T T w

P B T - -
l

[1

Action

¥

(%)

Type

comparator Action

3

|
|

3

> result

H!

o | —— - —
A A
Type Src IP addres: Src port Dst IP addres: Dst port Action
comparator comparator comparator comparator comparator)

(b) A parallel structure showing a group of shared
hardware firewall rules with other non-shared rules.
Results are obtained in parallel.

Figure11: Implementatiorschemegor Propaganda.

placeandroutetools are usedto corvert a hardware
designinto the correspondingpardwareconfiguration
bitstreams.

Our existing developmenttools canautomaticallygen-
erate hardware designsfrom representatiorof firewall
rulesto either Handel-Cor VHDL code. However, they
arenotyet capableof producingirregular structuresasre-
quired by our new rule reductionmethods. Furthermore,
due to the compleity of generatingirregular structures
to a granularitylevel asrequiredby the bit-level sharing
method,we have no planto corvert the currenttools to
supportthis bit-level optimisation. Instead,we decideto
modify thetoolsto supportcoarse-graimeductionoptimi-
sationdown to datafield level. Onthe otherhand,we plan
to supportbit-level optimisationthroughthe development
of anew tool usingotherhardwareoptimisationtechnique.

High-level firewall description

A4

Pre-Parser

Ponder specification

Ponder Parser

(y

Parsing
stage

Code generator
(Phase 1)
Code Hardware firewall rule representation
generation
stage Code generator
(Phase 2)
Hardware design Hardware design
in in
\ Handel-C VHDL
Handel-C VHDL
Compiler Compiler
Hardware
implementation
stage
Place & Route tools

Hardware configuration bitstream

Figure12: An overview of thecompilationsteps.

7 Casestudies

This sectionreportssomefindingsonusingour new ap-
proachfor producingpaclet-filteringfirewall on reconfig-
urablehardware.

We comparehe new approactwith two otherhardware
implementationtechniques. The reductionsin hardware
usageareestimatedy calculatingtheareausageof fivefil-
ter rule sets,on a Virtex XCV1000 FPGA. Theserule sets
composeof a mixture of bothincomingandoutgoingtraf-
fic controlson generalnetwork servicesmail and WWW
seners. We do notincludel/O andrelatedcontrol circuits
in the hardware usageestimates.Figure 13 shaws the re-
sultof the hardwareusageof aregularcontent-addressable
memory(CAM) structurg11], anirregularCAM structure
[7], andtherule reductionoptimisation.

We calculatethe amountof hardware resourcesaved
basedon the numberof look-up tablesrequired. For the
new approachusingtherule reductionmechanismye em-
ploy our previoushardwarearchitecturd12, 13] for paral-
lel matchingstructureghatdoesnotincludeary hardware-
level of spaceoptimisation.We useonly optimisationgran-
ularity atdatafield level.

The estimatedresultshows that our new approachus-
ing therulereductionoptimisationcanreducethehardware
usageby 67-80%from the regular CAM implementation,

mRegular CAM
700 miregular CAM ||

O Rule reduction

Set1 Set 2 Set 3 Set 4 Set5

Figure13: Hardwareusagejn termsof numberof look-up
tables,of five filter rule setsusingthreedifferentimple-
mentationtechniques.

and24-63%from theirregular CAM implementationlt is
believedthat furtherimprovementcanbe achieved by ex-
ercisinghardware-level optimisationsuchasserialisation.

Althoughit is possibleto produceanirregular pipeline
structure, our currenttools allocate regular rectangular
blockson hardwarefor the filter-rule matching. In other
words, even thoughwe would have alreadymodified our
tools to supportthis new technique,the hardware space
saved would be scatteredaroundas small unusedblocks,
which aredifficult to reusefor additionalfilter rules.

We alsocomparehow changego an authorisatiorpol-
icy will reflecton the high-level firewall descriptionap-
proach with the conventional routerbasedfirewall rule
method. We estimatethe impactby introducingchanges
on the network topology and control requirementon IP
addressaindservice. Thefirewall descriptionapproachre-
sponseso changedy requiring modificationon the cor-
respondingdomain hierarchiesand/or the control speci-
fication statement. On the other hand, the corventional
rule setresponddo changesy requiringthe correspond-
ing original firewall rule(s)from anunstructuredist being
picked up, andtheneither being modified or replacedby
new rules.

It is generallyeasyto locatean objectfrom a hierar
chy thanspottingit from an unstructuredist. Moreover,
changesn a single specificationstatementan affect all
correspondingbjects;while changinga list of unrelated
rulesrequiresall relevantrulesto be changedat the same
time.

However, the effect of a changeof thefirewall descrip-
tion maynotimmediatelyaffectthe hardwareimplementa-
tion. It is becauseary change®n the controlspecification
statementsr thedomainhierarchiesill affecttheoverall
dataredundang that canbe deducedn theresultingrule
set. Thereforetheimpactmaynotbedirectly proportional
tothedegreeof changesntroduced A big changecanhave

no effectatall, if it wasbeingpickedup andeliminatedby
therule reductionstep.A smallchangecanhave profound
effect, if it introducesew partitioningandgroupingin the
hardwarefirewall rule representation.

On the other hand, the corventionalrule set method
‘mirrors’ the patternon hardware. A changeon onefire-
wall rule affectsonly the circuitry on the pre-definector-
respondingpartonthe hardware.

8 Summary

We have presentedh designflow for developinghard-
ware paclet filters. It employs a two-level optimisation
approachthatallows softwareandhardwareoptimisations
to proceedndependently

We have describeda methodof capturingan authorisa-
tion policy in a high-level firewall description.lIt is based
on a policy specificationlanguageusing domain hierar
chies;andsupportsonstrainthatspecifiegestrictionsfor
hardwareimplementation.

We have explaineda hardware optimisationtechnique
and have outlined a compilation schemefor the design
framavork. A casestudy shows that hardware reduction
of 67-80%and24-63%is possible over regularandirreg-
ular content-addressabfeemoryimplementationsespec-
tively.

Currentand future work includesusing constraintsto
facilitaterun-timereconfiguratior{10] andhardwaresoft-
ware co-operation3]. Explorationof varioushardware-
level optimisation techniques,such as methodsbased
on binary decisiondiagram[16] and content-addressable
memory[7], is underinvestigation:the formeris capable
of producingacompactrepresentatioof filter rules,while
the latter is capableof fast databasesearchon irregular
structuresTheextensionof ourframework to coverimple-
mentation®nreconfigurablglatforms[2] andotherappli-
cationssuchasnetwork intrusiondetection[8] arealsoof
interest.

Acknowledgements.The supportof UK Engineeringand Phys-
ical SciencesResearchCouncil (Grant number GR/R 31409,
GR/R 55931 and GR/N 66599), Celoxica Limited and Xilinx,
Inc. is gratefullyacknavledged.

References

[1] A. Begel, S. McCanne,S.L. Graham,"BPF+: Exploiting
Global Data-flav Optimisationin a GeneralizedPacket Fil-
ter Architecture”,in Proc. SIGCOMM ComputerCommu-
nicationReview, 29(4),1999,pp. 123-134.

[2] P. Bellows et. al., “GRIP: A ReconfigurableArchitecture
for Host-BasedGigabit-RatePacket Processing”jn Proc.
IEEE Symp.on Field-ProgrammableCustom Computing
Machines IEEE ComputerSocietyPress2002.

[3] G. Brebner “Single-chipGigabitMixed-\ersionlP Router
on Virtex-Il Pro”, in Proc. IEEE Symp. on Field-
ProgrammableCustomComputingMachines IEEE Com-
puterSocietyPress2002.

[4] Cisco Systemsinc., CiscoPIX Firewall CommandRefer
ence http://www.cisco.com/.

[5] Cisco SystemsInc., Cisco Secue Policy Manager Policy
Configuation Guide 2001.http://www.cisco.com/.

[6] N.DamianouN. Dulay, E. LupuandM Sloman,The Pon-
der Policy SpecificationLanguage”,in Proc. Workshopon
Policiesfor DistributedSystemandNetworks LNCS 1995,
Springer2001,pp. 18-39.

[7] J.Ditmar, K. Torkelssonand A. Jantsch,"A Dynamically
ReconfigurableFPGA-basedContent AddressableMem-
ory for Internet Protocol Characterization”,Field Pro-
grammablelLogic and Applications LNCS 1896, Springer
2000.

[8] R.Franklin,D. CarerandB.L. Hutchings,*AssistingNet-
work Intrusion Detectionwith ReconfigurabléHardware”,
in Proc.IEEE Sympon Field-ProgrammableCustomCom-
putingMachines IEEE ComputerSocietyPress2002.

[9] P GuptaandN. McKeown, “Packet Classificatioron Multi-
pleFields”,in Proc. SIGCOMM ComputeiCommunication
Review, 29(4),1999,pp 147-160.

[10] J.R.Hesset.al.,“ImplementatiorandEvaluationof a Proto-
typeReconfigurabl®outer”,in Proc.|[EEE SymponField-
ProgrammableCustomComputingMachines IEEE Com-
puterSocietyPress;1999.

[11] PB.James-RoxbyndD.J. Downs,“An Efficient Content-
addressabldemorylmplementatioidsingDynamicRout-
ing”, in Proc. IEEE Symp.on Field-ProgrammableCustom
ComputingMachines IEEE ComputetSocietyPress2001.

[12] T.K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and
N. Dulay, “DevelopmentFramavork for Firewall Proces-
sors”, in Proc. IEEE International Confeenceon Field-
ProgrammableTechnolayy, 2002.

[13] W. Luk, S. YusufandR. Nagarajan, IncrementalDevel-
opmentof HardwarePacket Filters”, in Proc. International
Confeenceon Engineeringof Reconfiguable Systemsind
Algorithms(ERSA) CSREAPress2001,pp.115-118.

[14] J.T. McHenry PW. Dowd, “An FPGA-BasedCoproces-
sor for ATM Firewalls” in Proc. IEEE Symp.on Field-
ProgrammableCustomComputingMachines IEEE Com-
puterSocietyPress1997.

[15] R.RusselLinuxIPCHAINS-HQNTO,
http://wwwlinuxdoc.og/HOWNTO/IPCHAINSHONTO.html.

[16] R. Sinnappanand S. Hazelhurst,“A ReconfigurableAp-
proachto Packet Filtering”, Field Programmabld_ogic and
Applications LNCS 2147,Springer 2001.

