
A Declarative Approach to Incremental Custom Computing

Wayne Luk
Department of Computing,

Imperial College of Science, Technology and Medicine
180 Queen’s Gate

London
England SW7 2BZ

Abstract

Incremental methods can be used to produce implemen-
tations rapidly and to facilitate multi-level design optimisa-
tion. This paper describes a declarative framework, based
on the language Ruby, that supports incremental design
and validation of custom computers. The key elements
of the approach include parameterised descriptions, de-
sign transformation and data refinement. Several priority
queue designs are employed to illustrate our techniques and
the computer-based tools; we also present the use of our
framework in producing a priority queue implementation
using Algotronix CAL devices.

1 Introduction

Recent advance in reconfigurable logic technology, par-
ticularly field-programmable gate arrays (FPGAs), has led
to a proliferation of commercial and experimental com-
puting platforms based on these devices [3]. FPGA-based
designs are clearly becoming increasingly popular, because
of advantages such as short turnaround time, user reconfig-
urability and low development costs. Further exploitation
of FPGA-based systems, however, is hampered by the lack
of effective methods and tools that allow quick and risk-free
design production and modification, while giving designers
sufficient control when this is desirable [14].

The purpose of the research reported here is to estab-
lish a design framework that overcomes these drawbacks,
and to explore its use in various applications. The frame-
work should be incremental – it will allow rapid production
and analysis of prototypes, as well as their further system-
atic refinement and adaptation when required; it should
also be easy to learn and to use. Our approach should be
useful to both novice and experienced designers. Appli-
cation programmers and those without detailed knowledge
of electronics will mainly use the available primitives, de-
sign templates and optimisation procedures to develop their

designs, guided by a parameterised performance model.
Hardware specialists will have opportunities for creating
new primitives, design templates, performance models and
so on for their designs; indeed their creations may provide
a basis for the less experienced users.

The above considerations lead to several desirable prop-
erties for an incremental design framework. First, it should
facilitate step-by-step development as well as re-using,
adapting and documenting design experience [4]. Second,
to allow designer control and to encourage design re-use
at various levels of abstraction, the framework should be
able to span the entire design hierarchy from architectural
to gate level, and possibly includes device-dependent de-
scriptions. Third, the description of designs and the user
interface of tools should be simple and flexible. Next, de-
sign validation should also be incremental: it is beneficial
to support hierarchical and mixed numerical, symbolic and
bit-level simulation as well as algebraic transformation,
depending on the required level of detail, generality and
confidence in design correctness. Finally, the framework
should be based on a sound formalism; experience suggests
that much delay can be caused by design errors, and many
systems of interest, like robotic or bio-medical systems, are
safety-critical.

We are exploring various languages that take these prop-
erties into account. The rest of this paper describes a par-
ticular approach based on a declarative language; its ad-
vantages include having a concise notation and a simple
reasoning framework and tools. Our presentation offers a
pragmatic way of using declarative techniques in system
design, which we hope will complement the theoretical
expositions [6], [11].

A number of priority queue designs will be used to illus-
trate our approach, because (a) they are relatively simple
and comprehensible, (b) some of the designs included here
appear to be novel, (c) their hardware realisations should
accelerate applications such as event-driven simulators [5],
(d) their development is typical of many high-performance

architectures, and (e) they can be implemented very effi-
ciently in FPGAs, as shown in a later section.

2 Architectural description

Three ways of providing flexible and reusable struc-
tures are parameterised descriptions, design transformation
and data refinement. A parameterised description produces
specific designs by the instantiation of parameters; design
transformations can be used to generate one parameterised
description from another – usually the two will behave
the same functionally but with different performance; data
refinement relates operations on high-level data (such as
integers) and operations on low-level data (such as bits). In
this section we outline our framework, based on the declar-
ative language Ruby, for parameterising and composing
block diagrams and circuits. We shall focus mainly on il-
lustrating the use of Ruby for incremental design; further
details about the theoretical aspects of Ruby can be found
elsewhere (such as [6] and [11]).

In Ruby the behaviour of a component is described by
a binary relation, so that a squaring operation can be de-
scribed by ������� 2 , where � is the domain and � 2 is the
range of the relation ��� . Since frequently we need to repli-
cate or to rearrange the elements in a sequence, there are
relations such as ���
	�� and ������ , given by � ����	���� �������
and � �������������� � ������� . Another example is ��� �� , which
relates a pair of ! -sequences to a sequence of ! pairs:

�"� � 0
���

1
���

2
��� � � 0

���
1
�#�

2
�$� ��� � 3 �"� � 0

���
0
��� � � 1

�#�
1
��� � � 2

�#�
2
�%��&

The simplest relation is probably the identity �(' , such that� �(' � ; notice that the variable � in the description of �(' can
itself be a sequence or any other data structure. This kind
of parameterisation is common in declarative languages
[2], but it is less common in imperative languages such as
VHDL [1].

Components with connections on all four sides are mod-
elled by relations that relate pairs to pairs, such that the
domain corresponds to the connections on the west and the
north side, and the range corresponds to those on the south
and the east. A halfadder, for instance, can be specified
by � �������*)�� '
'+�$, ���-� , where , and � are respectively the
carry and the sum outputs (Figure 1).

Composition operators can be used to assemble com-
ponents to form composite designs. First, let us consider
how two adjacent circuits can be put together in series and
in parallel. Two circuits . and / in series is denoted by
. ; / , a composite circuit with . and / sharing a hidden
compatible interface � (Figure 2a):

�10 . ; /32 � 4 5���&�0$� . � 276 0"� / � 2 �

)�� '�'8 8
9

9
�

,

�

�):� '�')�� '�'
��	

8 8 8
9 9

9 9
9

�

� �
�

,
Figure 1 Halfadder)�� '�' , and fulladder � � '�' made from
halfhadders and an or-gate.

so �10"��� ; ��� 2 � 4. The “;” operator is known as relational
composition, and can easily be shown to be associative.
Parallel composition of two components . and / , denoted
by [. � /], represents the combination with no connection
between . and / (Figure 2b),

� �;�#�:��< . � />=��$? �#@:�A4 0"� .B?�2C6 0%� / @ 2 �
hence � �;�#�:�D<E���D��0$��� ; ��� 2(=�� � 2 ��� 4 � .

. /� � �

a. . ; /

.

/
�

�

?

@

b. < . � />=

. /�
F ,
�

� �
	

c. .HGI/

.

/
�

F
,

�

�
�
	

d. .KJ;/

Figure 2 Some binary operators in Ruby.

For convenience, we also have the abbreviations
LNMPO / Q < / � �('�= �M�RTS / Q < �(' � />= &

Notice that Ruby expressions can be used to indicate rela-
tive placement of components, possibly for the benefit of an

automatic layout system. Moreover many Ruby operators
have useful algebraic properties for optimising designs, as
we shall see later.

Components with connections on four sides can be
joined together by the

F�U � �V' U (Figure 2c) and
F�UXW � (Fig-

ure 2d) operators;
F�U � �V' U is given by

� �D� � F � , �Y�Z0 .[G�/32Z�$� �\�#����� 	 �4 5:��&]0 � �D� F � .B� �\���-� 2^6 0 � ��� , � /_� �D� 	 � 2 &
The definition of

F�U`W � is similar. A fulladder, given
by � ��� � �a� � �Y� � � '�'b�$, ���-� , can be obtained by connecting
together two halfadders and an or-gate (Figure 1): � � '�'cQ)�� '�';G)�� '�' ;

LYM%O ��	 .
Repeated relational and parallel composition ! -times

are given by / (Figure 3a) and d[e
f / (Figure 3b),
while repeated beside and repeated below are gVhji / (Fig-
ure 3c) and k�hDl / (Figure 3d). These operators can be de-
fined by recursion [6]. To describe a design with feedback,
we use the operator l h:hDf , given by

�C0 l h�hDf�/32 � 4 5:��& � �����-� /c� ���#�:�
(Figure 3e).

R R R

a. R3

R R R

b. map3 R

R R R

c. row3 R

R

R

R

d. col3 R

x y
s

s
R

e. loop R

Figure 3 Some Ruby operators that capture common
computation patterns.

Let us now explain how priority queues can be captured
in Ruby. Recall that two operations can be performed on
a priority queue: inserting a data record into a set, and
extracting from a set the record with the smallest key ac-
cording to some linear ordering. One way of implementing
a priority queue involves an ordered state � � 0 ��� 1 ��� 2 ��� 3 � ,
such that an insertion with an input � where � 0 m �bno� 1

produces the next state � � 0 ���D��� 1 ��� 2 � . An extraction op-
eration on the state � � 0 ��� 1 ��� 2 ��� 3 � , on the other hand, will
result in the next state � � 1 ��� 2 ��� 3 �Ppq� and output � 0, wherep denotes the greatest element of the linear ordering.

The architecture . ��r W that we adopt for the state transi-
tion logic described above consists of three blocks s#'jt) W ,
t UXWuU , r and s#! � U 	 r stacking on top of one another (Fig-
ure 4),

. ��r W Q 0 s#! � U 	 r Jvt UXWuU , r 2;Jvs�'jt) W &

s#! � U 	 r

t U`WwU , r

s#'Tt) W

8 8

8 8

x x

9

9

9 9

9

�

F
,

�

�

	

�

�

? @

�

Figure 4 The block structure of the state transition logic
. ��r W .

s#'Tt) W provides two outputs ? and @ . ? is the same as
the current state � , and @ is a left-shifted version of � . In
other words, given that � Qy� � 0 ��� 1 ��� 2 ��� 3 � , then:

�", ���j� s#'jt) W �"�$? �#@:��� 	 �4 0 ,1Q � 0 2[6 0 ?CQ � 2:6 0%@ Qy� � 1 ��� 2 ��� 3 � 	 � 2
(1)

Note that in our priority queue implementation, 	 is con-
nected to a constant supply of p s to replace the extracted
elements. A parameterised version of s#'jt) W is

s#'Tt) W Q M#R�S ����	�� ; ������ G 0 g(h-i >�#) W , UXW(W 2
(2)

where �$' � ' �*��) W , U`WVW � U � U � .
Next, depending on the selection signal

F
, either ? or@ will be selected by t U`WuU , r to form the input � for the

s#! � U 	 r block, which inserts the input � into � such that the
output � (the next state) is ordered. t U`WuU , r can be realised
as a row of multiplexors z{? � operating on an interleaved
version of ? and @ :

t UXWuU , r Q M#R�S ��� �� ; g(hji z^? �
while s#! � U 	 r can be implemented as a row of � , UXW(W s which
sorts two elements:

s#! � U 	 r Q gVhji >� , UXW(W

a b c s0 s1 s2 s3 y0 y1 y2 y3
0 - <<<8, 0>,100>,<100,100,100,100>> ˜ <8, 100,100,100> insert : b=0, a=8
1 - <<<5, 0>,8 >,<8, 100,100,100>> ˜ <5, 8, 100,100> insert : b=0, a=7
2 - <<<7, 0>,5 >,<5, 8, 100,100>> ˜ <5, 7, 8, 100> insert : b=0, a=6
3 - <<<6, 0>,5 >,<5, 7, 8, 100>> ˜ <5, 6, 7, 8 > insert : b=0, a=5
4 - <<<100,1>,5 >,<5, 6, 7, 8 >> ˜ <6, 7, 8, 100> extract: b=1, c=5
5 - <<<100,1>,6 >,<6, 7, 8, 100>> ˜ <7, 8, 100,100> extract: b=1, c=6
6 - <<<2, 0>,7 >,<7, 8, 100,100>> ˜ <2, 7, 8, 100> insert : b=0, a=2
7 - <<<3, 0>,2 >,<2, 7, 8, 100>> ˜ <2, 3, 7, 8 > insert : b=0, a=3
8 - <<<100,1>,2 >,<2, 3, 7, 8 >> ˜ <3, 7, 8, 100> extract: b=1, c=2
9 - <<<100,1>,3 >,<3, 7, 8, 100>> ˜ <7, 8, 100,100> extract: b=1, c=3
10 - <<<100,1>,7 >,<7, 8, 100,100>> ˜ <8, 100,100,100> extract: b=1, c=7
11 - <<<100,1>,8 >,<8, 100,100,100>> ˜ <100,100,100,100> extract: b=1, c=8

Figure 5 Simulating the state transition logic . ��r W .

where � �;�#�:�*� , UXW(W �$z^�(! 0$�;�#� 2 � z �T��0$�;�#� 2 � .
At this stage it is desirable to check that the state tran-

sition logic . ��r W behaves as desired. This can be achieved
in two ways: either by formal development, or by sim-
ulation using the Rebecca design system which is under
development at Imperial College and Oxford University.
An example of formal development can be found in [8],
and the use of simulation will be described next.

3 Support tools

Rebecca is a system for developing digital designs. It
offers various facilities including numerical and symbolic
simulation, layout sketching, design analysis, optimising
transformations and hardware compilation for designs cap-
tured in a variant of the Ruby language. Here we shall
illustrate how the Rebecca simulator can be used to explore
the behaviour of designs.

A useful feature of our simulator is the capability of
carrying out numerical, gate-level and symbolic simulation
using the same design description. For instance, if we
supply to the simulator the boolean signalsFFF, FFT,FTF,
FTT in successive cycles for the fulladder � � '�' , we get

0 - <F,<F,F>> ˜ <F,F>
1 - <F,<F,T>> ˜ <F,T>
2 - <F,<T,F>> ˜ <F,T>
3 - <F,<T,T>> ˜ <T,F>

The first column displays the cycle number, and the “˜”
symbol separates the domain data from the range data. It
happens in this case that all the inputs are in the domain. If
we now supply the symbolic inputs a,b and c in a single
cycle, we get

0 - <a,<b,c>> ˜
<(a and b) or ((a xor b) and c),
(a xor b) xor c>

showing that the outputs are indeed what we expect.
To study the behaviour of the state transition logic

. ��r W , one can simulate the components s#'jt) W , t UXWuU , r
and s#! � U 	 r separately and then their composition. The
simulator can deal with either the non-parameterised or the
parameterised version of s#'jt) W , given by (1) and (2) re-
spectively; the non-parameterised description is easier to
write and understand, but it needs to be altered when the
queue size is changed.

To simulate . ��r W , we supply the inputs � and
F

and the
current state � (Figure 4), and the simulator will return the
output , and the next state � ; the next state of one cycle
is then used as the current state of the next cycle. In the
annotated simulation output in Figure 5, p is approximated
by 100, and for clarity the input 	 and the outputs � and �
are not included.

To describe the complete priority queue design as a state
machine, we need a way of representing latches and se-
quential circuits in general. This is achieved in Ruby by re-
lations that handle streams, or time sequences, such that the
stream version of ��� becomes �C���7�|4}0�~�r�&P0$�`� 2 2 Q �`� 2 .
It can be shown that the algebraic properties of Ruby are
preserved by lifting relations to work on streams. A latch
is modelled by a relation � whose range stream is one time
unit behind the domain stream, � � �|4�0�~�r�&"�X�(�

1 Q �`� 2 .
An ! -element priority queue can now be expressed as a

state machine,

. 0 Q l h�h�f 0 . ��r W ;
LNMPO 0 d[e
f ��2"2 &

Note that the correct operation of . 0 requires the feedback
latches to be initialised with p . . 0 can also be simulated,

� � ��� � �
8 8
9 9

8
9
8

9
�
9

8

�$�"�$�$�(�$�"�$�"�$�$�"�V�"�$�"�$�

�$�"�$�$�(�$�"�$�"�$�$�"�V�"�$�"�$�

���
���
���
���
���
���
�

���
���
���
���
���
���
�

F F

��

? @

�

max

� , U`WVW

z{? �

min

F F

� �

? @

�

� z^, U`WVW =

Figure 6 Structure of � z^, UXW(W .

although this time only the inputs � and
F

are required, as
the states � and � are hidden.

The Rebecca system includes an automatic data refine-
ment facility for producing gate-level descriptions. These
descriptions can then be used to generate netlists in a vari-
ety of formats, including Xilinx XNF and Algotronix CFG
formats, for automatic place and route tools. A route to
VHDL is also available. We can use these tools to pro-
duce an FPGA implementation for . 0 directly from its
word-level description.

However, some designers may choose to produce bit-
level circuits by hand,especially when they are dealing with
repeating units in structured designs such as systolic arrays.
The Rebecca simulator can also be used for checking user-
defined bit-level circuits: there are functions that transform
word-level data (such as integers) to various bit-level data
(such as two’s complement representation) and vice versa,
so it is straightforward to compare the hand-developed bit-
level design and the word-level specification. These data
transformations are also useful for revealing high-level be-
haviour when an optimised bit-level circuit is being adapted
for another purpose.

4 Word-level optimisations

In this section we illustrate the systematic transforma-
tion of . 0 to increase regularity and to produce systolic
implementations. At present . 0 is expressed as a single
state machine consisting of three blocks and a single bank
of feedback latches. It is desirable to decompose this state
machine into a cascade of simple state machines, for two
reasons: first, if the blocks can be merged to form a single
repeating structure, then one only needs to optimise a rela-
tively small repeating unit by hand or using automatic tools;

second, the collection of state machines may be pipelined in
various ways so that the clock speed is largely independent
of the number of processors.

While an experienced designer can probably obtain rea-
sonably optimised designs without spending too much time,
we include the three steps – block fusion, state distribution
and pipelining – here as an example of transforming de-
signs and a proof of correctness. The automation of these
steps is being investigated. Readers aiming at an overview
of our method may skip the algebraic details below; the
result of these transformations will be shown in diagrams.

The first step, block fusion, involves recasting the state
transition logic . ��r W in the form of a row of elements. This
can be achieved by expressing s#'Tt) W as

g(hji ��, UXW(W ;
LNMPO ��� � � 1

where � �D�#��� ��, U`WVW �"� �D� F ��� F � and ��� � � 1 ; ��� � QA�(' .
Algebraic laws in Ruby such as
0 M#R�S / ; ��2;J 0"� ;

LNMPO .�2�Q ��J 0$� ;
LNMPO 0 . ; /32$20 gVhji .�2*J 0 gVhji /32�Q gVhji 0 .7JX/32

can be used to transform . ��r W :
. ��r W Q 0$0 gVhji � , U`WVW 2:J 0 M�RTS ��� � ; gVhji z^? � 2"2

J 0 gVhji ��, UXW(W ;
LNMPO ��� � � 1 2

Q 0$0 gVhji >� , U`WVW 2:J 0 gVhji z{? � 2$2
J 0 gVhji ��, UXW(W ;

LNMPO 0 ��� � � 1 ; ��� �a 2$2
Q 0$0 gVhji >� , U`WVW 2:J 0 gVhji z{? � 2$2

J 0 gVhji ��, UXW(W 2
Q gVhji .1, UXW(W

where (Figure 6)

.1, U`WVW Q � z^, UXW(W Jj��, UXW(W �� z^, U`WVW Q � , UXW(W J\z^? �;&

An optimised .1, UXW(W , the repeating unit, can now be pro-
duced by hand or by automatic tools. Note that since the
expression gVhji / can be considered as a loop in conven-
tional languages, this process is analogous to loop fusion
carried out by optimising compilers.

The second optimisation step is to decompose the state
machine . 0. We need the identity

gVhji . ;
LYMPO 0 d[e�f /32�Q gVhji 0 . ;

LNMPO /32 �

so that

. 0 Q l h:hDf 0 g(hji .1, U`WVW ;
LYMPO 0 d�e
f ��2$2

Q l h:hDf 0 g(hji 0 .1, UXW(W ;
LNMPO ��2$2

The theorem for state machine decomposition,

l h�h�f 0 gVhji /32�Q 0 l h:hDf^/32 �

can now be applied to give . 0 Q .1, UXW(W 0 , where
.1, UXW(W 0 Q�l h�h�f 0 .1, U`WVW ;

LNMPO ��2 (Figure 7). The cor-
rectness proof of the state machine decomposition theorem
is given in [8].

� z^, U`WVW.1, U`WVW 0
8
8

�

9
8
8

x
9x

8
8

x
8
8 =

Figure 7 Design .1, UXW(W 0. The dotted box identifies ��, UXW(W ,
and the black disk corresponds to a latch.

The final step in optimising our word-level priority
queue design is to pipeline . 0 by including registers be-
tween adjacent .1, UXW(W 0s. This can be done in several ways,
and two of them will be shown here. Given that !+Q��jz ,
the first way is to pipeline . 0 by theorems similar to

�7� ; /|� � Q 0 � ; /|�X2 �
(provided that � ; /�Q�/ ; �) to give

. 1 Q <u< � � �1= � ��= � ; . 0

Q <u< � � �1= � ��=Y� ; .1, UXW(W 0 � �
Q 0%<u< � � ��= � �>= ; .1, UXW(W 0 �#2 �
Q 0 .1, UXW(W 1 ; .1, UXW(W 0 � � 1 2 �

where

.1, UXW(W 1
Q <u< � � ��= � �>= ; .1, UXW(W 0
l h:hDf0$0 LYMPO < � � �1= ; � z^, U`WVW 2:J 0 ��, UXW(W ;

LNMPO 0 LNMPO �[2$2"2
(Figure 8). In other words, . 1 is made up of z repeating
units, where z7��Q�! and ��� 2. Each repeating unit
consists of a linear array of a .1, U`WVW 1 and 0 ��� 1 2Z.1, UXW(W 0s.
An example of . 1 is shown in Figure 9.

� z^, U`WVW.1, U`WVW 1
8
8

�
�
�

9
8
8

x
9x

8
8

x
8
8 =

Figure 8 Design .1, U`WVW 1.

Notice that the parameter � controls the degree of
pipelining: the most pipelined design is obtained when
��Q 2 and z Q�!�� 2, while the least pipelined one
corresponds to the case when ��Q ! and z�Q 1. Ta-
ble 1 summarises how different values of � affects the
resource/performance trade-off – the estimation of clock
periods assumes that wire delays are included in cell de-
lays. If z is not a factor of ! , then . 1 can be implemented
by having another unit made up of a .1, UXW(W 1 and ��¡�� 1
.1, UXW(W 0s, where 0 n �:¡ n � and !�Qyz7�3¢���¡ .

The second way of pipelining . 0 involves a method
known as slowdown (see [6],[7],[11]). A 2-slow version
of . 0, .3¡0, can be obtained by replacing every latch in
. 0 by two latches in series; as a result .�¡0 handles two
independent computations in successive cycles. .�¡0 can be
fully pipelined to give . 2:

. 2 Q <u< � � ��= � �>= ; . ¡0
Q <u< � � ��= � �>= ; 0 l h�h�f 0 ��, UXW(W ;

LYMPO � 2 2$2
Q .1, UXW(W 2

where (Figure 10)

.1, U`WVW 2
Q <w< � � �>= � �>= ; l h:hDf 0 ��, U`WVW ;

LYMPO � 2 2
Q£l h:hDf 0$0 LYMPO < � � ��= ; � z^, UXW(W ;

LYMPO ��2
J 0 ��, UXW(W ;

LNMPO 0 LNMPO ��2$2"2 &

.1, U`WVW 1 .1, UXW(W 0 .1, U`WVW 0 .1, UXW(W 1 .1, UXW(W 0 .1, U`WVW 0
x
88

x
88

x
88

x
88

x
88

x
88

x
88

p

Figure 9 An instance of . 1 (!HQ 6, �¤Q 3, z¥Q 2). The left-hand output provides the extracted result. The upper
left-hand input controls insertion and extraction, and records for insertion should be placed at the lower left-hand input.

Table 1 Comparison of ! -element priority queue designs for records of ¦ bits wide. §Z¨ is the delay of an � , UXW(W and § �
is the delay of a z^? � (Figure 6).

Minimum clock period Number of latches in array Slowdown factor

Design . 1 z �j� (��§ ¨ ¢©§ � , 2 § ¨ ¢ 2 § �) ! 0 ��¦\¢ª¦*¢ 1 2 10 !b�B�C� 2 2 �
Design . 2 § ¨ ¢«§ � ! 0 3 ¦¬¢ 1 2 2

� z^, U`WVW.1, U`WVW 2 8
8

�
�
�

�

9
8
8

x
9x

8
8

x
8
8 =

Figure 10 Design .1, U`WVW 2.

The features of . 2 are summarised in Table 1. While
. 2 has a higher clock speed than the fastest version of
. 1 (with � =2), it requires twice as many latches as . 1.
Moreover, since . 2 is 2-slow, each operation takes two
cycles to complete – twice as many cycles as . 1 would take.
The behaviour and performance of . 1 and . 2 can also be
validated using the Rebecca system. A design similar to
. 2 has been outlined in [7], but that paper does not include
the details of cell structure or performance comparison.

The designs presented above are just two examples that
can be obtained from the initial . 0 description; other pos-
sibilities include various forms of transposed [9] and seri-
alised designs [11].

5 Bit-level optimisations

An incremental method should support optimisation
down to the lowest level. There are many situations in
which a little extra effort on the part of the designer may
yield an implementation better than any automatic tools can
produce. It is important, however, to ensure that the opti-
mised version preserves the intended functional behaviour.

One way of optimising the performance of a circuit is to
use hard macros, which are highly-optimised technology-
specific library cells. For instance hard macros, if available,
can be used for the z^? � , z �j� and z^�(! blocks in � z^, UXW(W
(Figure 6). However, this method often leads to wiring con-
gestion between the connected blocks, which is especially
undesirable for FPGAs. A better solution is to develop a
bit-level cell which can be replicated in a column to form
a .1, U`WVW 0. Such a cell is shown in Figure 11, and can be
described in around 10 lines of Ruby code; another 5 lines
complete the description of the entire priority queue design.

With the help of the Rebecca system, it only took a short
time to compile this bit-level description into hardware
and to validate it against the word-level design – this is
partly due to the concise notation that we adopt, and partly
due to the powerful simulation facilities, such as functions
converting between high-level and low-level data. One
can also use algebraic transformations to verify that the bit-

®

t

¯

8
88

8
8

8
x

°
9

9

°

°
9 9 9

Figure 11 Bit-level priority queue cell.
®

is a mulit-
plexer,

is a comparator, t is a conditional swapper and¯

is a latch.

level design is a faithful implementation of the word-level
description.

The highest performance of a design can be obtained by
exploiting device-specific features. Although this is proba-
bly not profitable to do for random logic implementations,
it is often desirable for structured designs in which ineffi-
ciency in a repeating unit will be amplified many times.

Bit-level designs are relatively straightforward to imple-
ment using fine-grained FPGAs with a symmetric architec-
ture, such as Algotronix CAL devices. Figure 12 shows a
compact CAL-based implementation of the bit-level circuit
given in Figure 11. A parameterised description of this de-
sign has been captured in a device-specific version of Ruby
known as OAL [10]. The CAL implementation took less
than a day to develop, given the bit-level circuit diagram
(Figure 11). Although our CAL devices were acquired 5
years ago, we found that they should still be capable of
implementing a priority queue design with a speed of over
10MHz when fully pipelined.

6 Concluding remarks

The benefits of parameterised descriptions, hierarchical
design and systematic development are well-known (see
[4], [14]). A declarative approach shares these benefits,
while providing an incremental route for design validation
based on numerical and symbolic simulation as well as
algebraic transformations.

Our aim is to exploit the concise notation and the sim-

ORX1.X2’

ANDORXNORANDOR

X1’.X2ANDDCDC’X1.X2’

X1’.X2ORAND

Figure 12 CAL implementation of a bit-level priority
queue cell. The inputs to a gate are connected to its two
sides, while its output emerges from its centre.

ple reasoning framework of declarative languages for fast,
modular and flexible design, possibly in concert with other
languages such as VHDL, C and occam [13]. We have
shown that much of the design hierarchy from architectural
to gate-level descriptions can be expressed in a declar-
ative manner, facilitating multi-level design optimisation
and re-use of design expertise. It is not even necessary to
understand our language in order to use the result of our
derivation: given the performance characteristics of the
available computational elements such as multiplexers and
comparators, a designer or a tool can simply substitute the
appropriate data in formulae like the ones in Table 1 to work
out the smallest circuit of a particular speed, or the fastest
circuit of a particular size. In any case declarative lan-
guages such as Ruby should come into more wide-spread
use, as the associated tools begin to reach maturity, and
as enthusiasm for declarative languages is growing fast in
academic and industrial institutions [15].

The work described in this paper can be extended in
several ways. First, we have shown that it is possible to de-
scribe dynamically reconfiguring computations using Ruby
[11], but more experience needs to be gained in this area.
Next, we are developing a better integration of our tools
with other tools for supporting an evolutionary approach
to custom computing. Finally, we are exploring incremen-
tal methods for producing systems with both hardware and
software components [12]; declarative techniques should
become an indispensable part of our framework.

Acknowledgements

Thanks to Jonathan Saul for comments on an earlier
draft. Many colleagues and students have contributed to the
Rebecca system; I am particularly grateful to Tim Cheung,
Shaori Guo, Cedric Hui, Quentin Miller, Corin Pitcher and
Teddy Wu for their efforts. The support of Oxford Univer-
sity Hardware Compilation Research Group, Oxford Par-
allel Applications Centre, ESPRIT OMI/HORN (P7249)
project, Scottish Enterprise and Xilinx Development Cor-
poration is gratefully acknowledged.

References

[1] J.M. Arnold and D.A. Buell, “VHDL programming
on Splash2,” in More FPGAs, W. Moore and W. Luk
(eds.), Abingdon EE&CS Books, 1994, pp. 182–191.

[2] R. Bird and P. Wadler, Introduction to Functional
Programming, Prentice-Hall International, 1988.

[3] S. Guccione, List of FPGA-based Computing Ma-
chines, World-Wide Web document, September 1994.

[4] B.K. Fawcett, “Tools to speed FPGA development,”
IEEE Spectrum, Nov. 1994, pp. 88–94.

[5] F. Hoeg, N. Mellergaard and J. Staunstrup, “The
priority queue as an example of hardware/software
codesign,” Proc. Third International Workshop on
Hardware/Software Codesign, IEEE Computer So-
ciety Press, 1994, pp. 81–88.

[6] G. Jones and M. Sheeran, “Circuit design in Ruby,” in
Formal Methods for VLSI Design, J. Staunstrup (ed.),
North-Holland, 1990, pp. 13–70.

[7] C.E. Leiserson, “Systolic priority queues,” in
Proc. Caltech Conf. on VLSI, Caltech Computer Sci-
ence Dept., 1979, pp. 199–214.

[8] W. Luk and G. Brown, “A systolic LRU processor
and its top-down development,” Science of Computer
Programming, Vol. 15, No. 2–3, December 1990,
pp. 217–233.

[9] W. Luk, “Optimising designs by transposition,” in
Designing Correct Circuits, G. Jones and M. Sheeran
(eds.), Springer-Verlag, 1991, pp. 332–354.

[10] W. Luk and I. Page, “Parametrizing designs for FP-
GAs,” in FPGAs, W. Moore and W. Luk (eds.),
Abingdon EE&CS Books, 1991, pp. 284–295.

[11] W. Luk, “Systematic serialisation of array-based
architectures,” Integration, Vol. 14, No. 3, 1993,
pp. 333-360.

[12] W. Luk and T. Wu, “Towards a declarative framework
for hardware-software codesign,” Proc. Third Inter-
national Workshop on Hardware/Software Codesign,
IEEE Computer Society Press, 1994, pp. 181–188.

[13] I. Page and W. Luk, “Compiling occam into FPGAs,”
in FPGAs, W. Moore and W. Luk (eds.), Abingdon
EE&CS Books, 1991, pp. 271–283.

[14] R.G. Shoup, “Parameterized convolution filtering in
an FPGA,” in More FPGAs, W. Moore and W. Luk
(eds.), Abingdon EE&CS Books, 1994, pp. 274–280.

[15] S. Thompson and P. Wadler (eds.), “Functional pro-
gramming in education,” Journal of Functional Pro-
gramming, Vol. 3, No. 1, 1993.

