
Compiling Ruby into FPGAsShaori Guo1 and Wayne Luk21 Computing Laboratory, Oxford University, Parks Road, Oxford OX1 3QD, UK2 Department of Computing, Imperial College, London SW7 2BZ, UKAbstract. This paper presents an overview of a prototype hardwarecompiler which compiles a design expressed in the Ruby language intoFPGAs. The features of two important modules, the re�nement moduleand the oorplanning module, are discussed and illustrated. Target codecan be produced in various formats, including device-speci�c formatssuch as XNF or CFG, and device-independent formats such as VHDL.The viability of our oorplanning scheme is demonstrated by a compilerbackend for Algotronix's CAL1024 FPGAs. The implementation of apriority queue is used to illustrate our approach.1 IntroductionCompiling selected parts of application programs into hardware, such as FPGAs,has recently attracted much interest. This method holds promise of producingbetter special-purpose systems more rapidly than existing techniques. A numberof hardware compilers (see, for example, [8], [11]) have been developed for designsdescribed in various languages into hardware netlists, which can then be mappedonto FPGAs by vendor software.This paper presents an overview of two important modules, the re�nementmodule and the oorplanning module, in a prototype compilation system. Thesystem is based on Ruby [4], [9], a relational language for capturing block dia-grams parametrically. There are mechanisms in Ruby for describing spatial andtemporal iteration, allowing succinct and precise design speci�cation. Moreover,the explicit representation of di�erent forms of spatial iteration simpli�es theproduction of layouts, and the declarative nature of the language allows designsto be re�ned by simple equational reasoning. Our aim is to exploit these featuresof Ruby to provide an e�cient hardware compilation system.The re�nement module enables users to focus on the high-level structure ofa design without being overwhelmed by details such as the size of individualdatapaths. It is based on a constraint-propagation procedure. Given the sizeof inputs and a library of bit-level operators, it automatically constructs e�-cient low-level designs rapidly and in a provably-correct manner; this facilitatesexploring architectures and evaluating the e�ects of di�erent bit-level data rep-resentations.Another important module, the oorplanning module, is devised to reducethe time to place and route a netlist produced by a hardware compiler. SinceRuby expressions carry information about the way a circuit can be assembledfrom primitive parts, our method is designed to exploit the structure of the



source program in generating a layout. It is also possible for the user to guidethe placement of components and to import layouts that are developed manuallyor by other tools. Much of our oorplanning procedure is syntax-directed and istherefore very e�cient.While our oorplanning scheme is largely device-independent, to demonstrateits viability a compiler backend has been developed for Algotronix CAL1024FPGAs. The implementation of a priority queue will be used to illustrate thisapproach.2 RubyRuby is a language of functions and relations. It has been used in developing awide range of designs including signal processing architectures [2] and butterynetworks [4], and it has also been used in producing implementations partly inhardware and partly in software [7]. Detailed descriptions of Ruby can be found,for instance, in [4] and [9].In Ruby a design is captured by a binary relation R, which relates the inter-face signals x and y in the form of x R y . For instance the max operator, whichproduces the maximum of two numbers, can be described byhx ; yimax (maximum(x ; y));so h3; 4imax 4 and h10; 6imax 10. The min operator for �nding the minimumof two numbers can be described in a similar way. The identity relation id isgiven by x id x . To select or regroup components of composite data, there arewiring primitives such as fork , �1 and rsh, given by x fork hx ; x i, hx ; yi�1 x andhx ; hy ; z ii rsh hhx ; yi; z i. To reect a component along its trailing diagonal, wecan use the converse operator, given byx R�1 y , y R x :Complex designs in Ruby can be formed by composing simpler designs. Forinstance, two components Q and R with a compatible interface connected inseries is denoted by Q ; R (Figure 1a):x (Q ; R) y , 9s : (x Q s) ^ (s R y):The 9 symbol means that, unlike x and y , s is not an interface variable of thecomposite and cannot be observed.If there are no connections between Q and R, the composite design is repre-sented by parallel composition [Q ;R] (Figure 1b), wherehx0; x1i [Q ;R] hy0; y1i , (x0Q y0) ^ (x1R y1):Repeated compositions of n copies of Q can be described by Qn or mapn Q , sofor instance fork4 = fork ; fork ; fork ; fork and map3 rsh = [rsh; rsh; rsh].



Q Rx s ya. Q ; R QRx0x1 y0y1b. [Q;R] QRab csp qrc. Q lR x yssRd. loop RFig. 1. Some Ruby operators.Components with connections on four sides can be joined together by thebeside and below operators; below (Figure 1c) is given byhha; bi; ci (QlR) hp; hq ; rii , 9s : (ha; siQ hp; qi) ^ (hb; ciR hs; ri):To deal with designs operating on time-varying data, a relation in Ruby can beconsidered to relate an in�nite sequence of data in its domain to another in�nitesequence in its range; elements in these in�nite sequences can be regarded asvalues appearing at an interface at successive clock cycles. Given that 8t denotes\for all values of t", a squarer can be described byx sq y , 8t : x2t = yt :A latch can be modelled by a delay relation D , given byx D y , 8t : xt�1 = yt :A latch initialised to value i is denoted by D i .Latches are used in designs with feedback to prevent unbu�ered loops. Adesign Q containing an internal feedback path s can be modelled by the operatorloop (Figure 1d): x (loop R) y , 9s : hx ; siR hs; yi:3 Re�nementWe can use Ruby to describe word-level designs, like the max or themin operatorfor integers. At bit-level, these operators can be built by logic gates which canalso be captured in Ruby. The aim of our re�nement system is to automaticallyproduce the most e�cient bit-level design from a high-level description.Bit-level designs produced by the re�nement system should satisfy constraintsspeci�ed by the designer. Examples of constraints include the speed, size, latencyand power consumption of a design, the maximumand minimumvalues of inputsand outputs, or a combination of the above. Of course, if the constraints are toostrict, there may not be any bit-level design that satis�es them all. Our e�orts so



far have been concentrated on constraints specifying the maximumand minimumvalues of inputs for a circuit.There may be many possible bit-level designs which can implement a givenword-level design. Also each data representation (such as two's complement rep-resentation) will result in a speci�c family of bit-level implementations. There�nement system can re�ne a word-level design into several bit-level implemen-tations, depending on the bit-level data representation.The re�nement module is based on a constraint-propagation algorithm. Themaximum and minimum values of inputs are propagated across the circuit. Fora given component, once all constraints on its inputs are known, the constraintson its outputs can be derived. Resolving the constraints �xes the size of the com-ponents and the width of the output data path. Given a library of parametrisedbit-level operators and their sizes, our constraint-propagation procedure can beused to determine the widths of all the data paths. A bit-level Ruby design canthen be constructed. As an example, consider a priority queue which can bespeci�ed in Ruby as follows.N = 4: (1)pq = pqcellN : (2)pqcell = loop ((sort2 lmux2) l ([id ; D 127] ; fork2)): (3)sort2 = fork ; [min; max ]: (4)mux2 = fork ; [muxr 2; �1]: (5)fork2 = �1�1 ; [fork�1; fork ] ; rsh: (6)Let us briey introduce the correspondence between the Ruby program andthe pictorial description of the priority queue; further details about possibledesigns and their development can be found in [9]. The Ruby descriptions forthe word-level design (Figure 2) are shown above, which is implemented as alinear array of a repeating unit pqcell (expression 2), and the length of thearray is 4 (expression 1). The repeating unit pqcell (expression 3) consists ofthree parts: an insertion sorter cell sort2 (expression 4), a selection unit mux2(expression 5) and a data distribution unit fork2 (expression 6). There is aninternal path in pqcell where the minimum output of the sorter is fed back whilethe maximum value is output to the next cell (expression 3). A latch (shown asa small triangle) is placed on the top of the feedback path, and it is initialisedto the value 127.Suppose the constraint speci�ed by the designer is that the input data arenatural numbers no larger than 127. Given that a bit is either T (True) orF (False), 127 is represented by hT ;T ;T ;T ;T ;T ;T i. The re�nement sys-tem produces a bit-level Ruby program with min replaced by min un b 7 7,where 7 represents the number of bits of the input. It also replaces max withmax un b 7 7 in expression 3,muxr 2 withmuxr2 bit 7 in expression 4, and D 127with map 7 (D T ) in expression 5. The bit-level descriptions include instantia-tions from a library of parametrised bit-level components, which contains, forinstance, max un b, min un b and muxr2 bit , the bit-level implementations of
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max , min and the multiplexer muxr 2 operating on unsigned integers. The bit-level implementation of the priority queue is shown in Figure 3. Notice that thebig triangle D 7 represents seven D latches in parallel.There are compiler backends for converting a bit-level description into variousformats, such as XNF (Xilinx Netlist Format) or VHDL. The physical mappingonto FPGAs can then be carried out using commercial tools. An alternativeimplementation path will be sketched in the next section.4 FloorplanningA major bottleneck in automatic hardware synthesis is the time to place androute the netlist produced by a hardware compiler. The aim of our oorplanningmodule is to expedite the placement and routing procedure by exploring thestructure of the source descriptions. To achieve high quality layouts, our oor-planning scheme includes facilities which allow combination of layouts producedboth automatically and manually.The oorplanning procedure consists of two phases. The �rst phase is theglobal placement and routing, which is mainly device-independent. In this phasea design is modelled as a rectangular block with connecting points on its foursides. Our oorplanning scheme allows the variation of block sizes, so that con-necting positions between two adjacent blocks match each other to minimisethe routing between them. In the second phase, the detailed routing within theblocks and their interface will be determined.Consider �rst the global placement and routing phase. A design in Rubyis represented by a binary relation, while in pictorial form it is modelled as arectangular block. A convention is required for assigning the domain and rangevariables of a relation to each side of the block { this step is known as directionassignment. The following convention is chosen: the domain data will be mappedonto the western or northern side, while the range data will be mapped onto thesouthern or eastern side [4].Following this convention, the layout of a relation with its domain in theform of a two-tuple hx ; yi can be a block with x on the western side and y onthe northern side, or both x and y on either the western or the northern side.Similarly, the layout of a relation with its range in the form of a two-tuple can bea block with some of its connecting points on the southern side and some on theeastern side, or all of them on either the southern or the eastern side. One canshow that, for a relation with both its domain and range in the form of a two-tuple, there are nine possible layouts [3]. The choice of which layout to adopt isdetermined by context or by a default convention. For instance some combinatorsin Ruby carry contextual information about possible direction assignment; thebelow combinator requires two of its domain and two of its range connections tobe horizontal (Figure 1c).After direction assignment, we check the compatibility of the interfaces be-tween connected components. Since polymorphism is allowed in the domain andrange of some Ruby primitives such as fork , a simple structure comparison is



insu�cient. Instead a general uni�cation algorithm was used to determine themost general substitution for the domain and range components, so that theinterface constraints can be satis�ed.Sometimes information on direction of signal ow is necessary for certaindevices, such as the cells used in Algotronix's CAL1024. In these cases we applya constraint-propagation algorithm to determine the direction of signal ow foreach Ruby wiring constructs.The placement stages of our oorplanning system are not time-consumingbecause we exploit the structure of Ruby programs for placement. If we want toinclude a circuit which has been placed and routed manually or by other tools,we need to specify its size and the connection positions. Interface between theoriginal and the imported layouts can then be produced by the compiler. A pairof curly braces are employed in the source Ruby program to indicate which partof the circuit should be laid out separately. The right curly brace is followed bya pair of parentheses which enclose the name of the manual layout �le, so thatthe compiler can import this part of the layout and link it with others.Further descriptions of our syntax-guided placement technique can be foundin [3].5 Device-Speci�c MappingWhile our approach to global placement and routing is largely device-independent,the detailed placement and routing attens each block produced after globalplacement and routing, and it requires information speci�c to a particular device.To demonstrate the viability of our oorplanning scheme, a compiler backendhas been customised for CAL1024 FPGAs developed by Algotronix (now XilinxDevelopment Corporation).CAL1024 arrays are orthogonally connected structures obtained by replicat-ing a basic cell which has one input port and one output on each of its four sides.An input port can be programmed to connect to one or more output ports, orto a function unit which can be programmed to behave as a two-input combina-tional logic gate or as a latch. The output of this function unit may also connectto one or more output ports. Hence a CAL cell may be used to perform process-ing and routing simultaneously. Figure 4 shows a CAL cell with its northerlyoutput connected to its easterly input, and its easterly output is the Booleanconjunction of its westerly and northerly inputs.
AndFig. 4. CAL Cell.



During global placement and routing, two kinds of blocks are produced:blocks for combinational primitives such as AND and wiring primitives like fork .For combinational primitive blocks, we have developed a simple river routing al-gorithm to connect the connecting points on the four sides of the block to thecell performing the logic function of the primitive. A simple switch-box routingalgorithm has also been devised to implement the detailed routing for the wiringblocks. The output of the oorplanner is a program in OAL [6], a variant of Rubyspecialised for CAL devices. The OAL compiler can then be used to generateCFG �les used for FPGA programming.Although the oorplanner can perform the placement and routing fully auto-matically, the quality of the �nal implementationmay be inferior to one producedby hand or by other tools. It is our intention to give the designer the exibilityto use our compiler for global placement and routing, while part of or all of thedetailed placement and routing can be produced by other means. For instance,a designer may wish to develop by hand the repeating unit of an array-basedcircuit, since any ine�ciency in the basic cell will be multiplied many times.The compiler can incorporate existing CAL designs into the implementation ac-cording to the annotations speci�ed by the designer in the source program, asdescribed in section 4.
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11 11 11 11Fig. 6. CAL implementation of a bit-level priority queue (n = 4, m = 7).6 Future WorkIn the re�nement module of our compilation system, we have focused on con-straints specifying the maximum and minimum values of inputs for a word-levelcircuit. Our method can be extended to take into consideration other kinds ofconstraints: examples include critical path, latency or the number of a particularcomponent. If no solutions exist that satisfy all user-speci�ed constraints, we canchoose the solution that satis�es most of the high-priority constraints.The CAL backend of our compiler demonstrates the viability of our oor-planning module. We have not, however, optimised the switch-box routing orthe river-routing algorithms, and the layouts produced automatically can be-come rather large. For better results, we can use methods like min-cut or sim-ulated annealing hierarchically in placement and routing [10]. Device-speci�ccompaction techniques should also be studied.Much of our method for generating layouts is syntax-directed. The qualityof the compiled implementation depends largely on the Ruby source programwhich describes the design; therefore source transformation can be adopted foroptimisation. One way to automate this step is to have an accurate performanceestimation procedure to drive the transformation engine.It will also be interesting to extend our work to support partial and run-time recon�guration of FPGAs, to support developing multi-chip systems, andto support implementing asynchronous and self-timed designs [1].
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