
DOMAIN-SPECIFIC HYBRID FPGA:
ARCHITECTURE AND FLOATING POINT APPLICATIONS

Chun Hok Ho1, Chi Wai Yu1, Philip H.W. Leong2, Wayne Luk1, Steven J.E. Wilton3

1Department of Computing 2Dept. of Computer 3Dept. of Electrical
Imperial College London Science and Engineering and Computer Engineering

London, England Chinese University of Hong Kong Universityof British Columbia
{cho,cyu,wl}@doc.ic.ac.uk Hong Kong Vancouver, B.C., Canada

phwl@cse.cuhk.edu.hk stevew@ece.ubc.ca

ABSTRACT

This paper presents a novel architecture for domain-specific
FPGA devices. This architecture can be optimised for both
speed and density by exploiting domain-specific informa-
tion to produce efficient reconfigurable logic with multiple
granularity. In the reconfigurable logic, general-purposefine-
grained units are used for implementing control logic and
bit-oriented operations, while domain-specific coarse-grained
units and heterogeneous blocks are used for implementing
datapaths; the precise amount of each type of resources can
be customised to suit specific application domains. Issues
and challenges associated with the design flow and the archi-
tecture modelling are addressed. Examples of the proposed
architecture for speeding up floating point applications are
illustrated. Current results indicate that the proposed archi-
tecture can achieve 2.5 times improvement in speed and 18
times reduction in area on average, when compared with tra-
ditional FPGA devices on selected floating point benchmark
circuits.

1. INTRODUCTION

FPGA technology has been widely adopted to speed up com-
putationally intensive applications. Most current FPGA de-
vices employ an island-style fine-grained architecture, with
additional fixed-function heterogeneous blocks such as mul-
tipliers and block RAMs; these have been shown to have se-
vere area penalties compared with standard cell ASICs [1].
In this work, we propose domain-specific coarse-grained ar-
chitectures which can have advantages in speed, density and
power over more conventional heterogeneous FPGAs. One
key issue associated with such an approach is identifying the
correct amount of coarse-grained logic necessary to enhance
the performance of an application without adversely affect-
ing area and flexibility. For example, an application that
demands high performance floating point computation can
potentially achieve better speed and density by introducing
dedicated embedded floating point units (FPUs). However,

for those applications which do not have any floating point
computations, the FPU resources will be wasted. To address
this issue, we advocate domain-specific FPGAs with flexi-
ble, parameterised architectures that can be generated to ad-
dress application sets that are smaller than those targetedby
conventional FPGAs, but possibly larger than that of ASICs.

We introduce a hybrid FPGA model in which both fine-
grained and coarse-grained units are considered important.
Given a domain-specific application requirement, a recon-
figurable fabric consisting of both types of units is gener-
ated, the coarse-grained units being used for the datapath
and fine-grained units for control and bit-oriented opera-
tions. A model is also introduced that allows us to search
for the best proportion of each type of fabric, and a method
for rapidly evaluating the performance of the architectureis
employed.

The key contributions of this paper are:

• A generic hybrid FPGA architecture that supports con-
figurable resources of multiple granularity that can be
customised for different applications.

• Use of this architecture to design a domain-specific
hybrid FPGA for various floating point computations.

• Demonstration that a single configuration of a float-
ing point specific hybrid FPGA is able to achieve im-
provements in both speed and area compared with com-
mercial and proposed reconfigurable devices on se-
lected floating point benchmarks.

The rest of this paper is organised as follows. Section 2
presents related work and illustrates certain commonly em-
ployed FPGA fabric architectures. Section 3 illustrates the
hybrid FPGA architecture optimised for floating point com-
putations; the issues and challenges associated with its de-
sign flow are also discussed. Section 4 demonstrates a method-
ology to model the proposed architecture. Section 5 contains
results and analysis, and Section 6 concludes the paper.

2. BACKGROUND

2.1. Related work

FPGA architectures containing coarse-grained units have been
reported in the literature. Compton and Hauck propose a
domain-specific architecture which allows the generation of
a reconfigurable fabric according to the needs of the applica-
tion [2]. Ye and Rose suggest a coarse-grained architecture
that employs bus-based connections, achieving a 14% area
reduction for datapath circuits [3].
The study of embedded heterogeneous blocks for the accel-
eration of floating point computations has been reported by
Roseler and Nelson [4] as well as Beauchamp et. al. [5].
Both studies conclude that employing heterogeneous blocks
in designing an FPU can achieve area saving and increased
clock rate over a fine grained approach.
In earlier work, we describe a methodology to estimate the
impact of incorporating an embedded block in an existing
FPGA [6]. In this paper, we employ this methdology to esti-
mate the impact of including a floating-point coarse-grained
embedded core.

2.2. FPGA architectures

The heart of an FPGA is a reconfigurable fabric. The fabric
consists of arrays of fine-grained or coarse-grained units.A
fine-grained unit usually implements a single function and
has a single bit output. The most common fine-grained unit
is a K-input lookup table (LUT), where K typically ranges
from 4 to 6. The LUT can implement any boolean equation
of K inputs. This type of fabric is called a LUT-based fab-
ric. Several LUT-based cells can be joined in a hardwired
manner to make a cluster. This results in little loss in flex-
ibility but can reduce area and routing resources within the
fabric [7].
A coarse-grained unit is usually less flexible and typically
much larger than a fine-grained one, but is often more effi-
cient for implementing specific functions. The coarse-grained
unit is usually programmable to some degree, combining
several functions such as those in an arithmetic logic unit
(ALU). Outputs are often multibit. They can be parame-
terised in terms of features such as bus-width and function-
ality. As an example, the ADRES architecture [8] assumes
that the wordlength and the functionality of a coarse-grained
unit is the same as the attached processor. We have also
proposed a word-based synthesisable architecture, and show
that it has large improvements in area over a similar fine-
grained approach [9].
Heterogeneous functional blocks are found on commercial
FPGA devices. For example, a Virtex II device has embed-
ded fixed-function 18-bit multipliers and a Xilinx Virtex 4
device has embedded DSP units with 18-bit multipliers and
48-bit accumulators. The flexibility of these blocks is lim-

ited and it is less common to build a digital system solely
using these blocks. When the blocks are not used, they
consume die area and contribute to increased delay without
adding to functionality.
As shown in the above examples, FPGA fabric can have dif-
ferent levels of granularity. In general, a unit with smaller
granularity has more flexibility, but can be less effective in
speed, area and power consumption. Fabrics with differ-
ent granularity can coexist as evident in many commercial
FPGA devices. Most importantly, the above examples il-
lustrate that FPGA architectures are evolving to be more
coarse-grained and application-specific. The proposed ar-
chitecture in this paper follows this trend, focusing on float-
ing point computations.

3. HYBRID FPGA ARCHITECTURE

Requirements
Before we introduce the floating point hybrid FPGA archi-
tecture, common characteristics of what we consider a rea-
sonably large class of floating point applications which might
be suitable for signal processing, linear algebra and simu-
lation are first described. Although the following analysis
is qualitative, it is possible to develop the hybrid model in
a quantitative fashion by profiling application circuits ina
specific domain.
In general, FPGA based floating point application circuits
can be divided into control and datapath portions. The data-
path typically contains floating point operators such as adders,
subtracters, and multipliers, and occasionally square root
and division operations. The datapath often occupies most
of the area in an implementation of the application. Existing
FPGA devices are not optimised for floating point computa-
tions; floating point operators consume a significant amount
of FPGA resources. For instance, if the embedded DSP48
block is not used, a double precision floating point adder re-
quires 701 slices on a Xilinx Virtex 4 FPGA, while a double
precision floating point multiplier requires 1238 slices on
the same device [10].
The floating point precision is usually a constant within an
application. The IEEE 754 standard is almost always used,
especially the single precision format (32-bit) or double pre-
cision format (64-bit). The interconnection can be bus-oriented.
The datapath can often be pipelined and routing within the
datapath may be uni-directional in nature. Occasionally there
is feedback in the datapath for some operations such as ac-
cumulation.
The control circuit is much simpler than the datapath and
therefore the area consumption is typically lower. Control
is usually implemented as a finite state machine and most
synthesis tools can produce an efficient mapping from the
boolean logic of the state machine into fine-grained FPGA
resources.

Based on the above analysis, the following presents some
basic requirements for floating point hybrid FPGA architec-
tures.

• A number of coarse-grained floating point addition
and multiplication blocks are necessary since most
computations are based on these primitive operations.
Floating point division and square root operators can
be optional, depending on the domain-specific require-
ment.

• Coarse-grained interconnection, fabric and bus-based
operations are required to allow efficient implementa-
tion and connection between fixed-function operators.

• Dedicated output registers for storing floating point
values are required to support pipelining.

• Fine-grained units and suitable interconnections are
required to support implementation of state machines
and bit-oriented operations. These fine-grained units
should be accessible by the coarse-grained units and
vice versa.

Architecture
Figure 1 shows a top-level block diagram of our hybrid FPGA
architecture. It employs an island-style fine-grained FPGA
structure with dedicated columns for coarse-grained units.
Both fine-grained and coarse-grained units are reconfigurable.
The coarse-grained part contains embedded fixed-function
floating point adders and multipliers.

The top-level architecture is inspired by existing commercial
FPGAs. However, the proportion of coarse-grained blocks
can be customised to meet design requirements. The island-
style architecture with standard interconnect structuressuch
as connection and switch boxes are used to implement the
fine-grained fabric.

Throughout this paper, we employ a 130nm technology. To
make our results consistent, we build our architecture around
the Virtex II device since it employs a comparable process
technology (0.15µm/0.12µm). Four input LUT-based fine-
grained units, similar to Xilinx Virtex II slices, are hence
employed. However, the proposed FPGA hybrid modelling
discussed in Section 4 is general and allows us to adopt other
architectures such as the 6 input LUTs in Virtex 5 and Stratix
III. We believe the same trends would be seen as we migrate
to smaller technologies and more modern FPGA architec-
tures.

The datapath for the floating point units is implemented us-
ing coarse-grained logic. The coarse-grained logic consists
of a number of coarse-grained units embedded into the fine-
grained fabric. The architecture of the coarse-grained units,
inspired by previous work [3, 9], is shown in Figure 2. It
is parameterised to support different proportions of fine and
coarse-grained elements, the parameters being detailed in
Table 1. There areD blocks in a unit,P of them are float-
ing point multipliers, anotherP of them are floating point
adders and the rest (D − 2P) are wordblocks.

Symbol Parameter Description

D Number of blocks (Including FPUs, wordblocks)
N Bit Width
M Number of Input Buses
R Number of Output Buses
F Number of Feedback Paths
P Number of Floating Point Adders and Multipliers

Table 1: Parameters for the coarse-grained unit.

The floating point multiplier block is a fixed-function block.
The floating point adder block can be configured for either
floating point addition or subtraction. This is achieved by
XORing the sign bit with the configuration bit. Each FPU
has a reconfigurable registered output and associated control
input and status output signals. The control signal is a write
enable signal that controls the output register. The statussig-
nals report the FPU’s status flags and include those defined
in IEEE standard as well as a zero and sign flag. The fine-
grained unit can monitor these flags as routing paths exist
between them. � � � � � � � � � � � � 	 � �
 �

� � � � � � � � � � � � � 	 � �
 � � �
 �� � � � � � � � � � �
 � � � � � �
 	 � �
 �
Figure 1: Architecture of the floating point hybrid FPGA.

� � ��� � � ��� � !� � " # �"
$ %�& ���# ' '�� � !� � " # �" �()*�+ �, -- . /- . �- . &- . 0*��� � !� � " # �" 1 � � � 2 �34� �� 5�"6 " 72 8 96 6 ' -# � :;6< ." 6 !" 798 96 6 ' -# �:2 �3 1 � � � 5�"6"7;8�� � !� �

= � � !� � > .< �# � 4��� > # �" 9�#< 1 � �� ?@ABC DEFGA DECHI@C DJ @DK L ? @ABC DEFGA DEC MNNK LOP IQC LBRCA L
" # �"

- . /- . �- . &- . 0* ��� � !� � " # �"�/ �, -
Figure 2: Architecture of the coarse-grained unit.

A wordblock containsN identical bitblocks, and is similar
to published designs [9]. A bitblock contains two 4-input

LUTs and a reconfigurable output register. The value ofN

depends on the size of the FPU. Bitblocks within a word-
block are all controlled by the same set of configuration
bits, so all bitblocks within a wordblock perform the same
function. A wordblock, which includes a register, can ef-
ficiently implement operations such as addition and multi-
plexing. Similar to FPUs, wordblocks generate status flags
such as MSB, LSB, carry out, overflow and zero which are
connected to the fine-grained blocks.
Apart from the control and status signals, there areM in-
put buses andR output buses connected to the fine-grained
units. The routing layout assumes that a block can only ac-
cept inputs from the left, simplifying the routing. To allow
more flexibility, F feedback registers have been employed
so that a block can accept the output from the right block
through the feedback registers. For example, the first block
can only accept input from input buses and feedback reg-
isters, while the second block can accept input from input
buses, the feedback registers and the output of the first block.
The feedback registers latch the output of a block and for-
ward it to another block. Each floating point multiplier is
logically located to the left of a floating point adder so that
no feedback register is required to support multiply-and-add
operations. The coarse-grained units can support multiply-
accumulate functions by utilising the feedback registers.
Switches in the coarse-grained unit are implemented using
multiplexers and are bus-oriented. A single set of configu-
ration bits is required to control these multiplexers, improv-
ing density compared to a fine-grained fabric. For the same
reason, the FPUs are embedded in the coarse-grained units
rather than distributed over the FPGA, such that an FPU
can exploit the bus-oriented routing resources in the coarse-
grained blocks.

4. MODELLING OF A HYBRID FPGA

A methodology, building on our earlier work [6, 9], is used
to model floating point hybrid FPGAs with different archi-
tectural parameters and coarse-grained blocks as described
in Section 3. This approach is general and can be used to
model any FPGA provided that a floorplanner and a timing
analysing tool are available for that device. In this method-
ology, an existing fine-grained commercial FPGA is used.
Fine-grained blocks in our hybrid FPGA are directly mapped
to the corresponding logic cells on the commercial FPGA.
The area and delay for the embedded coarse-grained units
are first estimated by synthesising the design using a stan-
dard cell flow. They are then modelled in a commercial
FPGA by employing blocks of logic cells with similar delay
and area. The corresponding vendor’s CAD tools are then
used to estimate the delay and area of the hybrid FPGA.
Overheads such as crossing clock domains are not consid-
ered in this work, nor are alternative approaches such as full
custom design.

We employ a parameterised synthesisable IEEE 754 com-
pliant floating point library in our experiments. The library
supports four rounding modes and denormalised numbers.
A floating point multiplier and floating point adder are gen-
erated and synthesised using a standard cell library design
flow. The Synopsys Design Compiler is used for synthesis.
During synthesis, retiming optimisation is enabled to obtain
better results.

While a custom layout design for the coarse-grained unit
can achieve much higher density and better speed, it is time
consuming to design a coarse-grained unit for each set of
architectural parameters. To allow us to explore different
parameterised coarse-grained units, we employ a synthesis-
able flow which supports different granularities. To deter-
mine suitable parameters for generation of coarse-grained
units, we first decide on an initial set of parameters and try
to map a set of benchmark circuits to the units. Two param-
eters determine whether the architecture is best-fit. The first
is the number of coarse-grained units required to implement
the circuit. The second is the percentage of blocks used in a
unit.

The best-fit architecture can be determined by varying the
parameters to produce a design with the least number of
units with maximum density on the benchmark circuits. Ex-
tra wordblocks are added to the design, allowing more flex-
ibility for implementing other circuits outside of the bench-
mark set. Manual mappings are performed for each bench-
mark. Once the parameters are determined, a Verilog netlist
is generated and synthesised together with soft-core FPUs
using the Synopsys Design Compiler (a 130nm process is
assumed throughout). Area information is obtained from
the tool directly. Timing information, however, cannot be
determined before programming the configuration bits.

During manual mapping, a set of configurations is generated
and can be used in timing analysis. We use the case analysis
feature provided in the Synopsys Design Compiler which
takes configuration bits into account in the timing analysis.

The architectural parameters: 9 blocks (D = 9), 4 input
buses (M = 4), 3 output buses (R = 3), 3 feedback registers
(F = 3), 2 floating point adders and 2 floating point multi-
pliers (P = 2) are determined empirically by trial-and-error
as explained above. We generate double precision coarse-
grained fabrics so the buswidth is 64.

LUT-based fine-grained units are mature in terms of archi-
tecture and design flow. They have been widely adopted
in commercial FPGAs. We have employed a methodology
called virtual embedded blocks (VEB) [6] to model fine-
grained units in our architecture. The VEB flow allows the
evaluation of embedded elements on FPGA devices by cre-
ating dummy logic cells that model the timing and area of
the embedded elements.

During the first step, we create an HDL description of the
control logic part of the application circuit. We then add

additional statements which instantiate the coarse-grained
units explicitly, as well as the signals between the fine-grained
and coarse-grained units. The design is then synthesised
on the target device and a device-specific netlist is gener-
ated. The synthesis tool considers the coarse-grained unitas
a black box. The area utilisation is computed by determining
the number of slices in Virtex II [11] required to implement
the application.
The second step is to obtain the timing and area models
for each instantiated coarse-grained unit as described ear-
lier. With this information, a VEB netlist can be compiled
by generating dummy cells with appropriate area and delay.
Special consideration is given to the interface between fine-
grained units and coarse-grained units to make sure that the
corresponding VEB model has sufficient I/O pins to connect
to the fine-grained routing resources. This can be verified
by keeping track of the number of inputs and outputs which
connect to the global routing resources in a slice. For ex-
ample, it is not possible to have a VEB model which has
area of 4 slices but demands 33 inputs and 9 outputs, as we
assume one slice in Virtex II can only support 8 inputs and
2 outputs. Also, as we cannot route the configuration clock
and configuration input pin to a coarse-grained unit, there
are two programming pins connected to the I/O of the host
FPGA which act as the configuration port for the coarse-
grained unit.
After generating the VEB netlist for the targeted FPGA, a
User Constraint File (UCF) which forces the VEB to be lo-
cated in a particular column is created. We then use the
vendor’s place and route tool to obtain the final area and
timing results. This represents the characterisation of a cir-
cuit implemented on the hybrid floating point FPGA with
fine-grained units and routing resources exactly the same as
the targeted FPGA.
Using commercial FPGA fine-grained units in this manner
has several advantages, since commercial quality synthesis
and place and route tools can be used in the modelling of
the hybrid FPGA. It can produce a realistic comparison to
existing FPGA devices. Furthermore, optimisations such as
retiming are available.

5. RESULTS

A set of benchmark applications are mapped to the proposed
floating point hybrid FPGA, and the results are compared
to a Virtex II device. This section introduces the circuits
and gives an example of mapping one of the circuits. A
double precision floating point hybrid FPGA is assessed.
All FPGA results are obtained using the Synplicity Synplify
Premier 8.5 for synthesis and Xilinx ISE 8.1i design tools to
place and route. All ASIC results are obtained using Synop-
sys Design Compiler V-2004.06.
Six benchmark circuits are used in this study [6]. Five of
them are computational kernels and one is a Monte Carlo

simulation datapath. We have chosen these circuits since
they are simple but are not very efficiently implemented on
general-purpose FPGA devices. We expect these applica-
tions to yield better timing and density on a floating point
hybrid FPGA.

Thebflybenchmark performs the computationz = y+x∗w

where the inputs and output are complex numbers; this is
commonly used within a Fast Fourier Transform computa-
tion. Thedscgcircuit is the datapath of a digital sine-cosine
generator. Thefir4 circuit is a 4-tap finite impulse response
filter. The mm3circuit performs a 3-by-3 matrix multipli-
cation. Theodecircuit solves an ordinary differential equa-
tion. Thebgm circuit computes Monte Carlo simulations
of interest rate model derivatives priced under the Brace,
Ga̧tarek and Musiela (BGM) framework.

In the mapping of each circuit, we assume that the two float-
ing point multipliers in the coarse-grained unit are located
at the second and the sixth block. The two floating point
adders are located in the third and the seventh block. All
other parameters are given in Section 4.

The physical die area of a Virtex II device has been re-
ported [11], and the normalisation of the area of coarse-
grained unit is estimated in Table 2. We assume that 60%
of the total die area is used for slices; the rest of the area is
due to I/O pads, block memory, multipliers etc. This means
that the assumed area of our Virtex II device is 10,912µm2.
This number is normalised against the feature size (0.15µm).
A similar calculation is used for the coarse-grained units.
The synthesis tool reports that the area of a double preci-
sion coarse-grained block is 1,256,570µm2. We further as-
sume 15% overhead after place and route based on our ex-
perience [9]. The area values are normalised against the
feature size (0.13µm). The number of equivalent slices is
obtained through the division of coarse-grained unit area
by slice area. This shows that the double precision coarse-
grained unit would take up 176 slices. The values in the
sixth and seventh columns represent the number of I/O re-
quired, while the values in brackets indicate the maximum
number of I/O allowed for the area in slices.

Although a Virtex II slice employs smaller transistors (0.12µm)
than those used for building the coarse-grained unit (0.13µm),
we do not scale the timing of the coarse-grained unit and
therefore conservative timing results are reported.

We use XC2V3000-6-FF1152as the host FPGA for the float-
ing point hybrid FPGA. We assume that 12 double precision
coarse-grained blocks are embedded into this FPGA. The
coarse-grained blocks constitute 15% of the total area in an
XC2V3000 device. The mapping is performed as described
in Section 4. Benchmark circuits are implemented on the
same device and the results are shown in Table 3.

The FPU values for the XC2V3000 device (seventh column)
are estimated from the distribution of LUTs, which is re-
ported by the synthesis tool. The logic area (eighth column)

Fabric Area (A) (µm2) Feature Size (L) (µm) Normalised Area(A/L2) Area in Slices Input Pin Output Pin

Virtex II Slice 10,912 0.15 485,013 1 8(8) 2(2)
DP-CGU 1,445,056 0.13 85,506,242 176 285 (1408) 258(352)

Table 2: Normalisation on the area of the coarse-grained units against a Virtex II slice. DP stands for double precision floating
point arithmetic. CGU stands for coarse-grained unit. 15% overheads are applied on the coarse-grained units as shown inthe
second column.

Double precision floating point hybrid FPGA XC2V3000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

of CGU (slices) (slices) (slices) (ns) (slices) (slices) (slices) (ns) (times) (times)
bfly 2 352 (2.5%) 213 (1.49%) 565 (3.9%) 9.02 12,813 (89%) 920 (6%) 13,733 (96%) 24.57 24.3 2.72
dscg 2 352 (2.5%) 309 (2.16%) 661 (4.6%) 10.11 9,287 (65%) 327 (2%) 9,614 (67%) 22.78 14.5 2.25
fir4 2 352 (2.5%) 19 (0.13%) 371 (2.6%) 9.06 11,143 (78%) 147 (1%) 11,290 (79%) 23.68 30.4 2.61

mm3 2 352 (2.5%) 290 (2.02%) 642 (4.5%) 8.9 8,071 (56%) 818 (6%) 8,889 (62%) 23.40 13.8 2.63
ode 2 352 (2.5%) 193 (1.35%) 545 (3.8%) 9.74 7,933 (55%) 305 (2%) 8,238 (57%) 21.93 15.1 2.25

bgm∗ 7 1232 (8.6%) 578 (4.03%) 1,810 (12.6%) 10.00 29,758 (208%) 539(4%) 30,207 (211%) 24.34 16.7 2.43
Geometric Mean: 18.3 2.48

Table 3: Double precision floating point hybrid FPGA results. CGU stands for coarse-grained unit and FGU stands for fine-
grained unit.Values in the brackets indicate the percentages of slices used in a XC2V3000 device.∗Circuit bgmcannot be
fitted in a XC2V3000 device. The area and the delay are obtained by implementing on a XC2V6000 device.

is obtained by subtracting the FPU area from the total area
reported by the place and route tool. As expected, the FPU
logic occupies most of the area, typically more than 90%
of the user circuits. Although thebfly circuit cannot fit in
an XC2V3000 device, it can be tightly packed into a few
coarse-grained blocks. For example, the circuitbfly has 8
FPUs which consume 89% of the total FPGA area. They can
fit into 2 coarse-grained units, which constitute just 2.5% of
the total FPGA area. Delay is reduced by 2.5 times on av-
erage. As the critical paths are in the FPU, improving the
timing of the FPU through full-custom design would further
increase the overall performance. The area reduction is sig-
nificant: the proposed architecture can reduce the area by
18 times. The saving is achieved by (1) embedded floating
point operators, (2) efficient directional routing and (3) shar-
ing configuration bits.

6. CONCLUSION

We present a hybrid FPGA architecture which involves a
combination of reconfigurable fine-grained and coarse-grained
units dedicated to floating point computations. A param-
eterisable modelling framework is proposed which allows
us to explore different configurations of this architecture.
We show that the proposed floating point hybrid FPGA en-
joys improved speed and density over a conventional FPGA
for a variety of applications. Current and future work in-
cludes developing automated design tools supporting facili-
ties such as partitioning for coarse-grained units, and explor-
ing further architectural customisations for a large number
of domain-specific applications.

Acknowledgements

The authors gratefully acknowledge the support of the UK
EPSRC (grant EP/C549481/1 and grant EP/D060567/1).

References
[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and

ASICs,” in Proc. FPGA. New York, NY, USA: ACM Press, 2006,
pp. 21–30.

[2] K. Compton and S. Hauck, “Totem: Custom Reconfigurable Array
Generation,” inProc. FCCM, 2001, pp. 111–119.

[3] A. Ye and J. Rose, “Using Bus-Based Connections to Improve Field-
Programmable Gate-Array Density for Implementing Datapath Cir-
cuits,” IEEE Trans. VLSI, vol. 14, no. 5, pp. 462–473, 2006.

[4] E. Roesler and B. Nelson, “Novel Optimizations for Hardware
Floating-Point Units in a Modern FPGA Architecture,” inProc. FPL,
2002, pp. 637–646.

[5] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert, “Embed-
ded floating-point units in FPGAs,” inProc. FPGA, 2006, pp. 12–20.

[6] C. Ho, P. Leong, W. Luk, S. Wilton, and S. Lopez-Buedo, “Virtual
Embedded Blocks: A Methodology for Evaluating Embedded Ele-
ments in FPGAs,” inProc. FCCM, 2006, pp. 35–44.

[7] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size onDeep-
Submicron FPGA Performance and Density,”IEEE Trans. VLSI,
vol. 12, no. 3, pp. 288–298, March 2004.

[8] B. Mei, S. Vernalde, D. Verkest, H.D. Man, and R. Lauwereins,
“ADRES: An Architecture with Tightly Coupled VLIW Processor
and Coarse-Grained Reconfigurable Matrix,” inProc. FPL, 2003, pp.
61–70.

[9] S. Wilton, C. Ho, P. Leong, W. Luk, and B. Quinton, “A Synthe-
sizable Datapath-Oriented Embedded FPGA Fabric,” inProc. FPGA,
2007, pp. 33–41.

[10] Xilinx Inc., Floating-Point Operator v1.0. Product Specification,
2005.

[11] C. Yui, G. Swift, and C. Carmichael, “Single event upsetsusceptibil-
ity testing of the Xilinx Virtex II FPGA,” inMilitary and Aerospace
Applications of Programmable Logic Conference (MAPLD), 2002.

