
Compiling Policy Descriptionsinto ReconfigurableFir ewall Processors

T.K. Lee,S.Yusuf,W. Luk, M. Sloman,E. LupuandN. Dulay
Departmentof Computing,ImperialCollege,

180Queen’sGate,LondonSW72BZ, England
(tkl97, sy99,w.luk, m.sloman,e.c.lupu,n.dulay)@doc.ic.ac.uk

Abstract

Wedescribea frameworkfor capturingfirewall require-
mentsashigh-level descriptionsbasedon thepolicy spec-
ification language Ponder. The framework providesab-
straction from hardware implementationwhile allowing
performancecontrol through constraints. Our hardware
compilationstrategy for such descriptionsinvolvesa rule
reductionstepto producea hardware firewall rule repre-
sentation.Threemain methodshavealso beendeveloped
for resource optimisation: partitioning, elimination, and
sharing. A casestudy involving five setsof filter rules
indicates that it is possibleto reduce67-80% of hard-
ware resourcesover techniquesbasedon regular content-
addressablememory, and24-63%over methodsbasedon
irregular content-addressablememory.

1 Intr oduction

A commonelementof a firewall architecture[14] is an
InternetProtocol(IP) packet filter to implementauthori-
sationpolicies[6]. A packet filter works by checkingthe
contentof theIP packetheaderbeforedecidingif commu-
nicationis allowed,basedon a setof rules. Thesyntaxof
the rules [4, 15] is firewall specific. The orderingof the
ruleswithin a rule set is significant. A packet is sequen-
tially checked againsteachrule, startingfrom the begin-
ningof a ruleset,until amatchfor theconditionsspecified
in a rule is foundor theendof therule setis reached.

Packet filters [1, 9] usually rely on processorsrun-
ning entirely in software. They suffer from increased
look-up times as the numberof filter rules grows. They
thereforehave difficulty in keepingup with the current
network throughput. With the recentadvancesin field-
programmablegate array (FPGA) technology, custom-
developed hardware packet filters [7, 11, 13, 16] that
out-performtheir softwarecounterpartsbecomepossible.
However, limitations on the amountof available recon-
figurableresourcesmay restrictthe numberof concurrent
matches.Somestudies[7, 11, 16] have beenconductedto

optimisethe usageof hardwareresources,however, they
often do not take into accountthe redundancy amongthe
firewall rulesin aruleset,andhavenotutilizedinformation
otherthanthoseofferedby theIP packetheaders.

Firewall rules are notoriously difficult to maintain.
There are several attemptsto use high-level languages
[1, 4] or graphicaluserinterface[5] for their description.
However, with the rapidexpansionof the internetandthe
growing demandof large-scaleorganisationalnetworks,
rulesetscomprising1000rulesarenotuncommon.Conse-
quently, the needfor appropriatehigh-level languagesfor
firewall descriptionbecomesincreasinglyimportant.

Ponder[6] is a languagefor specifying security and
managementpoliciesfor distributedobjectsystems.Poli-
ciescanbe written asparameterisedtypes,andcanhave
constraints.

We describea framework to specifyhigh-level firewall
rulesusingPonder, andto implementsuchdescriptionson
reconfigurablehardware. The contributionsdescribedin
thispaperinclude:

� a method for capturing authorisationpolicies in a
high-level description;

� a rule reduction techniquethat converts high-level
firewall descriptionto hardware firewall rule repre-
sentation,throughpartitioning,eliminationandshar-
ing;

� a compilationschemefor the framework which in-
volvestherule reductiontechnique;and

� an evaluation of the effectivenessof the proposed
framework basedona numberof casestudies.

Therestof thepaperis organisedasfollows. Section2
givesanoverview of ourdesignframework. Section3 dis-
cussesthe designdecisionfor our high-level firewall de-
scription.Section4 explainsour rule reductiontechnique.
Section5 describestheimplementationscheme.Section6
outlinesa compilationschemefor the designframework.
Section7 evaluatesour approachthroughsomecasestud-
ies, while Section8 provides a summaryof currentand
futurework.

2 Framework overview

This sectiongives an overview of our framework. It
outlinesthe designobjectives,andbriefly describeseach
stagein thedesignanddevelopmentflow.

Our framework allows us to specifyhigh-level firewall
rulesandto implementsuchdescriptionsonreconfigurable
hardware.Therearethreebasicdesignobjectives:

1. To provide a methodto simplify the designprocess
andto facilitatethemaintenanceof a firewall. In par-
ticular, to aid the managementof authorisationpoli-
ciesfor acomplex large-scaleorganisationalnetwork;
andto expressfirewall rulesfor reconfigurablehard-
wareimplementation.

2. To separatea design into software and hardware
phases;and allowing optimisationto be performed
in bothphases,for varioushardwareimplementation
schemes.

3. To achieve efficient hardwareutilization. Emphasis
is on overcomingthephysicallimitationson thesize
of reconfigurablehardware,by methodssuchasshar-
ing of hardwarefunctionalunitsandparameterisedli-
braryblocks.

To achieve theseobjectives,we have threemainphases
in the design flow: design phase, compilation phase
and hardware implementationphase. Figure 1 shows an
overview of our framework for developingreconfigurable-
hardwarepacketfiltering firewalls.

At the designphase,the formal requirementof a fire-
wall will begivenandadditionalinformationthatcanassist
theoptimisationof thefirewall implementationwill bepro-
vided.Therequirementsfor a firewall is usuallycontained
in anauthorisationpolicy, which is thentransformedinto a
high-level firewall description.Suchadescriptionconsists
of two parts: a firewall control specification,andthe do-
mainhierarchiesof theIP addressesandservices.Optional
informationincludingnetwork topologyandtheavailable
servicestogetherwith thefirewall descriptionform thein-
put to the next stageof the designflow. At the compila-
tion phase,the firewall descriptionwill be convertedto a
hardwarefirewall rulerepresentation,whichin turnwill go
througha seriesof optimisationsteps.Theresultis anop-
timisedrepresentationof a list of hardwarefirewall rules
readyto producea hardware designin the next stageof
the designflow. At the hardware implementationphase,
the representationof firewall ruleswill be convertedto a
hardwaredesignfor specifichardwaredevices. Hardware
specificoptimisationtechniquescanalsobeusedto further
optimisethe firewall rulesandthe overall design.Device
specifictools are thenusedto placeandroute the design

Design
phase�

Compilation
�

phase�

Hardware
�

implementation
phase�

 Authorisation policy

Rule reduction

Named-address firewall rules
�

Numeric-address firewall rules
�

+
IP address trees

Ordered sets of partitioned firewall rules
�

Reduced sets of firewall rules
�

Hardware firewall rule representation
�

with parameterised functional unit�

library specifications

Hardware design representation

Hardware configuration bitstreams

Code translation
�

Address translation
Address tree construction

Sequencing, reordering and partitioning
	

Rule elimination

Shared resources
	

Hardware optimization
Device specific place and route

Firewall control specification
+�

IP and service domain hierarchies

Network topology
�

+
available services�

Figure 1: An overview of the designflow in our frame-
work.

andto generatethe necessaryhardwareconfigurationbit-
streamsfor downloadingthedesignon to hardware.

Our framework employs a two-level optimisationap-
proach.This involvestheuseof hardwarefirewall rulerep-
resentationin thecompilationphase,andthe useof hard-
waredesignrepresentationin thehardwareimplementation
phase.Therearetwo advantagesof having anintermediate
representation.First, it allowsbothsoftwareandhardware
optimisationsto be performed,basedon differentsetsof
criteriaandinformationavailable. In particular, it permits
usingplatform-specificoptimisationsaswell asplatform-
independenttechniques. Second,it enablesa choiceof
differenthardwareimplementationschemesbasedon size,
speed,costor otherrequirements.

3 High-level fir ewall description

This sectiondiscussesa novel methodthatwe develop
to capturean authorisationpolicy in a high-level firewall
description.

To achieveourfirst designobjective(Section2) of sim-

plified designprocess,we specify an authorisationpol-
icy in a high-level language.We believe sucha language
shouldat leasthave thefollowing properties:simplify the
designprocess,facilitatethemaintenance,andallow easy
designre-use.In particular, it should

� supportabstractionfrom the hardware implementa-
tion, so that changesto the policieswill give a min-
imal or a controllableimpacton thehardware;and

� allow the policy administrator, who may have little
knowledgeof hardware, to specify performancere-
quirementsin a high-level description.

Ratherthancreatinganew language,wecomeupwith a
high-levelfirewall rulethatusesasubsetof thePonderAu-
thorisationPoliciessyntaxand adoptdomainhierarchies
[6]. Wealsoprovideacompilationschemeto convertsuch
descriptionsto a hardwarefirewall rule representation.

To allow a high level of abstractionand to facilitate
maintenance,weseparatethecontrolrequirementof afire-
wall rule, with the IP addressandthe port address,from
the conventionalsyntaxof firewall rules. Consequently,
our high-level firewall descriptionconsistsof two parts:a
firewall control specification,and the domainhierarchies
of the IP addressesandservices.In additionwe interpret
not only a particularaddress,but alsotreataddressranges
andaddressmasksasobjects. Furthermore,both the ad-
dressesandportsareincludedin thedomainhierarchy.

It is thisdesigndecisionthatenablesourhigh-level fire-
wall descriptionto becomesimpleto useandeasyto main-
tain. Our methodis more compactand humanreadable
thanusingtheconventionalsyntaxof router-basedfirewall
rules. Changesto the control requirementandtheobjects
specifiedarenow independentto eachother. Examplesof
thetwo domainhierarchiescanbefoundin Figure2.

Wedefinepolicy types,asshown in Figure3, to specify
the PERMIT andDENY requirementsfor a firewall. The
control requirementcanthenbe linked with the specified
objectsby instantiatingthe appropriatepolicy typeswith
thecorrespondingdomainhierarchies.

Constraintsareaddedasanadditionalcontrolin thefire-
wall control specification.They canbeusedfor grouping
firewall controlspecificationasahardwarepartition,deter-
mining run-timereconfigurationor hardwaresoftwareco-
operation,or providing hints and criteria for introducing
delays,timing requirement,placementrequirement,and
size requirementfor hardware implementation.Figure 4
showssomepossibleusesof theconstraint.

Figure5 shows anexampleof a high-level firewall de-
scription using our specificapproachfor describingfire-
walls. Our firewall descriptionis more abstractand can
usuallyresultin morecompactdescription;it permitseasy
designre-use.Thesevenlinesexampleshown in Figure5

10.0.0.0_0.255.255.255

127.0.0.0_0.255.255.255

172.16.0.0_0.15.255.255

192.168.0.0_0.0.255.255

0.0.0.255_255.255.255.0

0.0.0.0_255.255.255.0

195.55.55.10

195.55.55.0_0.0.0.255

net2�

net3

net4

net1any

(a) An IP address domain hierarchy, which captures the
network topology into the domain path structure.
The object ‘10.0.0.0_0.255.255.255’ represents the
IP address ‘10.0.0.0’ with a mask ‘0.255.255.255’.
Depends on the operator applied, ‘net2’ can
represent all address objects under its branches;
and similarly ’any’ can represent all objects
beneath it, or a ‘don’t care’ condition.

any ip icmp

tcp

udp�

unsafe�

server

dns

smtp

20

>1024

2000-2003

2049

6000-6003

dns

2049

(b) A service domain hierarchy. Any set of services
can be grouped together and named. Refer to (a)
for interpreting a domain hierarchy.

Figure2: Examplesof IP addressandservicedomainhier-
archies.

would have to be describedby 16 lines in Ciscofirewall
rules.If thenetwork topologyis morecomplex or involves
moreaddresses,the differenceswill be huge. For exam-
ple, if net2 in Figure 2(a) has100 extra addresses,then
no changesare requiredfor our high-level firewall con-
trol specification,but onewould have to write another100
morefirewall rulesthat correspondto these100extra ad-
dresses.

4 Rule reduction mechanism

This sectionexplains how the high-level firewall de-
scriptionproducedin the previoussectionis convertedto
a hardwarefirewall rule representation.In addition,it de-
scribesournew techniquefor saving hardwareresources.

Thenumberof firewall rulesthatcanbesimultaneously
put into hardwareis limited by theconfigurableresources
available. To achieve our secondandthird designobjec-
tives in Section2, we comeup with a hardwarefirewall
rule representation,which is largely implementationinde-
pendent.

Our two-level optimisationapproachallows software
optimisationand hardware optimisation [7, 11, 13, 16]
techniquesto be usedsimultaneously. Hardwareoptimi-

type auth+ Permit (subject SrcIP, domain SrcService,
target DstIP, domain DstService,
string UserDefConstraint) {

action TCPconnect, UDP;
when UserDefConstraint;

}
type auth- Deny (subject SrcIP, domain SrcService,

target DstIP, domain DstService,
string UserDefConstraint) {

action TCPconnect, UDP;
when UserDefConstraint;

}

Figure3: Policy typesin our framework. Permit allows a
TCP-connectandUDP packet to passthroughif all speci-
fiedconditionsarefulfilled. Similarly, Denydoesnotallow
thespecifiedactionwhentheconditionsaresatisfied.

inst auth+ Permit(/any, /any, /any/net, /any/critical, "AlwaysHW");

(a) A constraint that restricts firewall rules to
hardware implementation; assuming that there is a
hardware-software partition.

inst auth+ Permit(/any/net1, /any, /any/net1, /any/, "Partition=1");
inst auth+ Permit(/any/net2, /any, /any/net2, /any/, "Partition=1");
inst auth+ Permit(/any/net1, /any, /any/net2, /any/, "Partition=2");
inst auth+ Permit(/any/net2, /any, /any/net1, /any/, "Partition=2");

(b) Constraints that restrict intra-network
communications to take place on partition 1; while
inter-network communications can take place on
partition 2. The reasons behind this restriction
may be due to run-time reconfiguration, so that a
hardware block will be reconfigured in the
appropriate region; or to restrict the size or
timing requirement of a partition.

inst auth- Deny(/any, /any, /any/main, /any/game, "Time<17:00");

(c) A constraint that restricts the main servers from
running game services before the time ‘17:00’.
This specification may be implemented as a run-time
reconfigurable hardware partition.

Figure4: Exampleusesof constraintsin firewall specifica-
tion.

sationsfocus on reducingthe size for eachfirewall rule,
while softwareoptimisationsfocusonreducingthenumber
of firewall rulesneeded.In addition,softwareoptimisation
cansometimesenhancetheapplicabilityof hardwareopti-
misation.

Therule reductionmechanismconsistsof fivestepsde-
scribedbelow.

4.1 Codetranslation

This stepinvolvesconversionof high-level firewall de-
scriptionto low-level firewall rule representation.Theaim
is to generatea representationthatcanbemanipulatedfor
variousoptimisationsbeforeimplementingon hardware.

The codetranslationprocessemploys standardcompi-
lation techniques:it hasa parsinganda codegeneration
phase. However, the order of the statementslisted in a
specificationdoesnotguaranteetheorderthatthey arepro-
cessed.This is in conflict to thestrictorderingrequirement

inst auth- Deny(/any/net1/net2, /any/ip, /any, /any/ip);
inst auth- Deny(/any, /any/ip, /any/net1/net3, /any/ip);
inst auth- Deny(/any/net1/net4/195.55.55.0_0.0.0.255,/any/ip,/any,/any/ip);
inst auth+ Permit(/any, /any, /any/net1/net4/195.55.55.10, /any/server);
inst auth- Deny(/any, /any, /any, /any/unsafe);
inst auth+ Permit(/any, /any/ip/tcp/20, /any, /any/ip/tcp/>1024);
inst auth+ Permit(/any, /any/icmp, /any, /any/icmp);

Figure5: An examplehigh-level firewall descriptioncap-
turinganauthorisationpolicy for checkingincomingpack-
ets using the domain hierarchiesin Figure 2. The first
statementinstantiatesto meettherequirementfor denying
packetshaving sourceIP addressnet2, any destinationIP
address,any sourceor destinationport address,andwith
packet type ip.

Table1: An exampleof expandedfirewall rulesgenerated
from thespecificationin Figure5 by codetranslation.
__

Source Source Destination Destination
Type IP address port IP address port Action
__

ip 127.0.0.0/0.255.255.255 * * * deny
ip 10.0.0.0/0.255.255.255 * * * deny
ip 172.16.0.0/0.15.255.255 * * * deny
ip 192.168.0.0/0.0.255.255 * * * deny
ip * * 0.0.0.255/255.255.255.0 * deny
ip * * 0.0.0.0/255.255.255.0 * deny
ip 195.55.55.0/0.0.0.255 * * * deny
tcp * * 195.55.55.10 smtp permit
tcp * * 195.55.55.10 dns permit
udp * * 195.55.55.10 dns permit
tcp * * * 6000-6003 deny
tcp * * * 2000-2003 deny
tcp * * * 2049 deny
udp * * * 2049 deny
tcp * 20 * >1024 permit
icmp * * * * permit
__

of firewall rules. To rectify this, we provide an extra pre-
parsingstepwhich is explainedin Section6. Table1 tab-
ulatesthe resultsof converting the exampleof high-level
firewall descriptionin Figure5.

4.2 Addr esstranslation and addresstree con-
struction

This stepcontainstwo components,nameconversion
and addressconstruction, which are performed in se-
quence.Therearetwo aims:first, to producea representa-
tion of firewall rulesconsistingonly numericalvalues;and
second,to generatethecritical informationfor theoptimi-
sationsin thelatersteps.

During thefirst stage,all namedidentifiersarereplaced
by their correspondingnumeric values. At the second
stage,two treestructuresareconstructedfor all the IP ad-
dressescontainedin thelist of firewall rules.

4.3 Sequencing,reordering and partitioning

This stepinvolveslocatingsequencepointsandassign-
ing partition boundarieswithin a rule set. Thereare two
aims: first, to provide a hint for the optimisationsin the
laterstepsto avoid violatingtheoriginalauthorisationpoli-

ciesthatarulesetis represented;second,to tailor thenum-
berof firewall rulesto fit onhardware.Thismaybedueto
thereasonssuchasphysicalsizelimit, timing requirement,
andrun-timereconfiguration.

A sequencepoint is wherechangesto theorderingof a
rulewithin arulesetwill affect themeaningof thepolicies
beingrepresented.Interchangingtheorderof any two rules
is allowedif andonly if thereis nosequencepointbetween
them.Figure6 shows anexamplewherea sequencepoint
occurs,aswell asanexamplewherethereis none.

Partitioning divides a rule set into multiple smaller
groupsof rules. The sizeof eachgroupcanbe specified
accordingto somepredefinedconditions,suchas:

� theamountof availablehardwareresourcesfor imple-
mentingfirewall rules;

� thecritical pathandtiming requirementfor theresult-
ing hardwarecircuitries;and

� theuseof run-timereconfiguration.

Thepropertyof allowing theorderingof ruleswithin a
groupto befreely interchangedcanbeusefulduringhard-
wareimplementation:

� first, it enablesmultiple rule matching to be per-
formed in parallel in hardwarewithout the needfor
extra circuitry to checkor serializetheresults;

� second,rearrangingthe rulesandre-partitioningcan
sometimeschangethesizeof apartitionasdesired.

Thesequencingprocesstakesboththeresultsgenerated
in thepreviousstepastheinputs,which arethelist of fire-
wall rulesandtheIP addresstrees.It thentraversestheIP
addresstreesandlooks for conflicting rules. A sequence
point is locatedwhenever a conflict is found. In thatcase,
a mark will be put in the list of firewall rules in between
the two rulesinvolvedto indicatethat thereis a sequence
point. Theprocesscontinuesuntil bothtreesareexhausted.

4.4 Rule elimination

This stepremovesunnecessaryfirewall rules. Theaim
is to reducethetotal numberof firewall rulesto be imple-
mentedon hardware.

Threetypesof eliminationareperformed: i) conflicts
dueto ruleswhich bothallow anddeny packets,ii) redun-
dant rule which is a subsetof anotherrule, iii) rules that
cannot bereacheddueto rule ordering.

4.5 Rule sharing

Thisstepchecksfor similarity amongtherulesandthen
groupsthemtogetherif closematchesarefound. Theaim
is to sharethehardwarefunctionalunit amongtherules.

.

.
#i ’net1.subnet1.subsubnet1’ on condition C with action X
.

#j ’net1.subnet1.all’ on condition C with action Y
.
.

(a) A fragment of a rule set showing a rule on the
higher-level network following a rule on its sub-
network with different actions; it is given that
rule #i precedes rule #j.

net1
\
subnet1 (#j, condition C, action Y)

\
subsubnet1 (#i, condition C, action X)

(b) An IP address tree constructed using the rule set
in (a). From subnet1 to subsubnet1 would involve
rule #i placing a restriction on subnet1 over the
rule #j.

.

.
#i ’net1.subnet1.subsubnet1’ on condition C with action X
.

<sequence point>
.

#j ’net1.subnet1.all’ on condition C with action Y
.
.

(c) A sequence point is marked between rule #i and #j
for the rule set in (a).

net1 net2
\ \
subnet1 subnet1 (#j, condition C, action Y)

\
subsubnet1 (#i, condition C, action X)

(d) An IP address tree constructed using the rule set
in (a) BUT supposing rule #j is indeed on
’net2.subnet1.all’. Traversing from net1 to its
subsubnet1 or from net2 to its subnet1 does not
result in any conflict among the two rules.

Figure6: An exampleof locatingandmarkingsequence
point.

Therearetwo typesof sharing:field level andbit level.

Field-level sharing
Firewall ruleshave a numberof datafields. Ruleshaving
identical valuesin correspondingdatafields are grouped
together. In this case,hardware functional units includ-
ing parameterizedvariable-bitcomparatorscanbeshared.
Thereis no limitation on how many datafields canhave
different values,within a group of rules. However, the
greaterthenumberof fieldsthatcanbedifferent,thefewer
thenumberof fieldsthatcansharethecorrespondinghard-
wareamongthe rules. In addition,the complexity of the
patternmatchingprocessfor finding thesimilarity among
the rulesgrows by allowing a highervalue for the num-
berof differentdatafield valuesexistedamonga groupof
rules.Figure7(a)showsanexampleof two rulesthathave
identicaldatavaluesin all correspondingfieldsbut theType
field. Therearetwo methodsof grouping,andtheir effects
andrequirementin hardwareimplementationaredifferent.

__
Source Source Destination Destination

Type IP address port IP address port Action
--
tcp * * 195.55.55.10 dns permit
udp * * 195.55.55.10 dns permit
__

(a) A fragment of a rule set with two rules which differ
in the Type field.

__
Source Source Destination Destination

Type IP address port IP address port Action
--
tcp|udp * * 195.55.55.10 dns permit
__

(b) Method 1: The rule set in (a) is grouped together
to form a single rule, where the Type field becomes
a list of alternative values. Hardware comparators
except the Type field are now shared.

__
Source Source Destination Destination

Type IP address port IP address port Action
--
tcp * * 195.55.55.10 dns permit
udp + + + + +
__

(c) Method 2: The rule set in (a) is grouped together
to share the hardware comparators. A ’+’ mark in
the fields indicates that the values of a particular
field of a rule is identical to the corresponding
field in the rule precedes it.

Figure 7: An exampleof field-level sharing. The com-
monality in the datafields amongthe rulesareexploited.
Correspondingdatafields having identical valuesamong
theruleswill sharethecorrespondinghardware.

� Method1 usesa list of alternativevaluesto represent
datafieldsthataredifferent,andasinglevalueto rep-
resentdatafieldsthatareidenticalamongtherules.A
numberof rulesaregroupedtogetherto form asingle
rule. An exampleis shown in Figure7(b).

� Method2 keepsthesamenumberof rulesin a group.
However, a mark is usedto indicatethata particular
field in a rule is having an identicalvalueto thecor-
respondingfield in otherrulesamongthe group. An
exampleis shown in Figure7(c).

Bit-level sharing
Bit-wise numericoperationcanbe usedto deducethe re-
dundancy betweentwo or more numericvaluesof IP or
port addresses.This methodlooks for commonalityin bit
level, regardlessof thenumericvaluesthatthedataarerep-
resented.It matchesthe binary ’1’s and ’0’s at bit-level
amongthe correspondingfields in the rules. The results
aretwo setof matchvalues.Onesetcontainsa maskand
thebits of thedatafield thatareidenticalamongtherules.
Theothersetcontainsa maskanda list of bits of thedata
field thataredifferentamongtherules.Two examplescan
befoundin Figure8.

The sharingprocesstakes the list of firewall rules as

Source Source Destination Destination

Type IP address port IP address port Action

ip 172.16.0.0/0.15.255.255 * * * deny
ip 192.168.0.0/0.0.255.255 * * * deny

(a) A fragment of a rule set.

172.16.0.0/0.15.255.255 = 1010 1100 0001 XXXX XXXX XXXX XXXX XXXX
192.168.0.0/0.0.255.255 = 1100 0000 1010 1000 XXXX XXXX XXXX XXXX

Mask for identical bits = 1001 0011 0100 0000 XXXX XXXX XXXX XXXX
Identical bit = 1..0 ..00 .0..

Mask for different bits = 0110 1100 1011 1111 0000 0000 0000 0000
Difference bit (1) = .01. 11.. 0.01 XXXX
Difference bit (2) = .10. 00.. 1.10 1000

(b) Bit-wise deduction for the rule set in (a).

Source Source Destination Destination

Type IP address port IP address port Action

tcp * * 62.189.241.2 www permit
tcp * * 62.189.241.4 www permit
tcp * * 62.189.241.3 www permit
tcp * * 62.189.241.1 www permit

(c) A fragment of a rule set.

62.189.241.2 = 0011 1110 1011 1101 1111 0001 0000 0010
62.189.241.4 = 0011 1110 1011 1101 1111 0001 0000 0100
62.189.241.3 = 0011 1110 1011 1101 1111 0001 0000 0011
62.189.241.1 = 0011 1110 1011 1101 1111 0001 0000 0001

Mask for identical bits = 1111 1111 1111 1111 1111 1111 1111 1000
Identical bit = 0011 1110 1011 1101 1111 0001 0000 0...

Mask for different bits = 0000 0000 0000 0000 0000 0000 0000 0111
Difference bit (1) =010
Difference bit (2) =100
Difference bit (3) =011
Difference bit (4) =001

=XXX

(d) Bit-wise deduction for the rule set in (c).

Figure8: Examplesof bit-level sharing. The commonal-
ity of the ’1’s and’0’s for a datafield amongthe rules is
deduced.

input andsearchesfor closematchingfor thecorrespond-
ing datafields amongthe rules. The criteria for the pat-
ternmatchingprocessincludethenumberof fieldsthatcan
have differentvaluesamongthe rulesand the numberof
rulesthatcanbegroupedtogetherin a match.

Groupingof rulesseparatedby sequencepointscanlead
to violation to the original authorisationpolicy thata rule
setis represented.In orderto avoid sucha situation,a rule
setisdividedintosegmentswhereeachsegmentbeginsand
endswith a sequencepoint (seeSection4.3). Thematch-
ing processis performedindependentlyon eachsegment.
Reorderingcanbe performedamongthe ruleswithin the
samesegmentin orderto facilitatea grouping.

Techniquefor implementingthe two methodsof field-
level rule sharingis explainedin Section5.

5 Implementing hardware sharing

This section describeshow resourcesharing can be
achievedonhardware.In particular, it explainstherequire-
mentsandproposesanimplementationschemefor thetwo
differentmethodsof hardwarefirewall rule representation
generatedby therule reductionmechanism.

A hardwarefirewall rule is usuallyimplementedasaset
of comparatorsasin Figure9(a). Eachcomparatorcorre-
spondsto oneof thedatafieldsin a firewall rule. Whether
the comparatorsare physicallyseparatedor cascadedto-
getheris implementationdependent.However, in terms
of hardware-resourceconsumptions,they arebasicallythe
same.

Figure 9 shows the differencesbetweena set of rules
with andwithout sharingthe resourceson hardware. The
sharingprocessdoesnot changethe hardwareimplemen-
tation of just a singlefirewall rule. Indeed,the represen-
tation of a groupof sharedhardwarefirewall rules is im-
plementedasan overlappingcluster. To achieve a higher
saving of hardwareresources,achievea largeroverlapping
area.This in turn is determinedby thenumberof rulesin
thesharinggroup,andthefieldsthataresharedamongthe
rules.

In the following, we provide implementationsfor the
two field-level rule sharing methodsdescribedin Sec-
tion 4.5:

� Method1: SiameseTwins
Individual fields of the firewall rules having identi-
cal datavaluesaresimply sharedby usingthe same
hardware functional units. Fields that can not be
sharedhavetheircorrespondingpartsOR-edtogether.
An exampleof which is shown in Figure9(b). Ad-
vantagesof this methodinclude simple design,and
large savings in hardwaredesigns.However, it pro-
ducesirregular hardwarecircuitries that exhibit dif-
ferencesin sizeand timing behaviour. It posesdif-
ficulties when implementingpipelining and regular
hardwaredatastructuressuchascontent-addressable
memory. On the otherhand,it is suitablefor imple-
mentationsthatinvolveirregularhardwaredatastruc-
tures. Figure10 shows the implementationschemes
for SiameseTwins.

� Method2: Propaganda
Individual fieldsof thefirewall ruleshaving identical
datavaluesare sharingthe correspondinghardware
functionalunitsthroughtheuseof extra2-inputAND
gates. It is this relatively little extra cost that com-
pensatefor the removal of the much larger cost of
the correspondinghardwarecomparatorsof the data
fields. An exampleof which is shown in Figure9(c).

Type
comparator�

Src IP address
�

comparator�
Src port
�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
comparator�

Src IP address
�

comparator�
Src port
�

comparator�
Dst IP address

comparator�
Dst port

comparator�

(a) Two firewall rules without sharing any resources on
hardware.

Type
�

comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

�

comparator�
Dst port

�

comparator�

Type
comparator�

OR-gate
�

(b) Siamese Twins: two firewall rules sharing the
functional units on hardware. In this example, all
but the type comparator are shared through the use
of an OR-gate.

Type
comparator�

Src IP address
�

comparator�
Src port
�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
�

comparator� &
�

&
�

&
�

&
�

(c) Propaganda: two firewall rules sharing the
functional units on hardware. In this example, all
but the type comparator are shared through the use
of 2-input AND gates.

Figure9: An exampleshowing thedifferencesof firewall
ruleswith andwithoutsharingtheresourceson hardware.

The advantageof this methodis the regular design
andsimpleto implement.Hardwaretechniquesusu-
ally favour regular designs,andhardwarecoresthat
areavailablecommerciallyor in public domainstend
to useregulardatastructures.Therefore,this method
is suitablefor adoptionby currentdesignswith little
modifications. Figure 11 shows the implementation
schemesfor Propaganda.

Noticethatahardwarefunctionalunit is usedin ahard-
warefirewall rule only whenthe correspondingfield con-
tainsa normaldatavalue. A ’don’t care’conditionis nor-
mally implementedasa by-passingwire anddoesnot re-
quireany logic gatesat all.

Implementationusingour rulereductiontechnique,and
in particularthe rule sharingmethod,requireslesshard-
ware for a setof firewall rules. A reductionin hardware
consumptionwith asmallerhardwarecircuitrywill, in gen-
eral, have lessrouting and gatedelays. Therefore,it is
reasonableto expect that designsincorporatingrule shar-
ing will have shortercritical pathsor at leastcanmeetthe
sametiming requirementasthosewithoutusingit. In other
words,it canmaintainthespeedperformance,if notbetter.

Type
comparator� Src IP address

�

comparator� Src port
�

comparator� Dst IP address
comparator� Dst port

comparator�

OR-gate
�

Type
�

comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
comparator�

Action
�

Action

Type
�

comparator�

Type
comparator� Src IP address

�

comparator� Src port
�

comparator� Dst IP address
comparator� Dst port

comparator� Action
�

result

input
�

A pipelined structure showing a group of shared hardware
firewall rules with other non-shared rules. Results are
obtained from the last stage of the pipeline. Parallel
structure will have similar layout, except without the
pipeline stages and results are obtained in parallel.

Figure10: Implementationschemefor SiameseTwins.

6 Compilation scheme

This section outlines a compilation schemefor the
framework. In particular, it discussesthe issuesinvolved
in eachstagesduring the conversionof a high-level fire-
wall descriptionto thedesiredhardwareconfigurationbit-
stream.Lastly, we describehow our existing toolsarere-
latedto theframework.

Figure12 shows an overview of thecompilationsteps.
Therearethreestagesin thecompilationflow:

� Parsing
WeusethePonderToolkit asthePonderParser. How-
ever, specificationshave no orderingin Ponderand
this is in contrastwith thefirewall ruleswhichrequire
strict ordering. Therefore,we provide a pre-parsing
stepthatput a tag to every statementsin the firewall
description.This tagis simply a numberthatgetsin-
crementedby one eachtime after a statementfrom
a firewall descriptionis read. This pre-parsingstep
allows the orderingto be preserved both during and
afterthePonderParser.

� Codegeneration
Therearetwo phasesatthisstageandthey correspond
to eachof thelevelsin our two-level optimisationap-
proach.We designthecodegeneratorwhich converts
the firewall description(seeexamplein Figure5) to
the hardwarefirewall rule representation(seeexam-
ple in Table1) at Phase1. Variouschoicesof hard-
waredesigncodecanbegeneratedat Phase2.

� Hardwareimplementation
Platformanddevice specificenvironmentsaswell as

Type
comparator�

Src IP address

comparator�
Src port

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
comparator� &

!
&

!
&

!
&

!

Action
"

Action

input

Type
#

comparator�
Src IP address

comparator�
Src port

comparator�
Dst IP address

$

comparator�
Dst port

$

comparator� Action

DD DD DD D
$

D
$

Type
comparator� &

!
&

!
&

!
&

!
Action

"

D
$

D
$

DD DD D
$

D
$

Type
comparator�

Src IP address

comparator�
Src port

comparator�
Dst IP address

comparator�
Dst port

comparator� Action
"

result
(a) A pipelined structure showing a group of shared

hardware firewall rules with other non-shared rules.
Results are obtained from the last stage of the
pipeline. Notice that the pipeline registers may
increase the size of the design.

Type
comparator

Src IP address
comparator

Src port
comparator

Dst IP address
comparator

Dst port
comparator

Type
comparator & & & &

Action

Action

input

Type
comparator

Src IP address
comparator

Src port
comparator

Dst IP address
comparator

Dst port
comparator Action

Type
comparator & & & & Action

Type
comparator

Src IP address
comparator

Src port
comparator

Dst IP address
comparator

Dst port
comparator Action

result

(b) A parallel structure showing a group of shared
hardware firewall rules with other non-shared rules.
Results are obtained in parallel.

Figure11: Implementationschemesfor Propaganda.

placeandroutetools areusedto convert a hardware
designinto thecorrespondinghardwareconfiguration
bitstreams.

Our existing developmenttoolscanautomaticallygen-
erate hardware designsfrom representationof firewall
rules to eitherHandel-Cor VHDL code. However, they
arenot yet capableof producingirregularstructuresasre-
quiredby our new rule reductionmethods.Furthermore,
due to the complexity of generatingirregular structures
to a granularitylevel as requiredby the bit-level sharing
method,we have no plan to convert the current tools to
supportthis bit-level optimisation. Instead,we decideto
modify thetoolsto supportcoarse-grainreductionoptimi-
sationdown to datafield level. On theotherhand,we plan
to supportbit-level optimisationthroughthedevelopment
of anew tool usingotherhardwareoptimisationtechnique.

Handel-C
%

Compiler
&

VHDL
'

Compiler
&

Pre-Parser

Code generator
&

(Phase 1)
(

Code generator
&

(Phase 2)
(

Place & Route tools

Ponder Parser
)

High-level firewall description

Ponder specification
)

Hardware firewall rule representation

Hardware design
in

Handel-C
*

Hardware design
*

in
VHDL

+

Hardware configuration bitstream
%

Parsing
,

stage-

Code
.

generation/

stage-

Hardware
implementation
0

stage-

Figure12: An overview of thecompilationsteps.

7 Casestudies

Thissectionreportssomefindingsonusingournew ap-
proachfor producingpacket-filteringfirewall on reconfig-
urablehardware.

Wecomparethenew approachwith two otherhardware
implementationtechniques. The reductionsin hardware
usageareestimatedby calculatingtheareausageof fivefil-
ter rule sets,on a Virtex XCV1000FPGA.Theserule sets
composeof a mixtureof bothincomingandoutgoingtraf-
fic controlson generalnetwork services,mail andWWW
servers.We do not includeI/O andrelatedcontrolcircuits
in the hardwareusageestimates.Figure13 shows the re-
sultof thehardwareusageof aregularcontent-addressable
memory(CAM) structure[11], anirregularCAM structure
[7], andtherule reductionoptimisation.

We calculatethe amountof hardwareresourcessaved
basedon the numberof look-up tablesrequired. For the
new approachusingtherulereductionmechanism,weem-
ploy ourprevioushardwarearchitecture[12, 13] for paral-
lel matchingstructuresthatdoesnot includeany hardware-
levelof spaceoptimisation.Weuseonlyoptimisationgran-
ularity atdatafield level.

The estimatedresultshows that our new approachus-
ing therulereductionoptimisationcanreducethehardware
usageby 67-80%from the regularCAM implementation,

0

100

200

300

400

500

600

700

800

Set 1 Set 2 Set 3 Set 4 Set 5

Regular CAM

Irregular CAM

Rule reduction

Figure13: Hardwareusage,in termsof numberof look-up
tables,of five filter rule setsusing threedifferent imple-
mentationtechniques.

and24-63%from theirregularCAM implementation.It is
believedthat further improvementcanbeachievedby ex-
ercisinghardware-level optimisationsuchasserialisation.

Although it is possibleto producean irregularpipeline
structure, our current tools allocate regular rectangular
blockson hardwarefor the filter-rule matching. In other
words,even thoughwe would have alreadymodifiedour
tools to supportthis new technique,the hardware space
saved would be scatteredaroundassmall unusedblocks,
whicharedifficult to reusefor additionalfilter rules.

We alsocomparehow changesto anauthorisationpol-
icy will reflect on the high-level firewall descriptionap-
proach with the conventional router-basedfirewall rule
method. We estimatethe impactby introducingchanges
on the network topology, and control requirementon IP
addressandservice.Thefirewall descriptionapproachre-
sponsesto changesby requiringmodificationon the cor-
respondingdomain hierarchiesand/or the control speci-
fication statement. On the other hand, the conventional
rule setrespondsto changesby requiringthe correspond-
ing original firewall rule(s)from anunstructuredlist being
picked up, andtheneitherbeingmodifiedor replacedby
new rules.

It is generallyeasyto locatean object from a hierar-
chy thanspottingit from an unstructuredlist. Moreover,
changeson a singlespecificationstatementcanaffect all
correspondingobjects;while changinga list of unrelated
rulesrequiresall relevant rulesto be changedat thesame
time.

However, theeffect of a changeof thefirewall descrip-
tion maynot immediatelyaffect thehardwareimplementa-
tion. It is becauseany changeson thecontrolspecification
statementsor thedomainhierarchieswill affect theoverall
dataredundancy that canbe deducedin the resultingrule
set.Therefore,theimpactmaynotbedirectlyproportional
to thedegreeof changesintroduced.A bigchangecanhave

noeffectatall, if it wasbeingpickedupandeliminatedby
therule reductionstep.A smallchangecanhaveprofound
effect, if it introducesnew partitioningandgroupingin the
hardwarefirewall rule representation.

On the other hand, the conventional rule set method
‘mirrors’ the patternon hardware. A changeon onefire-
wall rule affectsonly the circuitry on thepre-definedcor-
respondingparton thehardware.

8 Summary

We have presenteda designflow for developinghard-
ware packet filters. It employs a two-level optimisation
approachthatallows softwareandhardwareoptimisations
to proceedindependently.

We have describeda methodof capturinganauthorisa-
tion policy in a high-level firewall description.It is based
on a policy specificationlanguageusing domain hierar-
chies;andsupportsconstraintthatspecifiesrestrictionsfor
hardwareimplementation.

We have explaineda hardwareoptimisationtechnique
and have outlined a compilation schemefor the design
framework. A casestudyshows that hardwarereduction
of 67-80%and24-63%is possible,over regularandirreg-
ular content-addressablememoryimplementationsrespec-
tively.

Currentand future work includesusing constraintsto
facilitaterun-timereconfiguration[10] andhardwaresoft-
wareco-operation[3]. Explorationof varioushardware-
level optimisation techniques,such as methods based
on binary decisiondiagram[16] andcontent-addressable
memory[7], is underinvestigation:the former is capable
of producingacompactrepresentationof filter rules,while
the latter is capableof fast databasesearchon irregular
structures.Theextensionof ourframework to coverimple-
mentationsonreconfigurableplatforms[2] andotherappli-
cationssuchasnetwork intrusiondetection[8] arealsoof
interest.

Acknowledgements.Thesupportof UK EngineeringandPhys-
ical SciencesResearchCouncil (Grant number GR/R 31409,
GR/R 55931and GR/N 66599), CeloxicaLimited and Xilinx,
Inc. is gratefullyacknowledged.

References

[1] A. Begel, S. McCanne,S.L. Graham,“BPF+: Exploiting
GlobalData-flow Optimisationin aGeneralizedPacketFil-
ter Architecture”,in Proc.SIGCOMM, ComputerCommu-
nicationReview, 29(4),1999,pp.123-134.

[2] P. Bellows et. al., “GRIP: A ReconfigurableArchitecture
for Host-BasedGigabit-RatePacket Processing”,in Proc.
IEEE Symp.on Field-ProgrammableCustomComputing
Machines, IEEE ComputerSocietyPress,2002.

[3] G. Brebner, “Single-chipGigabitMixed-versionIP Router
on Virtex-II Pro”, in Proc. IEEE Symp. on Field-
ProgrammableCustomComputingMachines, IEEE Com-
puterSocietyPress,2002.

[4] CiscoSystemsInc., CiscoPIX Firewall CommandRefer-
ence, http://www.cisco.com/.

[5] Cisco SystemsInc., Cisco Secure Policy Manager Policy
Configuration Guide, 2001.http://www.cisco.com/.

[6] N. Damianou,N. Dulay, E. LupuandM Sloman,“The Pon-
derPolicy SpecificationLanguage”,in Proc. Workshopon
Policiesfor DistributedSystemsandNetworks, LNCS1995,
Springer, 2001,pp.18-39.

[7] J. Ditmar, K. TorkelssonandA. Jantsch,“A Dynamically
ReconfigurableFPGA-basedContentAddressableMem-
ory for Internet Protocol Characterization”,Field Pro-
grammableLogic andApplications, LNCS 1896,Springer,
2000.

[8] R. Franklin,D. Carver andB.L. Hutchings,“AssistingNet-
work IntrusionDetectionwith ReconfigurableHardware”,
in Proc.IEEESymp.onField-ProgrammableCustomCom-
putingMachines, IEEE ComputerSocietyPress,2002.

[9] P. GuptaandN. McKeown, “PacketClassificationonMulti-
pleFields”,in Proc.SIGCOMM, ComputerCommunication
Review, 29(4),1999,pp147-160.

[10] J.R.Hesset.al., “ImplementationandEvaluationof aProto-
typeReconfigurableRouter”,in Proc.IEEESymp.onField-
ProgrammableCustomComputingMachines, IEEE Com-
puterSocietyPress,1999.

[11] P.B. James-RoxbyandD.J.Downs, “An Efficient Content-
addressableMemoryImplementationUsingDynamicRout-
ing”, in Proc. IEEE Symp.on Field-ProgrammableCustom
ComputingMachines, IEEEComputerSocietyPress,2001.

[12] T.K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and
N. Dulay, “DevelopmentFramework for Firewall Proces-
sors”, in Proc. IEEE International Conferenceon Field-
ProgrammableTechnology, 2002.

[13] W. Luk, S. Yusuf andR. Nagarajan,“IncrementalDevel-
opmentof HardwarePacket Filters”, in Proc. International
Conferenceon Engineeringof ReconfigurableSystemsand
Algorithms(ERSA), CSREAPress,2001,pp.115-118.

[14] J.T. McHenry, P.W. Dowd, “An FPGA-BasedCoproces-
sor for ATM Firewalls” in Proc. IEEE Symp.on Field-
ProgrammableCustomComputingMachines, IEEE Com-
puterSocietyPress,1997.

[15] R. Russel,Linux IPCHAINS-HOWTO,
http://www.linuxdoc.org/HOWTO/IPCHAINSHOWTO.html.

[16] R. Sinnappanand S. Hazelhurst,“A ReconfigurableAp-
proachto PacketFiltering”, Field ProgrammableLogic and
Applications, LNCS2147,Springer, 2001.

