
Compiling occam into Field-Programmable Gate Arrays

Ian Page and Wayne Luk

Programming Research Group, Oxford University Computing Laboratory,
11 Keble Road, Oxford England OX1 3QD

Abstract
We describe a compiler which maps programs expressed in a subset of occam
into netlist descriptions of parallel hardware. Using Field-Programmable
Gate Arrays to implement such netlists, problem-specific hardware can be gen-
erated entirely by a software process.Inner loops of time-consuming pro-
grams can be implemented as hardware and the less intensively-used parts of
the program can be mapped into machine code by a conventional
compiler. Software investment is protected since the same program can run
entirely in software, entirely in hardware, or in a mixture of both.A single pro-
gram can thus result in many implementations across a potentially wide cost-
performance range.The compilation system has been used to generate inner-
loops, hardware interfaces to real-world devices, systolic arrays, and complete
microprocessors.In the near future we hope to have a proven version of the
compiler, enabling us automatically to generate provably correct hardware im-
plementations, including microprocessors, from higher-level specifications.

INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are readily available, multi-sourced compo-
nents which have a proven place in development, small-scale production, and even large-scale
production runs.One style of field-programmable gate array uses static RAM to dynamically
configure both the function of the logic cells and their interconnections.Current examples of
large-scale FPGAs in this style are the Xilinx 3000 and 4000 series (Xilinx, 1991 and 1990),
the Electrically Reconfigurable Array (Plessey 1990) and the Logic Cell Array (Algotronix
1990) devices.Vendor-provided CAD software creates device configuration data from user-
provided circuit schematics, Boolean equations, state-machine descriptions, or other higher
level descriptions.

Recently, dynamically reconfigurable FPGAs with equivalent complexity of 10,000 to
20,000 gates have become available, and denser devices are being developed.Due to the rel-
atively large scale of these devices and their programmability, it is now possible to compile
non-trivial algorithms directly into reusable hardware.By combining FPGAs with a tradition-
al microprocessor, it is possible to build systems that are compiled from a high-level notation

directly into a mixture of hardware and software in order to exploit the best features of each
domain effectively. The user’s software investment can be protected since the same program
can run entirely in software, entirely in hardware (subject to available resources), or in a mix-
ture of both.A single program might result in many implementations across a potentially
wide cost-performance range.

Many application programs demand more processing power than can be supplied by con-
ventional processing resources.Many of these programs have a kernel which is responsible
for a significant fraction of the total execution time of the program.We have a particular in-
terest in vision algorithms where these conditions certainly hold and we are increasingly look-
ing towards application-specific hardware to provide the necessary computational resource for
real-time robot vision.Other application areas exhibiting similar characteristics
abound.While a complete application program is probably too complex to be implemented as
special-purpose hardware, it will often be feasible to implement the kernel of the application
in hardware with the remainder of the program being implemented in machine code for one or
more conventional computers.Examples of possible uses are legion, with computer graphics,
image processing and vision, data compression, database search and maintenance, and cryp-
tography being some obvious application areas.Another area of interest to us is interfacing to
real-world devices which need intelligent control with real-time requirements beyond the ca-
pability of conventional processors.

The work reported here describes a compilation system which takes specifications of algo-
rithms into specifications of synchronous hardware in netlist form.Related work on delay-in-
sensitive implementations of CSP/occam, can be found in van Berkel and Saeijs (1988), and
Brown (1991).Our netlists contain only simple gates and D-type flip-flops.The netlist is
processed with Xilinx software tools (XNF2LCA, APR, and XACT) to produce configuration
data for Xilinx FPGA chips.The compiler maintains a refinement relation between the se-
mantics of the algorithm specification and of the hardware such that the observable behaviour
of the algorithm is identical whether it is implemented in hardware or by conventional
software.

The occam language (Jones 1987) is an ideal candidate for the source language for such a
compiler due to its simplicity, static compilation properties, minimal run-time demands, and
its expressive power for parallelism.Above all, its well-defined semantics, being based in
Hoare’s CSP (1985), make it highly appropriate for checking the equivalence between widely
varying implementations and amenable to formal proof techniques.We are making extensive
use of these properties in our attempts to prove correct a version of the compiler described
here.

Due to the array architecture of these chips, they are especially appropriate for systolic im-
plementations of algorithms.We design such systolic arrays using a declarative language
with a set of correctness-preserving transformations.A companion paper (Luk and Page
1991) describes our approach to the specification, transformation and implementation of sys-
tolic algorithms.

A prototype hardware host has been built which has a Xilinx XC3090-100 FPGA coupled
with two banks of 32k x 8 static RAM, and a Transputer Link Adapter which allows the sys-
tem to be coupled to a transputer array. We are currently designing the successor to this proto-
type which has a T800 transputer, a large bank of dynamic RAM, a large Xilinx chip, a
frequency synthesizer, and two banks of static RAM on a daughter board designed to the
TRAM standard (Inmos 1991).We hope to replicate this module on standard TRAM host
boards in order to exploit coarse-grained algorithmic parallelism, as well as fine-grained par-
allelism within the Xilinx chip (and of course within the transputer itself).

ALGORITHM DESCRIPTION LANGUAGE

For the reasons given above, a simple subset of occam1, with a few minor extensions
appropriate to its current use, was chosen for the input language.As the current compiler
is a prototype written in SML (Harper 1986), it has proved convenient to supply the input
programs in the form of an abstract syntax.This has obviated the need to build a parser
for the language, but at the cost of writing programs in a slightly verbose form.A pretty-
printer for the abstract syntax produces listings in conventional occam form.As part of
the process of demonstrating a proof of correctness, we have produced a small version of
this compiler in Prolog so that the implementation and proof are very close to each other.

 The input language of the compiler currently includes integers and channels as the ba-
sic data types, expression evaluation, multiple assignment and communication as the basic
processes, and SEQ, PAR, IF, WHILE, ALT as the constructors.It has been found useful,
though not necessary, to make a few minor extensions to the occam language.The modi-
fications allow variable precision integers and channels, and offer a slightly richer set of
logical operators in the expression sub-language.We take it as evidence of the descriptive
power of occam that so little has been modified, despite the fact that we are generating
hardware rather than machine code.In time, even these extensions could be withdrawn as
more powerful optimisation capabilities are built into the compiler.

COMPILATION STRATEGY : GENERAL SCHEME

The compilation is top-down, syntax-driven, and consequently is very fast.The decla-
rations are first usage-checked against the program body and used to generate netlist en-
tries for the registers corresponding to user variables.Channels generate no static
hardware; the circuitry for a particular channel is generated from the input and output
statements which quote it.A minor amount of hardware is generated to provide the global

START signal for the hardware and to deal with the global STOP signal. Compilation then
proceeds by recursive descent over the body of the program, adding hardware to the netlist
according to the circuits given in the next section.A final phase optimises the netlist and
adds I/O buffers before outputting .XNF files, which are currently our interface between
the compiler and vendor software for programming the FPGAs.

 In the following sub-sections we review the general characteristics of the control cir-
cuits generated by the compiler and the strategy for dealing with expressions.

Clocking Scheme

For reasons of simplicity (of the compiler and proof) and compact designs, the compil-
er generates completely synchronous circuits.There is a single global clock for the target
hardware; a clock period is terminated by the rising edge of the global clock, at which time
every flip-flop in the system is triggered.This model is well supported by the Xilinx chips
which have dedicated low-skew clock lines.However, much of the compiler will remain
unchanged when we eventually re-engineer it to produce self-timed circuits.

 The synchronous nature of the hardware, together with the fact that every opportunity
for parallel implementation is taken, means that precise guarantees can be given for the
real-time response of the resulting implementations.There is a simple calculus of dura-

tions of these programs, which is particularly simple in the case of WHILE-free
programs.The essence of this calculus is that SKIP, assignment and communication
(where each process is ready) each take precisely one clock cycle, and all other constructs
take precisely zero time.At the moment, we rely on vendor software to predict maximum
delays in our circuits after placement and routing and use this information to set the clock
speed, or alternatively, use it as a guide in transforming the program into a faster version
using only the laws of occam.In the future, we hope to have the compiler do more of this
work itself.

An unexpected side-effect of this synchronous implementation technique, is that there
are a number of additional laws for these implementations which are not valid for all im-
plementations of occam.It may be possible to make use of these in deriving more optimal
implementations of programs using formal transformation tools such as the Oxford Oc-
cam Transformation System (Goldsmith 1987).

Control Strategy

As well as generating all necessary datapaths, the compiler generates fully distributed
control hardware for the program.Each statement in the program results in the generation
of hardware which controls the activation of the corresponding parts of the datapath (i.e.
the execution of the statement).There is usually one flip-flop corresponding to each prim-
itive statement in the user program which is set only when the statement is being
executed.This is basically the ‘one-hot’ approach to control state encoding and has been
demonstrated to be space-efficient in particular on Xilinx FPGAs (Knapp 1990 and Schlag
et al 1990). It is perfectly possible to adopt alternative encoding schemes which may be
preferable in other circumstances.We have developed provably equivalent control state
encoding schemes which will later be integrated into the compiler as optional optimisa-
tions.

The control hardware for each statement compiled has a single control input signal
(called START) which triggers execution of the statement and a single control output
(called FINISH) which signals that statement execution is complete.For a single execution
of any statement, these control signals are each high for exactly one clock period (termi-
nated by the rising edge of the global clock).

The external environment must guarantee that the initial control pulse to start program
execution is just one clock period long and must not attempt to initiate further executions
of the program until the corresponding FINISH signal has been generated.Given this ini-
tial environment guarantee to the program, the control circuits generated by the compiler
maintain this guarantee for every (nested) statement in the program.

Expressions

The language has only integers as a basic type, so the basic values are integer con-
stants and values of variables.The sub-language of expressions has a selection of binary
and unary operators over variable-width integers, currently including addition, subtrac-
tion, multiplication, magnitude extraction, bitwise And/Or/Xor/Not operations, shifting,
field extraction and concatenation.New operators are usually prototyped in the declara-

tive language mentioned earlier and then interfaced to the compiler. We are working on a
comprehensive integration of the two approaches in which a higher-order declarative sub-
language replaces the current expression language in an occam-like framework.

At present, the compiler generates fully parallel hardware for expression evaluation,
with some hardware unit typically being generated for every operator in an
expression.Figure 1 shows a simple expression involving three operands (derived from
registers, say) from which a result is calculated by two hardware units.All expressions
are represented as trees of this form and expression evaluation hardware mirrors this
structure.Only untimed, combinational logic is present in expression hardware.

Since expressions are evaluated constantly, the environment must guarantee a suffi-
cient period of stability of the input operands before the result of an expression circuit is
used.We make the simplifying assumption that all expressions are evaluated within a sin-
gle clock period.There are hooks present in the compiler which make it straightforward
to have individual expressions evaluate in any integral number of clock periods, but cur-
rently the compiler does not have code to predict evaluation timings, so this feature is
dormant. In any case, this could only be done partially in advance of placement and rout-
ing.

Much of the combinational hardware associated with expression evaluation (in partic-
ular) is removed by a peephole optimisation step before producing the final netlist.These
optimisations consist of removing gates with no connections to their output terminals, re-
moving gates with constant output, and removing constant, or duplicated, inputs to
gates.As an example, an expression which adds 1 to a variable will generate a chain of
full-adders, which will then be reduced by the optimisation rules to a chain of half-
adders.There are many other opportunities for optimisation of these circuits and some of
these are the subject of further work.

 SUBTRACTER

A B

ADDER

C

Expr. = (A+B)-C

Figure 1 Expression Hardware

CLOCK

Figure 2 Assignment Control Hardware

EXPR.

R (register)

FF
 Q

D

CE
CLOCK

START

FINISH

COMPILATION OF STATEMENTS

In this section we show how the various statements of the input language are mapped
into control hardware.Further details of the datapaths generated are not given, as they are
straightforward and are essentially covered in the notes given above and in the following
sub-section.

Assignment Statements

The hardware generated by the statement R := EXPR is shown in Figure 2.The black
triangle in the top left hand corner of the box denotes an implementation of the control cir-
cuitry for a statement so that it can be distinguished readily from other hardware units.

Since expressions evaluate within one clock period, the control circuitry should cause
the destination register to load the expression value at the end of the clock period in which
the START pulse is present.It must also provide a control output pulse co-incident with the
following clock period.All destination registers have a synchronous clock and a clock en-
able input.This means that the incoming control pulse itself can be used to drive the REG-

ISTER_LOAD (i.e. clock enable) input of the destination register since it will be high on the
rising edge at the end of the START clock period.Termination of the statement is signalled
to any subsequent statements in the enclosing program by a FINISH pulse, which is a de-
layed version of the input pulse generated by a D-type flip-flop.

In most programs, there will be multiple assignments which target the same destina-
tion register. In this case, multiplexors are generated so that each REGISTER_LOAD signal
associated with a destination register enables just one of the source expressions onto the
register input bus.Simple sum-of-products multiplexors are used here.The language se-
mantics guarantee that any register can be the target of only one assignment (or communi-
cation) at any one time, so no checks to deal with this kind of conflict are needed in
hardware.All REGISTER_LOAD signals for a particular register are ORed together, and the
resulting signal used as the clock enable signal for the register.

SKIP and STOP Statements

The implementation of SKIP is a D-type flip-flop providing a delay of one clock peri-
od, rather like an assignment statement without a destination register. This implementa-
tion was chosen so that arbitrary delays (in multiples of the clock period) can easily be
programmed.It can be optimised to a piece of wire when the delay is known not to be re-
quired; e.g. when explicit temporal constraints on execution have already been met.

The implementation of STOP receives a START pulse, and never generates a FINISH

pulse. Instead, it sets a global flip-flop to indicate the stop condition

SEQ Statements

The simplest composite statement is SEQ, the implementation of which is shown in
Figure 3. The START pulse triggers the first statement in the sequence.On its termination,
the first statement will trigger the second statement, and so on to the termination of the

whole SEQ construct, when the FINISH pulse is generated.If the environment of the com-
plete SEQ construct respects the rules for control pulses, then clearly the construct pro-
vides a well-behaved environment for each statement in the sequence.This can be
formally proven, as can similar assertions for the other statements.

IF and WHILE Statements

Conditional statements are provided by an IF-THEN-ELSE construct, whose hardware
structure is shown in Figure 4.The incoming START pulse is steered to one of the two
controlled statements, depending on the evaluated Boolean expression, C. More complex
conditional statements, such as an occam-style IF are built from compositions of the basic
construct.

The implementation of the WHILE construct is shown in Figure 5.where the control
pulse (either recirculated, or the initial one) is directed either back to the controlled state-
ment or to the FINISH of the construct depending on the current value of the Boolean
expression.

A CASE statement has also been implemented but is not shown here.At the hardware
level, the evaluated expression (in logn bits) drives a 1-of-n decoder with each output trig-
gering one of the dependent statements in the CASE expression.The hardware optimisa-
tion phase removes redundant hardware if the set of CASE constants is not compact.

S1

Figure 3 SEQ (S1, S2, S3)

START
S2 S3

FINISH

T E

C

START

FINISH

Figure 4 IF C THEN T ELSE E

S

CSTART

FINISH

Figure 5 WHILE C DO S

. .

+

+

. .

PAR Statements

The implementation of the PAR construct is shown in Figure 6.The incoming control
pulse activates all statements in parallel and each statement sets a (reset dominant) SR
flip-flop when it has completed.When all statements have completed, the outgoing con-
trol pulse is generated and the flip-flops are all reset.The OR gates are an optimisation so
that the last statement to complete can trigger the output directly without waiting for a fur-
ther clock period.There is thus no time overhead for initiating or terminating a parallel
construct.

Implementation of Channels

The implementation of control hardware for channel communication is shown in Fig-
ure 7. An arbitrary number of statements may input to, or output from, a channel; all such
statements are implemented with the circuit shown.The REG_LOAD signal is only rele-
vant for channel input statements where it is used to enable loading of the destination reg-

S
QR

S1

S
QR

S2

S
QR

Sn.

FINISH

START

Figure 6 Implementation of PAR

.

+ + +

.

ister, exactly as for assignment (indeed, communication in occam can be regarded simply
as distributed assignment).

There is one pair of START, FINISH signals for each input or output statement which
quotes a particular channel, as shown in Figure 7.The START signal sets a (reset domi-
nant) SR flip-flop to remember that communication is pending for a particular
statement.An OR gate performs the same optimisation as was seen on the flip-flops in the
implementation of PAR.

The READY signals for all the input statements involving a particular channel are
ORed together, giving a signal which is asserted whenever any statement is ready to input
from the channel.A similar OR circuit determines when any statement is ready to output
to the channel.These two signals are ANDed to form the TRANSFER signal shown in the
figure. This TRANSFER signal is asserted when precisely one input and one output state-
ment are ready to communicate over the channel.The language semantics ensure that
there can only ever be at most one input and one output statement trying to communicate
over any channel at any one time, so no checks are necessary in the hardware to deal with
this type of conflict.The TRANSFER signal also resets the request flip-flops that initiated
the transfer, and the D-type flip-flop creates a one clock delay exactly as for
assignment.The channel datapath circuitry between sending and receiving statements is
generated by the mechanism already set up for assignment.

The compiler also implements a fixed-priority ALT which accepts input from the first
channel to offer it. Lack of space precludes the presentation of its details however.

APPLICATION EXAMPLES

We briefly present two widely differing implementations of a simple algorithm.One
is a direct implementation of an algorithm to generate Fibonacci numbers, the other is a
(very simple) ‘application specific’ microprocessor running code which achieves the same

S
Q

R

START

D

Q

READY

TRANSFER

REG_LOAD

FINISH

Figure 7 Implementation of Channels

+

.

end. Although not shown here, we can formally prove the equivalence of such implemen-
tations.

INT_7 R1, R2 :
SEQ

R1, R2 := 0, 1
WHILE TRUE

R1, R2 := R2, (R1 + R2)
The direct Fibonacci algorithm above is straightforward, and the compiler produces a

circuit with 18 D-type flip-flops and 52 primitive gates and inverters from it.The circuit
produces a new value (modulo 27) every clock cycle.

As a simple example of a custom microprocessor for an algorithm, the program below is
an interpreter for a processor with 7-bit words and a repertoire of 8 instructions.The in-
struction format has a 3-bit opcode at the most significant end, and a 4-bit operand.Some
liberties have been taken with occam syntax to reduce the size of the program on the
page.

INT_4 IPTR :
INT_7 INST, AREG :
[16] INT_7 MEM :
WHILE (INST DROP 4) <> STOP

SEQ
INST, IPTR := MEM [IPTR], IPTR + 1 -- Fetch+Increment
CASE (INST DROP 4) -- CASE (opcode)

0 : SKIP -- SKIP
1 : AREG := INST TAKE 4 -- LDC
2 : AREG := MEM [INST TAKE 4] -- LDA
3 : MEM [INST TAKE 4] := AREG -- STA
4 : AREG := AREG + MEM [INST TAKE 4] -- ADDA
5 : IPTR := INST TAKE 4 -- JMP
6 : IF -- JLT

AREG < 0
IPTR := INST TAKE 4

TRUE
 SKIP

7 : SKIP -- STOP

The TAKE and DROP operators either take or drop n least significant bits from a
value. They are simply shorthand equivalents of certain shift and mask operations, and
are used here for extracting the operand and opcode.

The compiler implements this microprocessor using 143 D-type flip-flops and 313
primitive gates.These figures ignore the circuitry to bootstrap machine code into the on-
chip memory, MEM, but include the on-chip memory itself.The processor is not pipelined
(though it easily could have been) and so takes two clock cycles for each instruction
fetched and executed; one for the instruction fetch and instruction pointer increment, the
other for the CASE statement (as it happens every variant takes exactly one cycle).

The listing below shows a Fibonacci program that can be loaded into the
microprocessor. It generates a new result every 8 instructions.Clearly, this program and
the microprocessor are illustrative, and not meant to be in any sense optimal.The point of
showing the microprocessor implementation is to highlight that (i) algorithms can be com-
piled either directly into hardware or into an interpreted form, or a mixture of both, (ii) the
two forms can be made provably equivalent, (iii) the compiler itself might be the best
judge of which implementation style to choose for (parts of) an algorithm, and (iv) eventu-

ally, the compiler might be smart enough to design optimal architectures for the proces-
sor(s) from the details of the particular application program itself.

Address Contents
0 LDC 0
1 STA R1 Initialise R1 (previous Fib.)
2 LDC 1
3 STA R2 Latest Fib. in Accumulator at this point
4 ADDA R1 Calculate next Fib.
5 STA X Re-arrange register contents
6 LDA R2
7 STA R1
8 LDA X
9 JMP 3 Loop

13 VAR R1
14 VAR R2
15 VAR X

In order to prove the equivalence of the two programs, the bootstrap code (consisting
of explicit assignments of the integer constants corresponding to the machine code in-
structions, into the memory locations indicated) would be prepended to the microproces-
sor definition above.Application of the laws of occam are then sufficient to demonstrate
that the second program refines the first.

PROOF OF CORRECTNESS

We are currently working on a proof of correctness of a compiler based on the princi-
ples outlined in this paper (Page and He, 1991).Using only the algebraic semantics of oc-
cam, we show equivalences between user programs and a stylized normal form program,
also written in occam.It is further shown that a variety of interpretations of these normal
form programs is possible.One of the interpretations leads to an isomorphism between
user programs and the style of hardware circuits described in this paper.

CONCLUSIONS

This project addresses a number of important issues in the development of computing
systems.It addresses the problem faced by designers with applications which demand
more, and in particular more specialized, processing than can be offered by conventional
processor systems (even parallel ones).Algorithms which require non-standard opera-
tions (such as bit-reversal, field extraction/parsing, sorting/searching, complex matching)
may fit into an FPGA and offer considerable speed-up when compared with machine code
implementations.

It addresses the problem of what to do (usefully!) with the vast number of transistors
that are becoming available, very cheaply, on silicon. Programmable gate array technolo-
gy can be used side-by side with conventional microprocessors to produce uncommitted
co-processors as outlined in this paper. A more exciting possibility is to use some of the
microprocessor’s real estate for programmable gate array(s).The microprocessor would
thus gain from (i) a faster interface to the gate array(s), (ii) extra flexibility in application,

and (iii) an extended life of the microprocessor design itself since some upgrades could be
handled as software updates in user systems.

It offers a degree of late-design and post-delivery flexibility for the reconfiguration of
systems as new user demands arise or as new algorithms become available.In particular,
interfaces to complex devices can rapidly be implemented, and since other people’s devic-
es are notoriously ill-specified there is a large degree of flexibility for coping with change
in those sub-systems over which the designer has no control.

It addresses the need of system developers to prototype systems extremely rapidly. If
run-time reconfiguration is not a requirement and large volumes are anticipated, an identi-
cal circuit, or one derived from it if the design method could not adequately capture the
designer’s implementation intentions, can be produced in mask programmable gate array
form.

Finally, and perhaps most importantly, a provably correct hardware compiler offers a
clear way forward for the production of complete systems, including both hardware and
software, which are themselves provably correct.Where applicable, this approach has
significant advantages over attempts to prove correct ad hoc hardware designs.

ACKNOWLEDGEMENTS

We gratefully acknowledge the help and assistance of Jifeng He who has contributed
enormously to the efforts to prove correct a version of this compiler, to Prof. C.A.R. Hoare
who has been tireless in his support of this new research initiative, to Adrian Lawrence
who has undertaken all the detailed design work of the TRAM module, to Bernard Sufrin
whose help with ML has been invaluable, and to Jonathan Bowen who has undertaken the
Prolog specification work.These valued colleagues are all members of the Programming
Research Group, except for Adrian Lawrence who is a member of the Computing Service
at Oxford.

REFERENCES

Algotronix Ltd., CAL1024 Datasheet, Edinburgh EH9 3JL, UK, 1990.
van Berkel, C. H. and Saeijs R.W.J.J., ‘‘Compilation of communicating processes into de-

lay-insensitive circuits’’, in Proc. ICCD’88, Rye Brook, New York, October 1988.
Bertin, P. et. al., “Introduction to programmable active memories”, in Systolic Array Pro-

cessors, J. McCanny et. al., Eds., Prentice-Hall International, 1989, pp. 301-309.
Brown, G. M., ‘‘Towards truly delay-insensitive circuit realisation of process algebras’’, in

Designing Correct Circuits, G. Jones and M. Sheeran, Eds., Springer-Verlag, 1991, pp.
120--131.

Goldsmith, M.H., “Occam transformation at Oxford”, in Proc. 7th Occam User Group
Technical Meeting, Muntean, Ed., IOS B.V., 1987.

Harper, P. et. al., Standard ML, Report ECS-LFCS-86-2, Laboratory for Foundation of
Computer Science, University of Edinburgh, 1986.

Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall International, 1985.
Inmos Ltd., The Transputer and IQ Systems Databook, 1991
Jones, G., Programming in occam, Prentice-Hall International, 1987.

Knapp, S., “Accelerate FPGA Macros with One Hot Approach”, Electronic Design, Sept
13, 1990.

Leeser, M. et. al., “The BEDROC high level synthesis system”, in ASIC’91, IEEE, Sep-
tember 1991, to appear.

Luk, W. and Page, I., “Parametrising designs for Field-Programmable Gate Arrays”, this
volume.

May, D., “Compiling occam into silicon”, in Developments in Concurrency and Commu-
nication, C. A. R. Hoare, Ed., Addison-Wesley, 1990, pp. 87-129.

Page, I. and He J. “Provably Correct Hardware Compilation”, PRG internal report, 1991.
Plessey Semiconductors Ltd., ERA60100 Electrically Reconfigurable Array Data Sheet,

Swindon SN2 2QW, UK., 1990
Roscoe, A. W. and Hoare, C. A. R., “The laws of occam programming”, Theoretical Com-

puter Science, vol. 60, pp. 177-229, 1988.
Schlag D.F., Chan P.K., Kong J., An Empirical Study of the Performance of Multilevel

Logic Minimization Tools for a Field-Programmable Gate Array Technology, Universi-
ty of California at Santa Cruz, Computer Engineering Departmental Report UCSC-
CRL-90-60, 1990

Shepherd, D. and Wilson, G., “Making chips that work”, in New Scientist, 13May1989,-
pp.61-64.

Xilinx, “T echnical data book”, XC4000 series Logic Cell Array Family, Xilinx Inc., San
Jose, Ca. 95124, 1990

Xilinx Inc., The Programmable Gate Array Data Book, 1991.
Xilinx Inc., XACT Reference Manual, San Jose, Ca. 95124, 1990.

