
Pipeline Vetorization for Reon�gurable Systems�Markus Weinhardt and Wayne LukDepartment of Computing, Imperial College, London, UKfmw8, wlg�do.i.a.ukAbstratThis paper presents pipeline vetorization, a methodfor synthesizing hardware pipelines in reon�gurablesystems based on software vetorizing ompilers. Themethod improves eÆieny and ease of development ofreon�gurable designs, partiularly for users with littleeletronis design experiene. We propose several looptransformations to ustomize pipelines to meet hard-ware resoure onstraints, while maximizing availableparallelism. For run-time reon�gurable systems, weapply hardware speialization to inrease iruit uti-lization. Our approah is espeially e�etive for highlyrepetitive omputations in DSP and multimedia ap-pliations. Case studies using FPGA-based platformsare presented to demonstrate the bene�ts of our ap-proah and to evaluate trade-o�s between alternativeimplementations. The loop tiling transformation, forinstane, has been found to improve performane by30 to 40 times above a PC-based software implemen-tation, depending on whether run-time reon�gurationis used.1 IntrodutionMany appliation developers reognize that the keyto e�etive use of reon�gurable systems is to max-imize their available parallelism. This task, whihhas to be ahieved while meeting spei� hardwareresoure onstraints, is diÆult to perform by hand.Vetorizing ompilers have proved suessful in de-teting and exploiting parallelism for onventionalproessors with a �xed arhiteture. A vetor exeu-tion unit adapted for DSP and multimedia proessinghas also been identi�ed as an important omponentof novel omputer arhitetures, suh as the vetor�This work is supported by a European Union trainingprojet �naned by the Commission in the TMR programme,the UK Engineering and Physial Sienes Researh Coun-il (Grant Number GR/L24366, GR/L54356 and GR/L59658),Embedded Solutions Ltd., and Xilinx In.

IRAM [1℄. This paper presents an approah for auto-matially produing optimized pipelined iruits froma high-level program, using tehniques derived fromsoftware vetorizing ompilers. The ompile-time andrun-time reon�gurability of FPGAs an also be eÆ-iently exploited.Our approah, whih we all pipeline vetorization,involves essentially the synthesis of pipelined opro-essors whih exeute inner loops of programs. Datadependene analysis similar to software vetorizationis performed, whih determines if a pipeline an begenerated for a loop. In ontrast to software vetoriza-tion, we do not expliitly generate vetor instrutions.Instead, all instrutions of the loop body are vetor-ized and hained by pipelining input data through theentire dataow graph synthesized from the loop body.2 Overview and Related WorkThis paper is organized as follows. Setion 3presents the pipeline vetorization design ow and itsore omponents. Next, we devise several loop trans-formations whih widen the appliability of our teh-nique by adjusting the amount of hardware used invetorized loops to the given FPGA resoures in Se-tion 4. In Setion 5, we explore methods to inreasepipeline iruit utilization by run-time iruit speial-ization and run-time reon�guration. Finally we pro-vide ase studies evaluating these new optimizationsin Setion 6, and onlude the paper in Setion 7.An earlier version of our approah, whih overssome of the ideas in Setion 3, has been reported [2℄.Some restritions in that work have been overome inour urrent approah.Several researh projets address the synthesis ofpipelined iruits from program loops. The losest toour approah is the NAPA C ompiler [3℄. However, ittargets spei�ally the NAPA1000 hip and onsidersonly innermost loops. No optimizing transformationssimilar to ours are reported. The RaPiD-B ompiler[4℄, too, is arhiteture spei� for the RaPiD hip and

requires manual parallelisation and partitioning. Ourtehniques an be used as a frontend for RaPiD-B.Loop parallelization based on the ALPHA system [5℄is restrited to linear systoli arrays, whereas our teh-niques an vetorize more general programs.3 Pipeline VetorizationFigure 1 shows the pipeline vetorization designow. We �rst present the ore omponents on the di-ret path III from an input program to an exeutableappliation. Later setions will over the optimizingtransformations (paths I and II in Figure 1).

Program
annotated with: candidates,dependence

information, dataflow graphs, area estimates

Program
annotated with: candidates,

dependence information

Dataflow Graph Generation

Program
with coprocessor calls

Software Compiler

Host Object Code

FPGA
component

library

Circuit Speciali-
sation for RTR

Feedback
to

User

Dataflow Graphs
of candidates

Pipelining and Area Estimation

III
Hardware/Software Partitioning

delay,
area

instances

II

Candidate Loop
Transformations

I

Input Program

Hardware Candidate Selection

Loop Normalization

Dependence Analysis

Library Instantiation
and Integration

(Differential netlist generation)

Partial ConfigurationsFigure 1: Pipeline vetorization.Hardware Candidate Seletion Regular, itera-tive omputations whih perform idential operationson a large set of data are likely to bene�t from hard-ware aeleration. Hene loops are natural andi-dates for hardware oproessors. We only generatepipelines for innermost loops, sine outer loops have

a smaller speedup potential and require more ompli-ated ontrol iruitry, and are better handled in soft-ware. However, our proedure will initially onsider allloops sine the loop transformations presented in Se-tion 4 rearrange loop nests. We onentrate on FOR-loops for vetorization, sine eÆient pipelined o-proessors annot be synthesized for general WHILE-loops. FOR-loops have predetermined loop ounts andan thus be handled by eÆient ontrol iruitry.There are some additional restritions for the an-didate loops: they must not ontain reursive funtionalls, external operating system or library alls.1The andidate loop of the example program in Fig-ure 2 will be used to synthesize a pipeline iruit.unsigned short x[N℄;...unsigned short rand = 0x1; /* 16-bit */for(i=0; i<=N-2; i++) { /* CANDIDATE */if (rand >> 15) /* bit 15 is set */rand = (rand << 1) ^ 0x7549;elserand = rand << 1;x[i℄ = x[i+1℄ + x[i+2℄ + rand; }Figure 2: Example program.Loop Normalization For vetorization, we nor-malize the andidate loops by the following transfor-mations [6℄. First, we remove all additional indutionvariables and normalize the loop's lower bound to zeroand its step to one. Next, the index expressions areredued to linear expressions of the indution variableif possible. Note that the andidate loop in Figure 2is already normalized.Dependene Analysis The next proessing stepanalyzes andidate loops for dependenes. In a loopnest, we determine for eah loop hierarhy the de-pendenes arried by eah loop: dependenes betweenstatements in di�erent iterations of this loop. Onlythese loop-arried dependenes a�et the loop levelparallelism. However, sine the pipeline exeutionoverlaps the loop iterations but maintains their or-der, memory writes are never out of order. Hene weonly have to onsider true dependenes, but not anti-or output-dependenes.2 Therefore pipeline vetoriza-1Non-reursive funtion alls an be inlined. Therefore weassume | without loss of generality | that no funtion allsexist in the andidates.2True or ow dependene ours when a variable is assignedor de�ned in one statement and used in a subsequently exeutedstatement. Anti-dependene ours when a variable is used inone statement and reassigned in a subsequently exeuted state-

tion applies to more loops than software vetorization.We utilize standard dependene analysis methods [6℄to detet these dependenes. As in software vetor-ization [6℄, only array index expressions linear in theindution variable an be analyzed. Other ases, espe-ially indiret array aesses, are assumed dependent.Next, we hek if the deteted true loop-arried de-pendenes our in all loop iterations with the samedependene distane. We all these dependenes reg-ular. All dependenes stemming from salar variablesand from array aesses with the same stride are reg-ular. They an be implemented by feedbak paths inthe iruit. In ontrast to software vetorization, reg-ular dependenes do not prevent pipeline synthesis, al-though they redue parallelism beause the feedbakpaths restrit the speedup ahieved by pipelining in alater proessing stage.Irregular dependenes an be handled, providedthat the original order of read and write aesses ofthe arrays involved are maintained. However, this re-quires many sequential memory aesses and is onlyfeasible with very fast memories, suh as on-hip mem-ories. Sine this extension requires synthesis of an ad-ditional ontroller for states within a pipeline yle, itis not supported by our urrent prototype.In Figure 2, there is a dependene stemming fromthe salar variable rand. In every iteration, its valuefrom the previous iteration is read. Sine this depen-dene is regular, it an be realized by a sequentialfeedbak path, resulting in a linear feedbak shift reg-ister generating random numbers (see Figure 3). Addi-tionally, there are two more loop-arried dependenesstemming from the assignment to array x. Sine theyare anti-dependenes (only an out-of-order exeutionof the assignments would lead to real dependenes),we an disregard them. Consequently, the loop in Fig-ure 2 an be pipeline vetorized though it ould notbe exeuted on a parallel or vetor omputer.Dataow Graph Generation For those andidateloops whih pass the dependene test, pipeline iruitsare synthesized. We employ a simple storage alloa-tion sheme: salar variables are held in FPGA regis-ters, and arrays are stored on o�-hip memory.3 Arrayelements are fed to the pipeline as ontinuous datastreams through vetor inputs, and output streamsare written bak to loal memory through vetor out-ment. Output dependene ours when a variable is assigned inone statement and reassigned in a subsequently exeuted state-ment [6℄.3On some FPGA families, small arrays of data an be storedin very fast on-hip memory. However, this requires synthesisof aess logi for these arrays.

puts. In this way one loop iteration is exeuted ev-ery pipeline yle. Element addresses for linear ar-ray aesses an be preomputed. However, for ar-bitrary aesses, address omputation logi must begenerated and synhronized with the loal memory.Pointer aesses are indiret aesses to the entire hostmemory spae and ould be treated similarly. Sinemost reon�gurable systems do not have diret aessto host memory, we do not handle pointers urrently.When targeting tightly-oupled arhitetures with di-ret memory aess, this restrition is not neessary.Synthesis starts with generating an ayli ombi-national dataow graph (DG) for the loop body byusing multiplexers to selet the orret values of on-ditionally assigned variables. We treat array aessesand salar variables uniformly. Index-shifted aessesto the same array are then ombined and realized byshift registers. Using these delayed values of the in-put stream avoids aessing the same value in mem-ory more than one and redues the number of re-quired vetor inputs. This redution is ruial sineall vetor input streams must be read and all outputstreams written one for every loop iteration. Thusthe pipeline throughput diretly depends on the num-ber of vetor inputs and outputs.Figure 3 shows the DG for the example programfrom Figure 2. There is a vetor input and output forx, and a salar input and output for rand. Registersare represented by delay elements D. Note that bothbranhes of the if-statement are implemented and theorret value for rand is seleted by a multiplexer. Theondition is evaluated by seleting bit 15 of the inputregister. The purpose of the multiplexer on the left-hand side will be explained next.
<< 1

select bit 15

D

D
++

rand

<< 1 ^ 0x7549

x[i+2]

rand

scalar_in

x[i]

x[i+1]Figure 3: Dataow graph for Figure 2.If a loop has regular loop-arried dependenes, or-responding feedbak yles need to be inserted in itsDG. This is simple for dependenes stemming fromsalar variables: sine one loop iteration is exeutedevery lok yle, the input register of suh a variable(whih is read and written in the loop) must alwaysontain the value omputed in the previous lok yle.To ahieve this, a multiplexer is added at the register's

input. It selets the input value during initializationand the feedbak value during normal operation, de-pending on an external ontrol signal (salar in inFigure 3) whih is provided by the environment.Dependenes stemming from array aesses aretreated similarly. An output value, however, annotbe diretly fed bak into an input register if its depen-dene distane is greater than one. In this ase addi-tional registers are inserted to aount for the greaterdelay. Figure 3 shows a feedbak path for the de-pendent variable rand and a multiplexer seleting theorret input.Pipelining and Area Estimation The DGs gen-erated so far may not be very eÆient beause theombinational delays of hained operators may au-mulate to a long ritial path. The ritial path delayan be redued by pipelining, thereby improving theperformane. Although the lateny is also inreased,it often has only a minimal e�et sine the time for�lling and ushing the pipeline is normally negligible.We use a standard retiming tehnique [7℄ to insertthe minimal number of FPGA ipops neessary toahieve the yle time determined by the given I/Obandwidth. The tehnique is extended to take intoaount that in many FPGAs ombinational gate out-puts an be lathed in the same ell. We use an FPGAtehnology spei� omponent library to determineoperators' delays. The omponents are parametrizedby operator bitwidth to provide aurate estimates.However, routing delays annot be estimated au-rately. The same omponent library is used to esti-mate the pipeline's area (or resoure usage) by sum-ming up the area used by all omponents. These esti-mates are used in the partitioning step desribed later.These tehniques will redue the ritial path ofthe dataow graph in Figure 3 by inserting additionalpipeline registers at the inputs of the adder on theright side.Hardware/Software Partitioning Partitioningdetermines whih part of a program will be exeutedin software and hardware. If loops are to be exe-uted in hardware, their DGs' area estimations mustnot exeed the given hardware resoures. Of ourse,partitioning must also onsider the expeted speedupahieved by the oproessor. This estimation problemhas been addressed elsewhere [2, 8℄ and is not the sub-jet of this paper. Partitioning extensions related tothe optimizing transformations will be overed in therespetive setions.

However, automati partitioning is not always de-sirable. The user might want to inuene the result.Therefore, our prototype ompiler produes explana-tions about whether a loop is a hardware andidateor not. Hene the user an hange the program a-ordingly, for instane by substituting oating pointwith �xed point data, or by eliminating dependenes.For the andidates, area and speed estimations aregiven as well. Thus an experiened user an assess thehanes of improving the generated iruit manuallyand partition the program himself.The program running on the host is generated bysubstituting the hosen loops by runtime library allsfor on�guring and exeuting the pipeline as well asopying data between host and oproessor. They re-on�gure the FPGAs if a new oproessor is needed.Library Instantiation and Integration The DGsare transformed into an FPGA spei� netlist by in-stantiating all operators with maros from the om-ponent library also used for estimation. These netlistshave to be ombined with ontrol iruitry whih pro-vides aess to the host and loal memory, and loksthe iruit. They are then further proessed with o�-the-shelf vendor tools, resulting in a on�guration bit-stream. Di�erential netlist generation applies only forpartially reon�gurable systems, see Setion 5. In asethe implemented iruit does not meet the estimatedarea or delay targets, the dotted design ow yle inFigure 1 bak-annotates the DGs with aurate values,and the subsequent steps are repeated. For instane,more pipeline stages are inserted to redue the delay.Alternatively, an experiened user an review and op-timize the generated iruits manually.The ontrol iruitry an be a Pipeline Control Unit[2, 8, 9℄ whih is initialized by the host, but aessesvetor data from loal memory and runs the pipelinewithout host interation. The length of a pipeline y-le is determined by the number of memory aessesper yle, given by the number of vetor inputs andoutputs. Alternatively, the pipeline an diretly om-muniate with the host or with external data souresand sinks. Pipeline vetorization is not restrited to aspei� system and interfae arhiteture.4 Loop TransformationsThe ore design ow disussed so far is limited toprograms with suitable innermost loops. If the loopbody is too small to warrant the hardware overheadsor too large to �t in the given hardware, no opro-

essor an be synthesized. This setion shows howloop unrolling, loop tiling, loop merging, loop distri-bution, and loop interhange | transformation teh-niques known from parallelizing software ompilers |an be adapted to overome these problems and widenthe appliability of pipeline vetorization. Sine thetransformations naturally involve the part of the ap-pliation remaining in software, they are more sys-temati and omprehensive than just optimizing thehardware parts after partitioning and hardware gener-ation. We apply unrolling and tiling wherever possiblesine they inuene the resulting performane signi�-antly. The other transformations are only used underspei� irumstanes.The transformations generate new variations of theandidates and add them to the internal program rep-resentation. Then DG generation, pipelining and areaestimation are repeated for the new loops (see path I inFigure 1). Finally, the best suited among the originaland alternative oproessors are implemented (pathIII, Figure 1). Sine the transformations only manip-ulate the internal program and high-level DG repre-sentations, all interesting alternatives an be gener-ated quikly. Only the implementation of the seletedoproessors involves running slow hardware designtools, suh as plae and route tools.Loop Unrolling In software ompilers, loop un-rolling is an important tehnique to inrease basiblok sizes, extending the sope of loal optimizations.Unrolling inner loops results in larger loop bodies. Forpipeline vetorization, this means larger oproessorsand therefore more potential parallelism. However,the size of the oproessors must math the availableFPGA resoures.We gain the most by ompletely unrolling a andi-date loop. This is possible if its bounds are onstant.This situation ours in many programs, for instanein image proessing appliations with loops over small,onstant-size templates [10℄. Spei� examples inludethe skeletonization program used in Setion 6, or �l-ters with a onstant number of taps.The inner loop is ompletely removed so that theouter loop an be vetorized. Sine the new loop bodymight be too large for the given FPGA resoures, orthe oproessor might be too slow due to too manyvetor inputs and outputs, unrolling might not leadto a feasible pipeline oproessor for the outer loop.Therefore partitioning will deide if the original or theunrolled andidate is seleted.Let us now onsider partial unrolling. If an innerloop is only partially unrolled, the next outer loop an-

not be vetorized and remains in software. This meansthat unrolling n iterations also inreases the number ofvetor inputs and outputs and the length of a pipelineyle n-fold, thus annihilating the speedup gained byfewer loop iterations.4 Hene partial loop unrollingis not useful for pipeline vetorization. However, itwould be useful if the outer loop was vetorized. Thisis ahieved by loop tiling.Loop Tiling Loop tiling is an alternative transfor-mation for ases where omplete unrolling is not ap-pliable due to variable loop bounds or resulting o-proessors beoming too large. In these ases it is verybene�ial to partially unroll a loop, thereby adjustingthe iruit size to the given hardware resoures, andvetorize the next outer loop. Loop tiling ahieves thisby ombining loop partitioning and interhange. Weadjust this tehnique for pipeline vetorization.Transformation steps (1) and (2) in Figure 4 showloop tiling in the general form used here. The trans-formation works on two nested loops where PRE(i)and POST(i) do not ontain loops themselves. Theinner loop is partitioned in tiles whih will eventuallybe unrolled. The tile size tsize is hosen as the max-imum number of \proessing elements" (instanes ofthe loop body F(i,j)) �tting in the given hardwareresoures along with the operations in PRE(i) andPOST(i)whih are exeuted before the �rst tile and af-ter the last tile, respetively. Hene tsize is estimatedas tsize = (areaHW � areaPRE � areaPOST)=areaFwhere areaHW is the size of the hardware resoures,areaPRE , areaPOST and areaF are the estimated sizesof PRE(i), POST(i) and F(i,j), and / denotes inte-ger division. Loop tiling will then result in a oproes-sor whih is approximately tsize times larger and tsizetimes faster than the oproessor generated from theoriginal loop.Transformation step (1) partitions the loop for agiven tsize and renormalizes the bounds and steps.Rather than unrolling the inner loop, step (2) inter-hanges the outer loop with the tile loop. This allowsus to vetorize the former outer i-loop and to unrollthe redued inner j-loop without onsidering the (nowoutermost) tile loop. PRE(i) and POST(i) were �rst\sunk" in the tile loop (by adding guards) sine inter-hange is only possible for perfetly nested loops (withno statements between the inner and outer loop).However, loop tiling is not possible if the boundsof the inner loop depend on the outer loop index or if4Note that this is not automatially the ase for ompletelyunrolled loops sine the outer loop (with another index variable)is vetorized.

1 for (i=0; i<M; i++) {2 PRE(i);3 for (j=0; j<n; j++)4 F(i,j);5 POST(i); })(1) 1 for (i=0; i<M; i++) {2 PRE(i);3 for (jt=0; jt<(n-1)/tsize+1; jt++)4 for (j=0; j<min(tsize,n-jt*tsize); j++)5 F(i,j+jt*tsize);6 POST(i); })(2) 1 for (jt=0; jt<(n-1)/tsize+1; jt++)2 for (i=0; i<M; i++) {3 if (jt==0) /* first tile */4 PRE(i);5 for (j=0; j<min(tsize,n-jt*tsize); j++)6 F(i,j+jt*tsize);7 if (jt==(n-1)/tsize) /* last tile */8 POST(i); })(3) 1 for (jt=0; jt<(n-1)/tsize+1; jt++) {2 for (i=0; i<M; i++) {3 if (jt==0) /* first tile */4 PRE(i);5 for (j=0; j<tsize; j++)6 if (jt!=(n-1)/tsize || j<(n-1)%tsize+1)7 F(i,j+jt*tsize);8 if (jt==(n-1)/tsize) /* last tile */9 POST(i); } }
)(4)

1 for (jt=0; jt<(n-1)/tsize+1; jt++) {2 for (i=0; i<M; i++) {3 if (jt==0) /* first tile */4 PRE(i);5 F(i,jt*tsize); /* no guard neessary */6 if (jt!=(n-1)/tsize || 1<(n-1)%tsize+1)7 F(i,1+jt*tsize);8 ...9 if (jt!=(n-1)/tsize ||10 tsize-1<(n-1)%tsize+1)11 F(i,tsize-1+jt*tsize);12 if (jt==(n-1)/tsize) /* last tile */13 POST(i); } }
)(5)

1 guard_1 = 1<(n-1)%tsize+1;2 guard_2 = 2<(n-1)%tsize+1;3 ...4 guard_last = tsize-1<(n-1)%tsize+1;5 for (jt=0; jt<(n-1)/tsize+1; jt++) {6 first_tile = jt==0;7 last_tile = jt==(n-1)/tsize;8 for (i=0; i<M; i++) {9 if (first_tile)10 PRE(i);11 F(i,jt*tsize); /* no guard neessary */12 if (!last_tile || guard_1)13 F(i,1+jt*tsize);14 ...15 if (!last_tile || guard_last)16 F(i,tsize-1+jt*tsize);17 if (last_tile)18 POST(i); } }Figure 4: Hardware spei� loop tiling.

data dependenes prevent the loop interhange. For-tunately this an be heked before starting the entiretransformation sine step (2) is legal i� the originalloops are fully permutable [11℄. This is the ase if alldependenes arried by these loops have non-negativedistanes. This ondition an be tested during depen-dene analysis. It means that no dependene on anearlier iteration of the inner loop is allowed. In termsof the generated pipelines, no bakward dataow be-tween \proessing elements" is allowed, but non-loalforward ow is.The output of step (2) annot diretly be vetor-ized. Thus we devise additional hardware spei�transformations extending software loop-tiling. Thenon-onstant upper bound min(tsize; n� jt � tsize)prevents unrolling the inner loop. Sine tsize is on-stant, the upper bound an never be larger, and wesubstitute it by tsize. To maintain orretness, theloop body F has to be guarded by j < n � jt � tsizefor the ase that n � jt � tsize is the atual mini-mum. This guard an only be wrong for the last tilejt = (n� 1)=tsize, so we an rewrite it tojt 6= (n� 1)=tsize_ j < (n� 1)%tsize+ 1where % denotes the modulo operator. Step (3) showsthis transformation.Now the inner loop an be unrolled in step (4).Unfortunately the guards have to be repliated, too.5Implementing them in hardware would inrease thepipeline area onsiderably. Fortunately this is not ne-essary, sine their values do not depend on the indexvariable i. We an assign ags outside the vetor-ized loop (in software) and pass them to the hard-ware. Step (5) in Figure 4 shows this �nal transfor-mation. Note that guard 1 to guard last need onlybe omputed one sine they do not hange in the tileloop, whereas first tile and last tile need to beadjusted in the tile loop. The resulting program gen-erates a DG adjusted to the given hardware resoures.An example will be given in Setion 6.Loop Merging Loop merging is another means ofinreasing parallelism in loop bodies. Its sope is, how-ever, rather limited sine loops (or loop nests) musttraverse exatly the same index spae to allow merg-ing. Moreover, all dependenes of the original loopsmust be preserved in the merged loop. A simple ex-ample is given in Figure 5. Merging is legal if F and Gonly depend on p1[v℄[h℄ and p2[v℄[h℄ respetively.However, a more realisti program where F and G are5Only for j = 0, the ondition is always true beause everytile performs at least one inner loop iteration. Hene it an beomitted.

for instane linear image proessing operators depend-ing on a 3� 3 neighborhood6 has dependenes whihprevent diret merging. This is beause new p2 valueshave to be omputed for the entire neighborhood be-fore a new p3 value an be omputed. Fortunately thisdependene does not mean the loops annot overlap;they an if the seond operator only starts when the�rst has �nished omputing the �rst row. We developa new transformation whih merges loops systemati-ally even if there are loal dependenes like these.for (v=1; v<vlen-2; v++)for (h=1; h<hlen-2; h++)p2[v℄[h℄ = F(p1); /*A*/for (v=1; v<vlen-2; v++)for (h=1; h<hlen-2; h++)p3[v℄[h℄ = G(p2); /*B*/) for (v=1; v<vlen-2; v++)for (h=1; h<hlen-2; h++){p2[v℄[h℄ = F(p1); /*A*/p3[v℄[h℄ = G(p2); /*B*/}Figure 5: Loop merging.Our strategy is to delay the seond loop body B(with respet to the outermost loop) by d iterationswhere d is large enough to preserve all dependenes. dis determined by diretly merging the loops and hek-ing for anti-dependenes arried by the outermost loopfrom a statement in B to a statement in A. They in-diate a dependene in the original loops from iter-ation i in A to iteration j in B with j < i. Thisdependene has been violated by merging. We deter-mine d as the largest ourring anti-dependene dis-tane. For instane, in Figure 5, a right-hand-sideaess to p2[v-1℄[h℄ in B and a left-hand-side aessto p2[v℄[h℄ in A establish an anti-dependene withdistane 1. If no anti-dependenes exist, d = 0 anddiret merging is possible. However, if irregular anti-dependenes exist (no distane an be determined),merging is not possible.Let us onsider the ase d > 0. We an delay loopbody B by subtrating d from all ourrenes of theouter loop index in B. Additionally, the upper boundof the outer loop has to be inreased by d to exe-ute the delayed iterations on B. A and B have tobe guarded so that the �rst d iterations are only ex-euted by A and the last d iterations only by B. Fig-ure 6 shows the result for the operators dependingon a 3 � 3 neighborhood. In this ase d = 1; Fig-ure 7 (a) shows the orresponding DG. We see thatthe merged pipeline requires �ve vetor inputs andtwo outputs. This might slowdown the pipeline on-siderably and make merging not worthwhile. It mustbe heked by the �nal oproessor seletion in thehardware/software partitioning phase. On the other6That is, p2[v℄[h℄ = F(p1[v-1℄[h-1℄, p1[v-1℄[h℄, ...,p1[v+1℄[h℄, p1[v+1℄[h+1℄); and analogous for G.

hand, we an eÆiently implement these vetor inputsand outputs on arhitetures with several onurrentlyaessible memory banks by alloating p1, p2 and p3to di�erent banks. We disuss a detailed ase studyon this in Setion 6.for (v=1; v < vlen-2+d; v++)for (h=1; h < hlen-2; h++) {if (v < vlen-2) /* A */p2[v℄[h℄ = F(p1[v-1℄, p1[v℄, p1[v+1℄);if (v >= 1+d) /* B */p3[v-d℄[h℄ = G(p2[v-1-d℄, p2[v-d℄, p2[v+1-d℄); }Figure 6: Generalized loop merging result.
F

p1[v-1]

p1[v]

p1[v+1]

(b) d=2

p2[v]

p2[v-2]

p2[v-1]

p2[v-3]

G

(a) d=1

p2[v-2]

p2[v-1]

p1[v-1]

p1[v] F

p1[v+1]

G p3[v-1]

p2[v]

p3[v-2]

Figure 7: Dataow graphs for merged loop.By slightly hanging this transformation, it be-omes suitable for multi-FPGA systems. Figure 7 (b)shows the resulting DG if we \overdelay" B by one(d = 2 in this example). In this ase, the pipelinesof the original loop bodies beome ompletely inde-pendent and ommuniate only via memory. Henethey an easily be alloated to separate FPGAs whihshare aess to a memory bank for array p2. In thisase we do not really merge the loops but determinehow two (or more) pipelines an overlap forming aomposite pipeline. For n pipelines, a speedup fatorup to n an be ahieved ompared to sequential exeu-tion. This would not be possible without the analysisinformation. The minimal or overdelayed d-value ishosen depending on the given arhiteture.Other Loop Transformations Loop distributionis the opposite of loop merging. It results in smallerpipelines and thus an be applied if a loop body istoo large to �t on the given hardware. A loop an-not be distributed if dependenes of the original loopare violated. As in loop tiling | whih is a formof loop distribution | pipeline feedbak paths mustnot be ut. Loop interhange swaps perfetly nestedloops. As disussed for loop tiling, it is legal if theinterhanged loops are fully permutable. This trans-

formation does not hange the size of the generatedhardware, but an inrease the length of the vetor-ized loop, thereby reduing the overhead for settingup, �lling and ushing the pipeline. Furthermore, itan inrease the loality of data aesses by hangingthe index variable relevant for vetorization. This isneessary for some memory aess models. Finally,strip mining (the �rst step of loop tiling) an redueloal memory requirements if ombined with array re-gion analysis and applied to the vetorized loop.We do not attempt to transform entire loop nestsas in [11℄ sine it is diÆult to de�ne a strategy forsuh a global transformation in the ontext of pipelinevetorization. This is an area of future researh. Inaddition, our ompiler provides feedbak to the user toallow manual improvements of the program. Chang-ing an entire loop nest would make the ompiler lessunderstandable and preditable, and would thereforelimit the ability of the user to improve the program.Partitioning Extensions Automati hardware/software partitioning is extended by a reursive algo-rithm whih selets the transformed loop whih resultsin the largest feasible oproessor. Alternatively, theuser selets the applied transformations. He an alsoselet parameters as the tile size. This is espeiallyuseful if the area targets are not met and the dotteddesign ow yle in Figure 1 is ativated.5 Run-time Ciruit SpeializationConstant propagation has long been used in soft-ware and hardware ompilers to optimize programs oriruit designs. The advent of reon�gurable hard-ware has opened the opportunity to propagate val-ues whih are not onstant, thereby reduing a de-sign's delay and area [12℄. Whenever a value hanges,the iruit is reon�gured. Rather than hanging theinput of exible operators, a design whih exploitsrun-time reon�guration (RTR) uses smaller opera-tors obtained by onstant propagation. Hene moreof a program's operators an be implemented on agiven hardware area. Beause of the reon�gurationoverhead, only values hanging infrequently should beonsidered. We therefore only onsider those variablesfor value propagation whih do not hange inside theloops to be vetorized. The hardware/software par-titioning must evaluate the trade-o� between designimprovement and reon�guration overhead.We distinguish two ases of RTR. First, the numberof propagated values is limited and the values them-

selves are known at ompile time. Seond, there isan arbitrary number of values unknown at ompiletime. We present methods for exploiting these asesfor pipeline vetorization next.Limited Value Propagation If the number of pos-sible values is limited, the hardware andidate an bereprodued for all values. Consider the transforma-tion of the example in Figure 8. The program is astring pattern mather where PM(x, i, pat) omputesa boolean value indiating if the input string x on-tains the pattern pat at position i. The original ver-sion uses the variable input pat in the FOR-loop. Bystandard de�nition-use analysis, the onditional as-signment to pat an be propagated to its use in theFOR-loop (step (1) in Figure 8). The next step (2)moves the evaluation of sel out of the FOR-loop. Theloop is dupliated, but eah instane now has a on-stant input to PM whih results in smaller and fasterhardware. This transformation an easily be extendedfor more than two values or more than one variablebeing onsidered. It performs onstant propagationin software and e�etively produes several indepen-dent loops. Standard hardware generation is applia-ble, and the design ow path I in Figure 1 is used.As with the other loop transformations the originalprogram ode is retained, sine only the partitioningphase deides if the propagated version will be used.1 pat = (sel) ? "new" : "not";2 ...3 for (i=0; i<N-2; i++)4 y[i℄ = PM(x, i, pat);)(1) 1 for (i=0; i<N-2; i++)2 y[i℄ = PM(x, i, ((sel) ? "new" : "not"));)(2) 1 if (sel)2 for (i=0; i<N-2; i++)3 y[i℄ = PM(x,i,"new");4 else5 for (i=0; i<N-2; i++)6 y[i℄ = PM(x,i,"not");Figure 8: Limited value propagation.We an also generate independent loops for tiledloops if the tiling is neessary due to limited hardwareresoures, while the inner loop length (and thereforethe number of tiles) stays onstant. Unrolling the tileloop (whih is the outermost loop onsidered) gener-ates an independent vetorizable loop for every tilewith onstant values for jt and for all guards (f.Figure 4). Note however that the tiling transforma-tion should be repeated if RTR is onsidered sinevalue propagation redues the area of a \proessing

element". Hene more elements �t on the availablehardware, and the tile size an be inreased.This ase of RTR is suitable for hip-level and par-tially reon�gurable systems. However, the trade-o�swill be di�erent. If partial reon�guration is not sup-ported, the reon�guration time will be large, regard-less of how small the di�erene between two on�g-urations is. So hip-level RTR will not be useful forexamples like the pattern mather in Figure 8 whereonly three omparators an be simpli�ed. The gainwill be negligible ompared with the reon�gurationoverhead.On the other hand, for partially reon�gurable de-vies the reon�guration time is proportional to theamount of logi altered. We use tools like Con�gDi�[13℄ to determine the fastest partial on�guration toswith between two similar designs. Hene smallhanges an be performed very quikly.Arbitrary Value Propagation The seond aseof run-time reon�guration ours if a variable an as-sume any value at run-time. Then we annot prepareseparate on�gurations for eah of them at ompiletime. Sine it is prohibitive to run the entire designtool suite for new values at run-time, this ase annotbe handled with FPGAs whih an only be on�guredompletely. It is only suitable for partially reon�g-urable FPGAs whih allow to adapt an operator to anyonstant input values within a few yles at run-time.Therefore a iruit \skeleton" is synthesized whih re-serves area for the largest possible onstant input op-erator. At run-time all these operators are adaptedto the given values. Doing this also requires a speialomponent library whih provides the operator \skele-tons" along with information on how to generate theon�guration instrutions for a given input value anda given position of the operator on the hip.Generating suh a iruit \skeleton" adds an al-ternative implementation for a given hardware andi-date, but the andidate loop itself remains unhanged.Sine the onstant input operators have smaller delaysthan their exible ounterparts, their pipelined ver-sions might ontain less registers. Therefore pipelin-ing and area estimation | but not DG generation |is repeated for these new implementations (path IIin Figure 1). As for limited value propagation, thetile size for partially unrolled loops is inreased. Thustiling should be repeated.This is the most exible approah to RTR. Unfortu-nately, generating suh designs has not yet been om-pletely automatized. However, we present a manuallyimplemented ase study in Setion 6.

RTR Partitioning and Integration In RTR sys-tems, the original or the speialized iruit must beseleted automatially (unless only the speialized ir-uit �ts on the given hardware). There is a trade-o�between the reon�guration time and the amount ofomputation performed in one on�guration. The re-on�guration time depends on the FPGA tehnology(partial or omplete reon�guration) and on the reon-�guration frequeny. The latter depends on the overallontrol ow of the program. Its analysis involves es-timating loop and branh exeution ounts and mustbe addressed in the ontext of the overall speedup es-timation, f. [2, 8℄. Alternatively, an implementationan be seleted manually.For partially reon�gurable systems, di�erentialnetlists an be generated. This additional step re-plaes omplete on�gurations by di�erential on�gu-rations whih just hange the di�erenes between twoonseutive on�gurations. Thereby even the on�g-uration times of unrelated oproessors are redued,espeially if they share the same ontrol iruitry.6 Implementation and Case StudiesWe have implemented a simple version of the oredesign ow in theModula Pipeline Compiler prototype[8℄. Here we present ase studies whih demonstratethe new tehniques presented in this paper. The re-sults have been produed with the assistane of a pro-totype ompiler based on the SUIF framework [14℄,whih provides C and Fortran frontends, and power-ful loop analysis and transformation libraries.String Pattern Mather This ase study evalu-ates the bene�ts of loop tiling and run-time iruit spe-ialization. We implement a string pattern matheron a PC-based Xilinx 6200DS board using a XC6216FPGA. This program, shown in Figure 9, is the sameas that in Figure 8, but with arbitrary pattern lengthsand values. Therefore the inner loop annot be un-rolled. However, the inner loop an be vetorized andthe tiling transformation an be applied. The result-ing pipeline iruit is a linear datapath of ompara-tors and registers. Both ompile-time reon�gurable(CTR) and run-time reon�gurable (RTR) versionsare possible. The CTR version ontains generi om-parators and the XC6200's proteted registers so thatpattern bytes an be loaded diretly from the host,whereas the speialized RTR version ontains onstantomparators. The pipelines have been plaed auto-matially. The XC6216 is large enough to implement

for (i=0; i<N-P+1; i++) {y[i℄ = 1;for (j = 0; j<P; j++)if (pat[j℄ != x[i+j℄)y[i℄ = 0; }Figure 9: String pattern mather program.the Pipeline Control Unit (about 25% of the hip area)and 54 CTR proessing elements or 90 smaller, spe-ialized RTR proessing elements.Soft- Inner loop Tiled vet.ware vetorizat. CTR RTRPerformane 24.8 12.5 671 1,032Speedup | 0.5 27 42Table 1: Analysis of string pattern mather: raw perfor-mane in 106 omparisons/s and speedup over software.Table 1 shows the raw performane of the imple-mentations, inluding speedups over software on a 300MHz Pentium II PC. All values are atual measure-ments, exept those related to inner loop vetorizationwhih are estimated. The values for the tiled imple-mentations inlude the times for hanging a tile, amor-tized over 100,000 pipeline yles. The pipeline yleis 80 ns for all iruits.7However, the hardware performane data do notinlude the overheads for initialising the FPGA on-�guration and data transfer sine their signi�anedepends on the overall number of tiles. The CTRand RTR performane numbers only onern the asewhen all proessing elements are used. Figure 10shows the overall exeution times inluding on�gu-ration and data transfer times, whih are indiated bytwo additional lines in the graph. Sine the exeutiontime of a tiled implementation only depends on thenumber of tiles, their graphs are step funtions.We onlude that loop tiling is a transformationwhih enables a onsiderable speedup for string pat-tern mathing in the �rst plae, and run-time reon�g-uration further improves the performane by approx-imately 50% for large patterns.Morphologial Skeletonization We now analyzethe morphologial skeletonization algorithm from [10℄.This example evaluates loop unrolling and general-ized loop merging. Figure 11 shows the algorithm's7The Pipeline Control Unit an aess one loal memoryword in 40 ns. Therefore a pipeline yle with two aessestakes 80 ns on our system.

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450

pattern length

ex
ec

u
ti

o
n

 t
im

e
 [

m
s]

configuration

CTR/tiled

data transfer

inner loop vectorization

software

RTR/tiled

Figure 10: Exeution times for string pattern matherfor N = 100,000.struture. IMAGE is initialized with the input image,and SKELETON with an empty image. Then the opera-tors erosion, dilation and di�erene/union are repeat-edly performed on the data until IMAGE is ompletelyeroded. The dotted arrows indiate whih operators'outputs are used for the next repetition.
Erosion DilationIMAGE

SKELETON Union

DifferenceFigure 11: Morphologial skeletonization.The erosion operator onsists of two nested innerloops whih iterate over a onstant 5 � 5 template.Pipelining the innermost loops would not be bene�-ial sine it only ontains one operator omputing theminimum of two inputs. However, after ompletelyunrolling both inner loops, a pipeline ontaining 20minimum operators an be generated. It an omputeone output pixel every pipeline yle.The upper part of Table 2 gives raw performane,pipeline frequeny and exeution time data (for a512�512 pixel image), as well as the total time for theindependent exeution of all skeletonization operators,based on 50 ns memory aesses. Dilation is similar toerosion, but the ombined di�erene and union opera-tor loop is not very eÆient, sine it ontains only twooperations and no inner loops to unroll. Note that thefrequeny is higher for arhitetures with two memorybanks, sine onurrent read and write aesses arepossible.The performane an be improved by merging alloperators to produe one large pipeline. The last line

1 memory bank 2 memory banksF P T F P TErosion 3.3 66.7 79 4.0 80.0 66Dilation 3.3 66.7 79 4.0 80.0 66Di�./Union 5.0 10.0 52 10.0 20.0 26Total 210 158Merged 1.7 70.0 157 3.3 140.0 79Table 2: Analysis of skeletonization operators: pipelinefrequeny F in MHz, raw performane P in 106 opera-tions/s, exeution time T for a 512� 512 image in ms.in Table 2 shows that the advantage of loop mergingis limited for one memory bank, sine too many mem-ory aesses have to be performed sequentially in oneyle. For two banks, however, merging is e�etive. Ithalves the exeution time.We have implemented in the Handel-C language themerged pipeline on an ESL RC1000-PP board [15℄.The design, running at 20 MHz, ompletes one skele-tonization iteration for a 512� 512 pixel image in 97ms. Even inluding data transfer (8 ms for the imagedata using paked DMA, amortized over 15 to 30 it-erations), the hardware was measured to be 11 timesfaster than software (1,045 ms on the 300 MHz PC).8To summarize, loop unrolling is an enabling trans-formation for the erosion and dilation loops, whereasgeneralized loop merging further improves the entireskeletonization program.7 ConlusionThis paper presents a framework based on pipelinevetorization for produing optimized pipelined ir-uits from high-level programs. The framework in-ludes new optimizing transformations whih us-tomize hardware oproessors to meet spei� FPGAresoure onstraints and exploit run-time reon�gura-tion. The ase studies show that some transforma-tions result in hardware aeleration whih annot beahieved easily by hand. Others improve the perfor-mane of oproessors signi�antly. Our frameworkan selet, generate and integrate oproessors auto-matially while retaining the exibility to allow usersto inuene the synthesis proess. Future work willombine our �ne-grain vetorization with oarse-grain,8The RC1000-PP's Xilinx XC4085XL FPGA also has to beon�gured one during program exeution. Though we utilizeonly 30%, the hip must be reon�gured ompletely. This takes780 ms on our board (despite only 240 ms pure on�gurationtime). We expet muh faster on�guration for the Virtex hip.

task-level parallelism for large multi-FPGA systems.Strategies to transform entire loop nests will also bestudied. We are interested in supporting various inputlanguages, partiularly parallel ones, in order to opti-mize existing parallel programs. Further extensionswill allow users to inlude manually designed hard-ware bloks and to synthesize digit-serial designs.Referenes[1℄ C.E. Kozyrakis and D.A. Patterson. A new diretionfor omputer arhiteture researh. IEEE Computer,Nov. 1998.[2℄ M. Weinhardt. Compilation and pipeline synthesis forreon�gurable arhitetures. In Reon�gurable Arhi-tetures Workshop RAW'97, 1997.[3℄ M.B. Gokhale and J.M. Stone. NAPA C: om-piling for a hybrid RISC/FPGA arhiteture. InPro. FCCM'98. IEEE Computer Soiety Press, 1998.[4℄ D.C. Cronquist, P. Franklin, S.G. Berg and C. Ebel-ing. Speifying and ompiling appliations for RaPiD.In FCCM'98. IEEE Computer Soiety Press, 1998.[5℄ E. Fabiani, D. Lavenier and L. Perraudeau. Loop par-allelization on a reon�gurable oproessor. In Pro.WDTA'98: Workshop on Design, Test and Applia-tions, Dubrovnik, Croatia, June 1998.[6℄ M. Wolfe. High Performane Compilers for ParallelComputing. Addison-Wesley, 1996.[7℄ C.E. Leiserson and J.B. Saxe. Optimizing syn-hronous systems. Journal of VLSI and ComputerSystems, 1:41{67, 1983.[8℄ M. Weinhardt. �Ubersetzungsmethoden f�ur struk-turprogrammierbare Rehner (Compilation tehniquesfor struturally programmable omputers, in Ger-man). PhD thesis, Universit�at Karlsruhe, July 1997.[9℄ M. Weinhardt. Portable pipeline synthesis forFCCMs. In Pro. FPL'96. Springer, 1996.[10℄ H.R. Myler and A.R. Weeks. Computer ImagingReipes in C. P T R Prentie Hall, 1993.[11℄ M.E. Wolf and M.S. Lam. A loop transformation the-ory and an algorithm to maximize parallelism. IEEETrans. on Parallel and Distr. Systems, Ot. 1991.[12℄ M.J. Wirthlin and B.L. Huthings. Improving fun-tional density through run-time onstant propagation.In Pro. FPGA'97. ACM Press, February 1997.[13℄ W. Luk, N. Shirazi and P.Y.K. Cheung. Compi-lation tools for run-time reon�gurable designs. InPro. FCCM'97. IEEE Computer Soiety Press, 1997.[14℄ The Stanford SUIF Compiler Group. Homepagehttp://suif.stanford.edu.[15℄ Embedded Solutions Limited. Homepagehttp://www.embedded-solutions.ltd.uk.

