
Interleaving Behavioral and Cycle-Accurate Descriptions for
Reconfigurable Hardware Compilation

José Gabriel F. Coutinho, Jun Jiang and Wayne Luk
Department of Computing, Imperial College London

{jgfc,jj2,wl}@doc.ic.ac.uk

Abstract

This paper describes Haydn, a hardware compilation
approach which aims to combine the benefits of cycle accu-
rate descriptions such as ease of control and performance,
and the rapid development and design exploration facili-
ties in behavioral synthesis tools. Our approach supports
two main features: deriving architectures that meet per-
formance goals involving metrics such as resource usage
and execution time, and inferring design behavior by gen-
erating behavioral code that is easy to verify and mod-
ify from scheduled designs such as pipeline architectures.
We report four recent developments that significantly en-
hance the Haydn approach: (a) a design methodology
that supports both cycle-accurate and behavioral levels, in
which developers can move from one level to the other;
(b) an extended scheduling algorithm which supports oper-
ation chaining, pipelined resources (with different latencies
and initiation intervals), forwarding technique for loop-
carried dependencies, and resource sharing and control;
(c) a hardware design flow that can be customized with
a script language and extended simulation capabilities for
the RC2000 board; and (d) an evaluation of our approach
using various case studies, including 3D free-form defor-
mation (FFD), Gouraud shading, Fibonacci series, Mont-
gomery multiplication, and one-dimensional DCT. For in-
stance, our approach has been used to produce various
FFD designs in hardware automatically; the smallest at
137MHz is 294 times faster than software on a dual AMD
MP2600+ processor machine at 2.1GHz, and is 2.7 times
smaller and 10% slower than the fastest design at 153MHz.

1 Introduction

Reconfigurable devices, such as FPGAs, are now widely
used in many applications. The key advantage of this tech-
nology is its combination of performance of dedicated hard-
ware with the flexibility of software, without the cost and

risk associated with circuit fabrication. Performance can
be achieved by exploiting the design’s inherent parallelism
and by manipulating data at a fine-grain level. As recon-
figurable technology makes progress in capacity and per-
formance, there is an increasing need for high-level design
methods and tools that can effectively address the growing
complexity of hardware design to improve designer produc-
tivity. Such tools should enhance design maintainability and
portability as system requirements evolve, and should facil-
itate design exploration so that various trade-offs, such as
those in performance and resource usage, can be achieved.

To address these concerns, we develop Haydn [3], a
hardware compilation design flow which offers designers
a way to capture both cycle-accurate data-paths, and high-
level behavioral designs. Both manual and automated de-
sign can be used separately or in combination, so that
one can achieve the best compromise between develop-
ment time and design quality; some of our automatically-
generated designs are comparable in performance to hand
crafted designs.

This paper presents four new developments for Haydn
that significantly enhance this approach:

1. a design methodology that supports both cycle-
accurate and behavioral levels, in which developers
can move from one level to the other (Section 3);

2. an extended scheduling algorithm which supports op-
eration chaining, pipelined resources (with different la-
tencies and initiation intervals), forwarding technique
for loop-carried dependencies, and resource sharing
and control (Section 4);

3. a new design flow that can be customized with a script
language, and can provide extended simulation capa-
bilities for the RC2000 board (Section 5);

4. evaluation of our approach using five case studies: 3D
Free-Form Deformation, Gouraud shading, Fibonacci
series, Montgomery multiplication, and 1D discrete
cosine transform (Section 5).

1

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

2 Motivation and Related Work

Hardware synthesis tools tend to fall into two distinct
camps, namely cycle-accurate and behavioral-based ap-
proaches. Each has its own benefits and drawbacks.

The behavioral approach usually employs a hardware de-
scription language that is similar in syntax and semantics
to popular software application languages, such as C. The
goal of behavioral hardware compilers is to derive one or
many hardware implementations from a single high-level
description (a process known as high-level synthesis), ab-
stracting from low-level details such as timing and resource
utilization to allow developers to focus on algorithmic de-
tails. One common optimisation technique is pipelining,
which makes designs run faster and also reduce power con-
sumption [17]. Since an algorithm can be implemented in a
number of ways, behavioral tools can provide an annotation
facility for describing constraints and restrict this large de-
sign space. Thus the behavioral approach provides several
advantages, namely: (i) ease of use for software develop-
ers, (ii) high-productivity for design implementation, and
(iii) maintainable designs.

However, the behavioral approach has a major drawback:
hardware synthesis is performed with little human guid-
ance. High-level synthesis often suffers from lack of user
control and transparency over the implementation process.
This black-box approach [11] has three unfortunate conse-
quences: (i) behavioral constraints can only guide the syn-
thesis process to a limited number of points in the design
space and thus it might not be possible to find a suitable
design; (ii) in the event of generating an unsuitable design,
there is little a designer can do, except to play around with
behavioral constraints or wander into the intricacies of the
generated design; and finally (iii) it is difficult to understand
the impact of high-level transformations on the resulting de-
sign and how they affect different design tradeoffs, such as
execution time and resource usage.

Cycle-accurate description languages (such as those
based on RTL), on the other hand, give developers more
control over low-level implementation details. At this level
of abstraction, developers are able to make decisions that
would be left to the compiler in a behavioral approach.
This allows developers to fine-tune their hardware imple-
mentations to achieve an optimal solution. However, cycle-
accurate design methodology can have two major disad-
vantages over high-level synthesis, namely low productivity
and poor maintainability, which make it highly ineffective
for implementing large designs. The lack of productivity is
due to the fact that many implementation details and archi-
tectural decisions have to be provided at design time. Once
these decisions have been made and committed, it is diffi-
cult to perform any architectural modifications without de-
veloping the whole design from scratch. We believe this

to be a serious limitation for three reasons: (i) portability
is reduced, which means that it is hard to adapt designs to
different hardware platforms and constraints; (ii) changing
design functionality and bug correction is difficult because
hardware details are so ingrained with the algorithmic spec-
ification, and (iii) design exploration is limited and requires
a lot of effort. In contrast, behavioral-based designs are
highly maintainable as changes can be easily made either
through user-defined constraints or in the code itself which
is devoid of low-level details.

Goal. Our goal is to develop a hardware compilation ap-
proach that combines the advantages of both behavioral and
cycle-accurate-based methodologies, so that it can support
three important features:

1. Rapid development of optimized implementations

2. Design maintainability (portability, adaptability, de-
sign exploration)

3. Design quality

So the challenge presented in our research, and which
we offer a solution in this paper, is: how to bridge the gap
between behavioral and cycle-accurate levels, so that devel-
opers can easily roam from one level to the other in order to
get benefits from both approaches?

Related Work. There are many examples of behavioral and
cycle-accurate approaches in both industry and academia.

Examples of behavioral-based methodologies include:
SPC [15], ASC [7], Streams-C [4], Machines [12] and Cat-
apult C [8]. SPC combines vectorisation, loop transforma-
tion and retiming to improve design performance. Streams-
C, on the other hand, supports highly synchronous com-
munication, but limits pipelining to innermost loop bod-
ies. ASC is also focused on stream computations, and ex-
ploits C++ overloading mechanism to automatically gener-
ate deep pipelines using the PAM-Blox library. Machines
is a programming model that can be implemented in any
unmodified object-oriented language. It provides a way for
developers to specify coarse-grained parallelism manually,
whereas fine-grained details are taken care automatically by
the compiler. Catapult C, on the other hand, operates on un-
timed C/C++, and synthesizes part of the code to RTL. It in-
cludes a tool that lets developers generate different RTL im-
plementations based on user-provided constraints, as well
as reporting the tradeoff effects in terms of size and speed.

Examples of cycle-accurate description languages are
HardwareC [10], Handel-C [2] and RTL VHDL. Hard-
wareC is based on the C-syntax but provides several fea-
tures relevant to hardware compilation, such as constraint
specification, parallel constructs, process and interprocess
communication. Handel-C is an extension of ANSI-C, and
supports flexible width variables, signals, parallel blocks,

2

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

bit-manipulation operations, and channel communication.
Like VHDL, it gives developers the ability to schedule
hardware resources manually, while Handel-C generates the
control-path of the design automatically based on its timing
semantics.

Our approach is unique in that Haydn combines both
cycle-accurate and behavioural design methodologies. This
way, developers can opt to use the behavioral approach
to rapidly derive a hardware implementation from a high-
level design description and constraint annotations. Alter-
natively, manual intervention can be exerted either at the
beginning or at the end of the design cycle to fine-tune a
design. We believe that combining both models, manual
development and computerized optimizations can be inter-
leaved to achieve the best effect. The next section describes
Haydn in more detail.

3 Hardware Design

In the previous section, we identify the benefits and
drawbacks of behavioral and cycle-accurate design method-
ologies. Our approach supports both methodologies. In par-
ticular we adopt the following tactics:

Behavioral to Cycle-Accurate. Developers can start the
design process by writing a generic C description of the
design (see Listing 1) without considering low-level de-
tails, such as timing. To automatically derive an optimized
design, developers must specify resource and scheduling
constraints to guide the source-to-source transformation
process. If constraints are satisfied, the source-to-source
transformation process generates an optimized design that
is ready to be simulated or synthesised to hardware (Fig. 1).
This way, developers can rapidly obtain an optimized solu-
tion without concerning with low-level details.

Cycle-Accurate to Cycle-Accurate. Once developers get
the first implementation, they can improve design perfor-
mance systematically by modifying constraint parameters
(see Listing 2 and Listing 3), running the source-level trans-
formation process and verifying the performance of the gen-
erated design. Alternatively, developers can improve per-
formance by manually revising the code without computer-
ized intervention. Hence, both manual and automatic ap-
proaches can be used to improve design quality. Further-
more, the ability to automatically transform cycle-accurate
designs facilitates design exploration and maintainability.
For instance, pipelined designs can be directly accelerated
or slowed-down to fit hardware requirements.

Cycle-Accurate to Behavioral. Optimized designs can be
very difficult to understand. This is because architectural
details are so ingrained with functionality. In this case, we
can generate a generic C description that is easier to read,
modify, verify and subsequently optimized. This in effect

Haydn-C
design

Source-to-Source Transformation Process

Simulation

Hardware
Synthesis

Programmer feedback

manual
design

Sequencing
Analysis

DFG Generation

DFG Folding

constraints

Unscheduler

Haydn-C
code

Scheduler
DFG

DFG

scheduled code gen

Haydn-C code

bitstream

application

behavioral code gen

Resources

Figure 1: This figure illustrates our hardware compilation ap-
proach, which performs source-level transformations, hardware
synthesis and simulation of Haydn-C designs. The source-to-
source transformation process is guided by annotations in the pro-
gram that describe design constraints. In particular, this process
scans for blocks of code that are enclosed by curly brackets and
that are annotated with requests for a particular action, such as
scheduling. In this case, the block is removed from the rest of
the code, analyzed and the transformed code is put back in place
of the original code. Developers can immediately synthesize the
new implementation, simulate or perform another transformation,
either by manually revising the code or requesting another com-
puterized optimization.

has the advantage of making designs more maintainable to
correct bugs and to update its functionality.

We have developed the Haydn-C language [3] to support
this methodology. Haydn-C is based on the Handel-C lan-
guage, but contains significant differences, which we enu-
merate next. First, Haydn-C is a component-based language
like VHDL. This makes it easy for importing and exporting
library blocks (such as IP cores) and working with other
HDL tools. Furthermore, our source-level transformation
process, which operates under this model, performs a two-
way mapping between abstract operators in the program,
such as +, ∗, and components that specify a particular im-
plementation. Hence, the source-to-source transformation
process employs components for generating cycle-accurate
(scheduled) designs, and abstract operators for deriving be-
havioural code. Note that this model is extended to cover
user-defined operations that contain a fixed number of input
and output ports. Haydn-C also provides a meta-language

3

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

to support behavioral synthesis, additional data structures
such as pipelined FIFOS, and extended macro capabilities
(e.g. replicators).

We use Haydn-C to describe hardware designs, and these
designs can be transformed, simulated and synthesized to
hardware by our compilation design flow (Fig. 1).

Haydn-C does not have any specific language construct
to indicate whether a design is behavioral or cycle-accurate.
So how do we determine the abstraction level? Before we
answer this question, we need to understand the strict and
flexible timing semantics, which we explain in detail next.

3.1 Timing Semantics

Our approach supports two timing semantics. The first,
strict timing semantics, which is based on the Handel-C lan-
guage [2], enables us to describe cycle-accurate designs us-
ing a few extensions to the C language. These extensions
include a par statement block to implement parallel struc-
tures such as pipelines, and the specification of arbitrary
width sizes for variables and expressions. With strict tim-
ing semantics, developers can specify the circuit’s data-path
details and the control-path is inferred automatically. The
rules of the model are:

i. All assignment and delay statements execute in a single
clock cycle.

ii. Expression evaluation and control statements (if, while)
execute within a cycle, contributing to combinatorial delay.

iii. Every statement in a parallel block starts execution simulta-
neously, and this block only terminates when all threads end.

iv. Each statement in a sequential block starts execution when
previous statement terminates, and this block only finishes
when last statement concludes execution.

v. There are no data-races. For registers, reads are performed
before writes. For wires (signals), reads are performed after
writes.

Because hardware synthesis and simulation processes
adhere to these rules, developers are able to exert control
over the quality of their designs. In other words, users can
derive the schedule for a design, and to change the schedule
by revising the design.

In order to perform source-to-source transformations, we
relax the strict timing rules, which would otherwise be dif-
ficult to satisfy. In the flexible timing model, every transfor-
mation is acceptable as long as it maintains the behavior of
the design in relation to its inputs and outputs. This way, for
instance, an assignment can be broken down and executed
in several cycles to maximize design throughput.

So, the abstraction level is not determined by the design
or the language, but by the process which operates on the
design. Hence, a design is cycle-accurate when it is synthe-
sized to hardware, since timing is automatically inferred by
the strict timing model. On the other hand, the source-to-
source transformation process operates at the behavioural

abstraction level, since transformations are performed on a
data-flow graph, which is devoid of low-level hardware de-
tails.

Our source-to-source transformation approach, based on
static scheduling, is limited to parts of the program where
timing configuration is constant and known at design time
(initiation interval and latency). In particular, the scope of
our approach is summarized below.

1. Coarse-grained parallelism is specified by users, who
can develop their own handshaking protocol or use
special communication primitives (such as channel
buffers) to synchronize between parallel computa-
tional structures.

2. Fine-grained parallelism can be specified with user in-
tervention or extracted automatically by the compiler.
Both methods can be used separately or together.

3. Developers are spared from low-level hardware details,
and from generating the control-path by hand.

In this paper we focus on fine-grained parallelism. The
scope of our approach is not limited to reconfigurable hard-
ware compilation, but can be used for general hardware syn-
thesis. However, we believe that developing maintainable
designs, which is one of our stated goals, naturally exploits
the benefits of using reconfiguring technology.

3.2 Example

The Haydn-C code in Listing 1–3 is used to illustrate our
approach. The purpose is to implement a hardware compo-
nent that determines the number of solutions for a quadratic
equation.

1 @resources . s e t (p i p e m u l t ; UNITS : 2 ; LAT : 6 ; OP : ∗) ;
2

3 component q u a d r a t i c s o l u t i o n s {
4 in i n t 32 a ;
5 in i n t 32 b ;
6 in i n t 32 c ;
7 out i n t 2 num sol ;
8

9 code {
10 i n t 32 d e l t a ;
11 { / / code t o be s c h e d u l e d
12 @scheduler . run (I I : 1) ;
13 d e l t a = b∗b − ((a∗c)<<2);
14 i f (d e l t a > 0)
15 num sol = 2 ;
16 e l s e i f (d e l t a == 0) {
17 num sol = 1 ;
18 } e l s e {
19 num sol = 0 ;
20 }
21 }
22 }
23 }

Listing 1: an unoptimized Haydn-C design

4

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

We begin by writing the interface of the component,
which includes the name and port specification (Listing 1,
lines 3-7). Next we write the code section (lines 9-22) using
C-based constructs. Note that at this point, we can synthe-
size this code to hardware or optimize it using the source-
to-source transformation process. If hardware synthesis is
performed then the strict timing rules are enforced, which
produce a design with a large combinatorial delay due to the
assignment statement in line 13. In particular, this statement
contains an expression with two multipliers, and according
to the strict timing model, this statement must be executed
in a single clock cycle. For this reason we decide to op-
timize this design automatically by using the source-level
transformation process. For the computerized approach, we
only need to provide two lines of code, which respectively
specify resources to be employed by this process, and the
kind of architecture we want to generate. In particular, we
supply values for the pipe mult resource attributes in line
1, including the number of units, the latency and specify that
it implements the multiplication operator. Next, we identify
the block we want to transform (Listing 1, lines 11-21), and
annotate the first line of the block (line 12) with an annota-
tion that directs the source-to-source transformation process
to generate a design with initiation interval (II) of 1, which
is shown in Listing 2. This design is fully pipelined, and
thus produces a result every cycle.

1 @resources . s e t (p i p e m u l t ; UNITS : 2 ; LAT : 6 ; OP : ∗) ;
2

3 component q u a d r a t i c s o l u t i o n s {
4 in i n t 32 a ;
5 in i n t 32 b ;
6 in i n t 32 c ;
7 out i n t 2 num sol ;
8

9 code {
10 i n t 32 d e l t a ;
11 p a r {
12 @scheduler . run (I I : 1) ;
13 u n s i g n e d 32 tmp [3] ;
14 / / ================= [s t a g e 0]
15 p i p e m u l t [0] . in (b , b) ;
16 p i p e m u l t [1] . in (a , c) ;
17

18 / / ==================[s t a g e 7]
19 tmp [0] = p i p e m u l t [0] . q ;
20 tmp [1] = p i p e m u l t [1] . q << 2 ;
21

22 / / ==================[s t a g e 8]
23 tmp [2] = tmp [0] − tmp [1] ;
24

25 / / ==================[s t a g e 9]
26 i f (tmp [2] > 0) num sol = 2 ;
27 e l s e i f (tmp [2] == 0) num sol = 1 ;
28 e l s e num sol = 0 ;
29 d e l t a = tmp [2] ;
30 }
31 }
32 }

Listing 2: a pipelined design with II=1 generated from Listing 1

Note that only the block from lines 11-21 in Listing 1
is removed, leaving the rest of the code intact, including
constraints.

Next, if we wish to use one pipelined multiplier instead
of two, we just need to change two lines of code: (1) In
line 1 of Listing 1 or 2, we set the number of pipelined units
to 1 and activate resource sharing by specifying the RS ar-
gument. (2) In line 12, we set the initiation interval (II) to
2. Finally, we activate the source-to-source transformation
process, which generates Listing 3.

1 @resources . s e t (p i p e m u l t ; UNITS : 1 ; LAT : 6 ; OP :∗ ; RS) ;
2

3 component q u a d r a t i c s o l u t i o n s {
4 in i n t 32 a ;
5 in i n t 32 b ;
6 in i n t 32 c ;
7 out i n t 2 num sol ;
8

9 code {
10 i n t 32 d e l t a ;
11 p a r {
12 @scheduler . run (I I : 2) ;
13 { / / ================= [s t a g e 0]
14 p i p e m u l t [0] . in (b , b) ;
15 p i p e m u l t [0] . in (a , c) ;
16 }
17 { / / ==================[s t a g e 3]
18 d e l a y ;
19 tmp [0] = p i p e m u l t [0] . q ;
20 }
21 { / / ==================[s t a g e 4]
22 tmp [1] = p i p e m u l t [0] . q << 2 ;
23 tmp [2] = tmp [0] − tmp [1] ;
24 }
25 { / / ==================[s t a g e 5]
26 i f (tmp [2] > 0) num sol = 2 ;
27 e l s e i f (tmp [2] == 0) num sol = 1 ;
28 e l s e num sol = 0 ;
29

30 d e l t a = tmp [2] ;
31 }
32 }
33

34 }
35 }

Listing 3: a pipelined design with II=2 generated from Listing 2

The pipelined design in Listing 3 generates a result every
other cycle to accommodate sharing a single multiplier re-
source to two multiplication operations. Thus this design
will be smaller than the previous one, albeit slower. Note
that the code from Listing 2 and Listing 3 can be difficult
to read. Hence, we develop the abstraction process (Fig. 2),
which reverses the effects of scheduling, and generates code
similar to Listing 1 (that is, sequential C code), from either
Listing 2 or Listing 3.

4 Scheduling Transformations

In this section we focus on unscheduling algorithms
(Section 4.1) and scheduling algorithms (Section 4.2) em-
ployed by the scheduling process, and how developers can
control and guide these transformations (Section 4.3).

5

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

{

 delta = b*b - ((a*c) << 2);

 if (delta > 0)

 num_sol = 2;

 else if (delta == 0)

 num_sol = 1;

 else

 num_sol = 0;

}

Listing 1

b a c

pmult[0]

delta

> 0

M
U

X

numSol

M
U

X

==
2

1

0

tmp1

tmp0

-
tmp2

pmult[0]
b a c

pmult[0]

delta

> 0

numSol

M
U

X

==
2

1

0

pmult[1]

<< 2

tmp1

-
tmp2

M
U

X

tmp0

b a c

* *<<

-
delta

> 0

M
U

X

numSol
M

U
X

== 0

2
1

0

2

true

*

<<

==

>

-

*

cc

=
cc

= =num_sol

b

a c

b

2

num_sol num_sol

0
1

2

false

falsetrue

Listing 2

synthesisunscheduler

abstraction

Listing 3

synthesis

synthesis

unscheduler

scheduler

unscheduler

scheduler

flexible timing
model

strict timing
model

constraints

constraints

DFG

activated at
step 1

activated at
step 2

activated at step 2

activated at
step 1

activated at
step 1

activated at
step 2

activated
at step 1

activated
at step 2

stage 1-4

stage 6

stage 1

stage 5

activated at
step 1

stage 1-7

stage 8

stage 9

stage
10

<< 2

Figure 2: This figure illustrates the Haydn approach. The gray boxes refer to Listing 1, 2 and 3. For each of these designs, we use
the unscheduler to generate a data-flow graph (DFG), and use synthesis to derive a hardware implementation. On the other hand, the
scheduler and the abstraction processes operate on a DFG, and produce a cycle-accurate and a generic sequential C design respectively.

4.1 Unscheduling Algorithms

The unscheduling stage is responsible for generating a
data-flow graph (DFG) from a Haydn-C design. A DFG is a
source representation where nodes represent program oper-
ations, and edges represent the dependencies between them.
Our DFG supports four node types and six edge types. Node
types include special operations (sink and source), built-
in operations (arithmetic, logic and relational), user-defined
operations (defined by components) and memory operations
(load and store). Edges, on the other hand, can be clas-
sified as: true-dependent (read-after-write), anti-dependent
(write-after-read), output dependency (write-after-write),
input dependency (read-after-read), control dependency and
link dependency (between a special node and any other
node). Some edges can provide additional information on
dependencies between loop iterations. Our implementa-
tion supports input dependencies for inferring shift regis-

ters from load memory accesses, thus potentially increasing
design throughput.

To generate a DFG, we extend existing techniques for
collecting data-flow information to support both sequen-
tial and parallel Haydn-C designs based on the strict tim-
ing model. This procedure consists of three steps. First
in sequencing analysis, we compute the starting times for
each statement enclosed in a given block. The set of state-
ments that execute in the same cycle form a basic timing
block. Next, to build a DFG, we compute the information
generated and killed in a basic timing block, as well as the
information consumed and produced in the next block. The
last step, DFG Folding, removes all temporary registers and
pipelined FIFOs that cause unwanted loop carried depen-
dencies and limit the parallelization effort. At this point,
the unscheduling stage is completed and we have derived a
DFG from a Haydn-C design. Although the original timing
and resource configuration is lost, the functionality is pre-

6

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

stage 0

step 0

step 1

step 2

(a) chaining

(c) forwarding

stage 0

stage 1

(d) resource sharing

stage 0

stage 1

resource

truefalse

too early

ok

ok

ok

too late

loop carried dependency = 1

stage 0

stage 1

step 0

step 1

step 2

step 0

step 1

step 2

(b) pipelined operators

lat= 2

lat= 2

Figure 3: This figure illustrates operation chaining (a), where a
sequence of operations are scheduled in the same cycle. The op-
eration in stage 1 (b) needs to wait until both sources output valid
data. Forwarding (c) schedules two nodes with loop carried depen-
dencies, so that its distance matches the position in the pipeline.
Two operations can share the same resource (d) if they are in dif-
ferent steps, or if they are mutually exclusive and are located in the
same stage and step.

served. We can now proceed to the next stage and schedule
the DFG. A detailed explanation and description of all un-
scheduling algorithms can be found elsewhere [3].

4.2 Scheduling Algorithms

The scheduling stage generates a Haydn-C design based
on a DFG and given constraints. In our current implemen-
tation, we solve the minimum-latency resource-constrained
scheduling problem, where developers specify available re-
sources and other hardware constraints, such as cycle time,
latency and initiation interval. Next, the scheduler assigns a
time-step for each DFG node if it is able to satisfy all con-
straints, including program dependencies. The minimum-
resource latency-constrained problem will be considered
later.

Pipelining. Our scheduling algorithm is based on list
scheduling [9]. This algorithm can be used to generate a
design with user-given initiation interval IId, which refers
to the number of cycles between consecutive inputs and
outputs. A pipelined design is composed by a number of
stages (S0, S1, ...Sn) that run in parallel. For synchronous
pipelines, all stages execute in IId number of steps. The
list scheduling algorithm is executed in a number of itera-
tions. At each iteration, we store a list of all DFG nodes
whose ancestors have been scheduled and sort the list ac-
cording to the distance to the DFG sink. For each operation

in the list, we find a candidate resource. If there are enough
of these units, we ensure that resource binding does not vi-
olate any given constraints, such as cycle time and latency.
When a candidate resource satisfies all constraints, then it is
bound to the operation and is committed to that time-step.
We have extended our approach [3] to support (a) operation
chaining, (b) pipelined operations, (c) forwarding technique
and (d) resource sharing, which we describe next.

Chaining. Chaining (Fig. 3a) allows two (or more) com-
binatorial operations in a sequence to be scheduled in the
same execution cycle, provided that the overall propagation
delay (combined delay sum of all chained operations) does
not exceed the cycle time constraint.

Pipelined resources. Our approach supports pipelined
resources with different latencies (number of cycles to pro-
duce the first result) and initiation intervals, and we assume
that that these values are constant and known at compile
time. To support pipelined resources, we need to verify the
latency and initiation interval constraints. The former en-
sures that enough cycles have elapsed so that every source
(ancestor) operation has valid data available (Fig. 3b). The
latter makes sure that the pipelined resource with initiation
interval IIr can be scheduled in a design with initiation in-
terval IId. In particular, the following conditions need to
be true: IIr ≤ IId and IId mod IIr = 0. This condition
ensures that consecutive inputs on a specific step always
produce a result in the same step throughout the execution
of the pipeline. Having resources with different properties
helps us achieve different tradeoffs. For instance, pipelined
resources with large initiation intervals are often smaller in
size. On the other hand, pipelined resources with small ini-
tiation intervals are often optimised for speed, but they can
exhibit large latencies.

Forwarding. Forwarding (Fig. 3c) or bypassing is a
hardware technique used to address loop-carried dependen-
cies (feedback cycles) in pipelined designs. In this case,
operations in pipeline stages near the end feed data to oper-
ations in stages near the front. To ensure that data are gen-
erated in time, op1 (target) and op2 (source) must be either
placed: (a) in the same pipeline stage but in different steps,
(b) in step c1 at stage sn, and in step c2 at stage sm respec-
tively, so that the loop-carried distance is equal to m − n,
and c1 ≤ c2. Loop carried dependencies can be found in
many designs, and this technique can be employed to tackle
this problem without slowing down the design or having to
deal with out-of-order data [13].

Resource sharing. Resource sharing (Fig. 3d) is a pow-
erful technique that binds a single resource to more than
one operation. Our approach supports four sharing levels,
which include (a) no sharing restrictions, (b) sharing to a
limited number of operations, (c) sharing only when in dif-
ferent steps, (d) sharing only when in the same step. Note
that sharing is only performed when valid, and different re-

7

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

Table 1: This table describes some of the object-oriented annota-
tions used to describe design constraints and to direct source-level
transformations.

Object Method Type Description

resources set property updates resource
attributes, such as
number of units
and sharing level

scheduler options property sets scheduling
constraints such
as initiation in-
terval and cycle
time

set smallest property configures
scheduling
and resource
constraints to
achieve the
smallest design
(e.g. unrestricted
resource sharing)

set fastest property configures
scheduling
and resource con-
straints to achieve
the fastest design
(e.g. no resource
sharing)

run action executes the
scheduling
process

source sharing levels can be set for each resource. If no
sharing restrictions apply, then two operations can share a
resource if: (i) they are in different steps, or (ii) they are in
the same step and stage, and are mutually exclusive.

4.3 Controlling Transformations

To control the source-to-source transformation process
we use an object-oriented annotation style, which enables
users to describe design constraints and to direct source-
level transformations. Each annotation is in the form of
@object.method(args), where object refers to one of the
transformation process modules, such as the scheduler or
unscheduler. Method refers to either an object property or a
particular action to be performed.

These annotations can be placed either in the global
scope of the program or in the beginning of each block
({...}). All annotations located in the global scope are
read first, followed by annotations inside each component.
If a property-type annotation is found, then the state of
source-to-source transformation process is updated in re-
spect of the object specified, and scanning continues to the
next annotation. On the other hand, action-type annota-
tions perform code transformations, by removing code from

the source and replacing it with the new optimised code.
Table 1 shows a list of these source-level annotations and
methods. Each method can have an arbitrary number of ar-
guments with syntax: key0:value0; key1:value1; key2. Ar-
guments are separated by semi-colons, and each define a
key and an optional value.

Developers are responsible to set up a constraint model
in which the scheduling process operates. Such model does
not reflect a real hardware configuration, as the transforma-
tion process does not take into account low level details such
as technology mapping, placement and routing. Instead, the
constraint model is used to control the optimization process.
For instance, a combinatorial multiplier could be set to have
a delay of 10, whereas a pipelined multiplier could be set
to 5. If developers set the clock period to 5, then in this
case no combinatorial multipliers are used. More elaborate
schemes can be constructed that can exploit other features
such as resource sharing.

5 Implementation and Evaluation

Our design flow (Fig. 4) contains several commercial and
public-domain tools. For hardware synthesis, we use our
HyHC compiler to convert Haydn-C into Handel-C code,
which is then processed by DK3 to generate VHDL. Logic
synthesis is performed by Sinplify [14] and we use Xil-
inx [18] tools to generate the bitstream. The host is im-
plemented in C++ and compiled by Microsoft Visual C++.

The simulation process is similar to hardware synthesis,
using the same source code. In particular, HyHC is used to
generate Handel-C code for simulation that is linked with
the host code to produce a single multi-threaded application.
We have implemented a simulation library specific for the
RC2000 board, which replicates the behaviour of memory
banks, local bus, and synchronous primitives for both the
host and hardware environments.

Our source-to-source transformation compiler (TC-1) is
based on the SUIF framework [16], and we have changed
the IR (intermediate representation) to support parallel
blocks and arbitrary widths for scalar and array declara-
tions. Also, SUIF IR is extended to support detailed infor-
mation on the location (such as column, line, size) of each
part of the program (blocks, variables, conditional state-
ments, expressions). This is particularly useful for our ap-
proach, where code to be transformed is removed and sub-
stituted with the optimised code.

We evaluate our hardware compilation approach with
five case-studies: 3D free-form deformation (ffd) [6],
Gouraud shading (gshade), fibonacci series (fib), Mont-
gomery multiplication (montmult) [1] and 1D discrete co-
sine transform (dct-1D). We use our source-level tansforma-
tion compiler (TC-1) to automatically schedule each design
to achieve different tradeoffs in size and speed. For these

8

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

Table 2: This table presents five case studies to illustrate design trade-offs; all designs target the Xilinx XC2V6000 device. All imple-
mentations are generated automatically, however variables in dst-1d 1 are replicated manually to ease routing. Corresponding software
functions are developed on a dual-Athlon AMD MP 2600 system at 2.1GHz for comparison.

design slices max freq (Mhz) throughput(Mb/s) Performance1 description

ffd 1 965 164 2.77 6.6x slower, 2.8x larger Sequential with 5x pipelined LUT
multipliers(with lat=5)

ffd 2 404 137 2.32 7.8x slower, 1.1x larger Sequential with 1x pipelined block
multiplier(with lat=3)

ffd 3 1919 158 5.35 3.39x slower, 5.6x larger Sequential with 10x multipliers
ffd 4 918 153 5973 328x faster, 2.7x larger fully pipelined (lat=32 cycles) with

5x multipliers
ffd 5 339 137 5352 294x faster, smallest fully pipelined (lat=26 cycles) with

5x block multipliers
ffd SW − − 18.18 − software version

gshade 1 109 252 4534 24.9x faster, smallest pixel = 8 bits
gshade 2 699 207 8280 45.5x faster, 5.5x larger pixel = 24 bits
gshade SW − − 182 − software version

fib 1 118 192 879 2.27x slower, 1.3xlarger non-pipelined, II=7
fib 2 90 148 4747 2.3x faster, smallest fully-pipelined, lat=2
fib SW − − 2000 − software version

montmult 1 88 221 2647 3.47x faster, smallest 8 bit operands
montmult 2 287 175 8400 11x faster, 3.2x larger 32 bit operands
montmult SW − − 762 − software version

dct-1D 1 868 173 3322 1.8x faster, smallest pipelined with II=5, lat=12, sharing
5 multipliers

dct-1D 2 2086 166.47 15981 8.9x faster, 2.4x larger fully pipelined, lat=12
dct-1D SW − − 1778 − software version

1 performance relates to: (1) software version for speedup (2) smallest hardware design for resource usage

case studies, we attain different performance gains by:

• using specialized resources, such as block multipliers
(ffd);

• resource sharing (ffd, dct-1D);

• using forwarding technique (fib);

• parameterizing bit-widths (gshade).

The results are shown in Table 2 and have been obtained
using the design flow shown in Fig. 4.

Resource binding can affect overall performance, so
mapping the right resources to program operations is es-
sential to get the best performance and tradeoffs. In the ffd
case study, we use two types of multipliers: LUT (look-
up table based) multipliers and block multipliers. Unsur-
prisingly, using block multipliers helps reduce the over-
all number of look-up tables used, but routing delays can
affect cycle delay. We are able to derive both designs
automatically by specifying a different number of units
for block and LUT multipliers. For instance, to gener-
ate a fully pipelined design with block multipliers, we just
need to set the number of units for block multipliers to
match the number of multiplier operations in the program

(@resources.set(blockmult;UNITS:5)) and set
the number of units for LUT multipliers to zero
(@resources.set(lutmult;UNITS:0)).

Sharing can help reduce resource usage. In ffd 2, five
multiplication operations share a single pipelined multi-
plier. To achieve this design, we just need to set the num-
ber of LUT or block multipliers units to 1 (see above),
and run the scheduler process with initiation interval of 5
(@scheduler.run(II:5)). This means that the design
requires 5 cycles to generate one result, but resource usage
is decreased significantly.

Forwarding is used to implement a fully pipelined design
that generates the fibonnacci series (x[i+2] = x[i+1]+x[i])
on a single RAM. The design has two loads and one store,
and therefore cannot be fully pipelined on a single-port
RAM. To overcome this limitation, we employ a dual-port
block RAM with read-before-write configuration. Further-
more, these two loads can be combined into one using
shift-registers. Forwarding ensures that the store operation
(x[i+2]) is in pipeline stage 2, and the load operation (x[i])
is in stage 0, as the distance between both arrays is 2. Note
that in this case, the fully pipelined version is faster and con-
sumes less resources than the slowest version, as the non-
pipelined version requires more resources to implement the
control path.

9

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

ADMXRC2 (Virtex II board)
Hardware Library

HyHC + DK3
Simulator

HyHC + DK3 +
Synplify + XPR

bitstream

TC-1 Compiler
(based on SUIF)

Haydn-C design
(hardware)

Source-to-source transformations

Haydn-C

C++ design
(host/software)

C++ Compiler
(MS-VS C++)

C++ Compiler
(MS-VS C++) executable

host / CPU

fpga board

PCI Bus

multi-threaded
application

FPGA Sim

host

ADMXRC2 (Virtex II board)
Simulation Library

Simulation

feedback Haydn Info
Tool

Hardware Synthesis

Source +
Constraints

Figure 4: This figure illustrates our design flow, which performs
hardware synthesis, simulation and source-to-source transforma-
tions. The Haydn-C language is used to develop hardware designs,
whereas C++ is used to implement the host which runs on a CPU.
For hardware synthesis, a bitstream and the host application are
generated, and both communicate with each other using the PCI
bus. Simulation involves linking both hardware and host designs
into a single multi-threaded application to simulate the behaviour
and communication protocols.

6 Conclusion

This paper describes Haydn, a hardware compilation ap-
proach that enables designers to combine cycle-accurate de-
scriptions with behaviorial descriptions. Early results show
much promise: many efficient designs with different trade-
offs have been developed rapidly and automatically with our
approach. Current and future work includes: (a) extending
the source-level transformation approach to support simu-
lation to help designers decide what parts of the program
would benefit from cycle-accurate description; (b) support-
ing dynamic scheduling and communication primitives that
can abstract from low-level handshaking details; (c) verify-
ing the correctness of our automated transformations.

Acknowledgements

The support of Fundação para a Ciência e Tecnologia
(Grant number SFRH/BD/3354/2000), UK Engineering and
Physical Sciences Research Council (Grant number GR/N
66599, GR/R 31409 and GR/R 55931), Celoxica Limited
and Xilinx, Inc. is gratefully acknowledged.

References

[1] V. Bunimov, M. Schimmler and B. Tolg, “A Complexity-
Effective Version of Montgomery’s Algorithm”, in Workshop
on Complexity Effective Designs, May 2002.

[2] Celoxica Ltd, http://www.celoxica.com/
[3] J.G.F. Coutinho and W. Luk, “Source-Directed Transforma-

tions for Hardware Compilation”, IEEE Int. Conf. on Field
Prog. Tech., 2003.

[4] J. Frigo, M.B. Gokhale and D. Lavenier, “Evaluation of the
Stream-C C-to-FPGA Compiler: An Applications Perspec-
tive”, in Proc. of Int. Symp. on FPGA, 2001.

[5] M. B. Gokhale and J. M. Stone, “NAPA C: compiling for
a hybrid RISC/FPGA architecture”, in Proc. FPGAs for
Custom Computing Machines, IEEE Computer Society Press,
1998.

[6] J. Jiang, W. Luk and D. Rueckert, “FPGA-based Computation
of Free-Form Deformations”, IEEE International Conference
on Field Prog. Tech., 2003.

[7] O. Mencer, D. J. Pearce, L.W. Howes and W. Luk, “Design
Space Exploration with A Stream Compiler”, IEEE Interna-
tional Conference on Field Prog. Tech., 2003.

[8] Mentor Graphics, http://www.mentor.com/
[9] G. Micheli, “Synthesis and Optimization of Digital Circuits”,

McGraw-Hill Edition, 1994.
[10] G. Micheli, D. Ku, F. Mailhot and T. Truong, “The Olympus

Synthesis System for Digital Design”, IEEE Design and Test,
pp. 37–53, Oct. 1990.

[11] R. Sharp and A. Mycroft, “A Higher-Level Language for
Hardware Synthesis”, in Proc. 11th Advanced Research
Working Conference on Correct Hardware Design and Ver-
ification Methods, LNCS 2144, 2001.

[12] G. Snider, “Attacking the Semantic Gap between Applica-
tion Programming Languages and Configurable Hardware”,
in Ninth ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 115–124, ACM Press, 2001.

[13] H. Styles and W. Luk, “Exploiting Program Branch Proba-
bilities in Hardware Compilation”, IEEE Trans. Computers,
53(11), 2004.

[14] Synplicity Inc., http://www.synplicity.com/
[15] M. Weinhardt and W. Luk, “Pipeline Vectorization”, IEEE

Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Feb. 2001.

[16] R. Wilson et al., “SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers”, ACM SIGPLAN
Noticies, 29(12), Dec. 1996.

[17] S. Wilton, S-S. Ang and W. Luk, “The Impact of Pipelin-
ing on Energy per Operation in Field-Programmable Gate
Arrays”, Field-Prog. Logic and App., LNCS 3203, Springer,
2004.

[18] Xilinx Inc., http://www.xilinx.com

10

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

