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Abstract. Pebble is a simple language designed to improve the pro-
ductivity and effectiveness of hardware design. It improves productivity
by adopting reusable word-level and bit-level descriptions which can be
customised by different parameter values, such as design size and the
number of pipeline stages. Such descriptions can be compiled without
flattening into various VHDL dialects. Pebble improves design effectiven-
ess by supporting optional constraint descriptions, such as placement
attributes, at various levels of abstraction; it also supports run-time re-
configurable design. We introduce Pebble and the associated tools, and
illustrate their application to VHDL library development and reconfigu-
rable designs for Field Programmable Gate Arrays (FPGAs).

1 Introduction

Many hardware designers recognise that their productivity can be enhanced by
reusable designs in the form of library elements, macros, modules or intellectual
property cores. These components are developed carefully to ensure that they
are efficient, validated and easy to use. Several development systems based on
Java [1], Lola [2], C [3], ML [5], VHDL and Ruby [7] have been proposed. While
the languages in these systems have their own goals and merits, none seems to
meet all our requirements of:
1. having a simple syntax and semantics;
2. allowing a wide range of parameters in design descriptions;
3. providing support for both word-level design and bit-level design;
4. supporting optional constraint descriptions, such as placement attributes, at

various levels of abstraction;
5. including facilities for developing designs reconfigurable at run time.

From our previous work [7] and others, it is also important for design tools to:
6. produce reusable hardware libraries in industrial-standard languages;
7. facilitate multiple means of validation, from formal verification to executing

on a hardware platform;
8. enable automatic generation of documentations.

The purpose of this paper is to introduce a language, called Pebble, which is
designed to meet the above requirements. Section 2 provides an overview of Peb-
ble, showing how it meets requirements 1–3. Section 3 outlines the development
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tools for Pebble on which the design flow is based, showing how requirements 6–8
can be satisfied. Section 4 deals with requirement 4: it describes how placement
constraints can be captured and how descriptions such as ABOVE and BESIDE
provide a useful abstraction. Section 5 presents an approach for developing re-
configurable designs in Pebble, covering requirement 5. User experience with
Pebble is reported in Section 6, while concluding remarks are given in Section 7.

2 Language Overview

Pebble is an alias for Parametrised Block Language. The two primary objectives
for Pebble are to facilitate the development of efficient and reusable designs, and
to support the development of designs involving run-time reconfiguration. Much
of our previous work is based on VHDL, which has been used for both library
development [7] and simulation of reconfigurable components [11].

The complexity of VHDL and the associated tools, however, has led us to
believe that a simpler approach will provide a better foundation on which to
build abstractions and tools. A simple language would be both easy to learn and
to use. More importantly, it would form a core language satisfying our immediate
requirements while amenable to extensions. Moreover, since most VHDL vendors
have their own dialect of VHDL, it would be easier to generate vendor-specific
VHDL from a single standard library database than to maintain different library
databases, one for each VHDL dialect. In any case, the complexity of existing
industrial languages such as Verilog or VHDL makes them difficult to include
experimental features, such as language support for run-time reconfiguration.

Pebble can be regarded as a much simplified variant of structural VHDL. It
provides a means of representing block diagrams hierarchically and parametri-
cally. The basic features of Pebble are outlined below [10].

• A Pebble program is a block, defined by its name, parameters, interfaces,
local definitions, and its body.

• The block interfaces are given by two lists, usually interpreted as the inputs
and outputs. An input or an output can be of type WIRE, or it can be a multi-
dimensional vector of wires. A wire can carry integer or boolean values.

• A primitive block has an empty body; a composite block has a body contai-
ning the instantiation of composite or primitive blocks in any order. Blocks
connected to each other share the same wire in the interface instantiation.

• For hardware designs, the primitive blocks can be bit-level logic gates and
registers, or they can, like an adder, process word-level data such as integers
or fixed-point numbers; the primitives depend on the availability of corre-
sponding components in the domain targeted by the Pebble compiler.

• The GENERATE-IF statement enables conditional compilation, while the
GENERATE-FOR statement allows the concise description of regular cir-
cuits.

Pebble has a simple, block-structured syntax. As examples, Fig. 1 contains
a Pebble description of a multiplexor which is a primitive component for Xilinx
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BLOCK mux [c,x,y:WIRE] [z:WIRE]
BEGIN
END;

Fig. 1. A multiplexor description in Pebble, with control input c, data inputs x and y
and output z. The empty body indicates that it is a primitive block.

mux mux mux mux

c

x0 x1 x2 x3

z0 y0 z1 y1 z2 y2 z3 y3

Fig. 2. An array of multiplexors described by the Pebble program in Fig. 3.

6200 FPGAs, while Fig. 3 describes the multiplexor array in Fig. 2, provided
that the size parameter n is 4.

In more complex descriptions, the parameters in a Pebble program can in-
clude the number of pipeline stages or the pitch between neighbouring interface
connections [7]. Different network structures, such as tree- or butterfly-shaped
circuits, can be described parametrically by indexing the components and wires.

Pebble supports the use of annotations and constraint descriptions. Annota-
tions contain optional information that does not affect the functional behaviour
of Pebble programs. The use of annotations for guiding the Pebble compiler and
for automatic documentation generation will be described in Section 3. The use
of constraint descriptions to provide, for instance, abstract and concrete place-
ment information will be presented in Section 4.

The semantics of Pebble depends on the behaviour of the primitive blocks
and their composition in the target technology. Currently a synchronous circuit

BLOCK muxarray (n:GENERIC) [c:WIRE, x,y:VECTOR (n-1..0) OF WIRE]
[z:VECTOR (n-1..0) OF WIRE]

VAR i
BEGIN

GENERATE FOR i = 0..(n-1) DO
mux [c,x(i),y(i)] [z(i)]

END;

Fig. 3. A description of an array of multiplexors (Fig. 2) in Pebble. The external input
c is used to provide a common control input for each mutiplexor.
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model is used in our tools (Section 3), and special control components for mo-
delling run-time reconfiguration are also supported (Section 5). However, other
models can be used if desired. Indeed Pebble can be used in modelling any
block-structured systems, not just electronic circuits.

Advanced features of Pebble include support for modules which improves
reusability and facilitates interface to components in other languages, including
behavioural descriptions. Discussions about these features are beyond the scope
of this paper.

3 Development Tools and Design Flow

We have developed a compiler for Pebble which can produce either a flattened
netlist for simulation, or a parametrised description in structural VHDL. Pebble
programs can be compiled into the netlist format for the Rebecca simulator,
which can be used for cycle-accurate numerical or symbolic simulation at word-
level, bit-level, or a mixture [7]. Automatic mapping between word-level and
bit-level blocks is under development. Pebble descriptions can also be translated
into formats suitable for verification systems such as HOL [4].

Pebble programs can be compiled into parametrised VHDL while preserving
their hierarchy and parametrisation. The resulting VHDL code may contain
compiler-generated names, but they can be replaced by user-specified names
annotated in the Pebble source code. Section 6 includes more details about
the parametrised VHDL libraries generated from Pebble; users of these VHDL
libraries do not need to know Pebble.

Pebble
  Program

Simulation,
transformation

(Pebble)

Testbench
validation

(Synopsys)

Place and route, 
bitstream generation

(XACTstep Series 6000)

Functional and
performance

measurements
(PCI board)

FPGA
Config.

bitstream

FPGA
Netlist

Postscript
or HTML

Document

Synopsys or
Velab VHDL

Fig. 4. Design flow for our Pebble-based system. Synopsys and Velab are VHDL tools,
and XACTstep Series 6000 is the implementation tool for Xilinx 6200 FPGAs.

Fig. 4 shows the major elements in our design flow. Synopsys is a well-known
industrial system which deals with VHDL synthesis; Velab and XACTstep Series
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6000 are implementation tools for Xilinx 6200 FPGAs; and a PCI-based platform
[9] for evaluating designs. We have also developed a Library Documentation
Tool (LDT), which automatically produces library documentation in various
formats such as Postscript and HTML [7]. The documentation is generated from
information annotated in a specific format in the Pebble source; this method
reduces the number of files to be maintained.

4 Constraint Description and Abstraction

It is often useful to have the ability to include information about layout or timing
in a hardware description. Such information provides a means of guiding design
tools to produce an optimised design, or to generate improved estimates of design
properties such as critical path delay or reconfiguration time.

Placement information is particularly important for FPGAs for two reasons.
First, optimal resource usage is often necessary in FPGA design, since the den-
sity and speed of FPGAs are much less than those of custom integrated circuits
in similar technologies. Second, precise control over the placement of components
is required to minimise reconfiguration time, since components at identical loca-
tions common to two successive configurations do not need to be reconfigured.

A number of design languages, such as Lola [2], VHDL [7] and Lava [12],
include mechanisms for specifying placement information. Pebble provides a fa-
cility similar to these languages. For example, a halfadder containing an xor2
gate beside an and2 gate can be described by the Pebble program in Fig. 5.

BLOCK hadd (x,y:GENERIC) [a,b:WIRE] [cout,sum:WIRE]
BEGIN

xor2 [a,b] [sum ] MAP rloc IS "X,x,Y,y,";
and2 [a,b] [cout] MAP rloc IS "X,(x+1),Y,y,"

END;

Fig. 5. A Pebble program describing a halfadder with an xor gate on the left of an and
gate. The values x and y denote the (x,y) co-ordinates of a block; for instance if x=8
and y=3, then the xor gate will be placed at (8,3) and the and gate at (9,3).

While placement information helps to optimise the layout, it is usually te-
dious and error-prone to specify. Pebble provides high-level descriptions for pla-
cement constraints, abstracting away the low-level details. These descriptions
are compile-time directives for the Pebble compiler to project co-ordinates onto
designs, generating a tree representing placement possibilities. The two main
descriptions are BESIDE, which places two or more blocks beside each other,
and ABOVE, which places blocks vertically. These descriptions allow blocks to
be placed relatively to each other, without the user providing the coordinates of
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their locations. Using them, the halfadder example in Fig. 5 becomes the one in
Fig. 6(a), while the multiplexor array in Fig. 3 becomes the program in Fig. 6(b).

(a) BLOCK hadd [a,b:WIRE] [cout,sum:WIRE]
BEGIN

BESIDE (xor2 [a,b] [sum ],
and2 [a,b] [cout])

END;

(b) BLOCK muxarray (n:GENERIC) [c:WIRE, x,y:VECTOR (n-1..0) OF WIRE]
[z:VECTOR (n-1..0) OF WIRE]

VAR i
BEGIN

BESIDE FOR i = 0..(n-1) DO
mux [c,x(i),y(i)] [z(i)]

END;

Fig. 6. (a) A Pebble program using BESIDE to describe the halfadder shown in Fig. 5.
(b) A Pebble program describing an array of multiplexors placed beside one another,
as shown in Fig. 2. The only alteration to the Pebble description in Fig. 3 is to replace
the reserved word GENERATE by BESIDE.

To illustrate further how ABOVE and BESIDE abstract from placement de-
tails, consider the description in Fig. 7(a) which specifies that blockC will be
placed above blockA and blockB. Without using ABOVE and BESIDE, to place
blockC one needs to calculate the width of blockA and the larger of the height
of blockA and blockB as in Fig. 7(b). The calculations may involve the generic
parameters to these blocks, hence Fig. 7(a) provides a significant simplification.

(a) ABOVE ( blockC [cin] [cout],
BESIDE ( blockA [ain] [aout],

blockB (n) [bin] [bout] ) );

(b) blockA [ain] [aout] MAP rloc IS "X,x,Y,y,";
blockB (n) [bin] [bout] MAP rloc IS "X,(x+widthA),Y,y";
GENERATE

IF heightA >= heightB THEN
blockC [cin] [cout] MAP rloc IS "X,x,Y,(y+heightA)" END

IF heightA < heightB THEN
blockC [cin] [cout] MAP rloc IS "X,x,Y,(y+heightB)" END;

Fig. 7. (a) A description with nested ABOVE and BESIDE. (b) An alternative with explicit
co-ordinates. heightA and widthA denote the height and width of blockA.
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A more complex example is a pipelined incrementer [7]. A fully-pipelined
incrementer, with a rectangular layout suitable for Xilinx 6200 FPGAs, is shown
in Fig. 8. In this design, the core array of halfadders are placed along the diagonal
of the block, with triangular-shaped arrays of registers for signal re-alignment
placed above and below the halfadder cells.

D

D

D

D

XORD ANDD

XORD ANDD

XORD ANDD

XORD ANDDD

D D

D

D

D

D

D

Fig. 8. A fully-pipelined 4-bit incrementer. The components XORD and ANDD correspond
to xor and and gates with a latched output.

ABOVE FOR i = 0..(n-1) DO
BESIDE (

BESIDE FOR j = 0..(i-1) DO
D [w(i,j)] [w(i+1,j)],

XORD [w(i,i),w(i,i+1)] [w(i+1,i)],
ANDD [w(i,i),w(i,i+1)] [w(i+1,i+1)],
BESIDE FOR j = (i+2)..n DO

D [w(i,j)] [w(i+1,j)] ) ;

Fig. 9. Pebble description of the pipelined incrementer in Fig. 8, where n is 4.
w(0,0)..w(0,n) are the input wires for the top row of halfadders, and w(0,0) is the
carry-in. w(n,0)..w(n,n) are the outputs at the bottom, and w(n,n) is the carry-out.

The corresponding Pebble code (Fig. 9) contains an ABOVE loop, the body
of which contains a BESIDE of the four components found on each row of the
array of cells. The first component is itself a BESIDE loop of registers D, whose
size increases from zero for the top row of cells to n-1 for the bottom row. On
the right of this BESIDE loop, there are the xor and and gates with a register
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at each of their outputs, which correspond to XORD and ANDD in Fig. 8. The
fourth component in a row of cells is another BESIDE loop of registers, whose
size decreases from n-1 for the top row of cells to zero for the bottom row. For
clarity, the clock and clear signals for registers are not shown. The corresponding
code with explicit co-ordinates is too large to be included here.

It is possible to extend this design so that the number of pipeline stages can be
controlled by a parameter [7]. The resulting description can be used to produce
implementations with different trade-offs in resource usage and performance.

5 Support for Reconfiguration

Pebble supports the development of run-time reconfigurable circuits based on
the model for reconfigurable designs in [8]. In this model, a component that can
be configured to behave either as A or as B is described by a network with A
and B connected between two control blocks. The control blocks, RC DMux and
RC Mux, route the data and results from the external ports x and y to A or
B depending on the value of cond (Fig. 10). Each control block will be map-
ped either into a real multiplexor or a demultiplexor to produce a single-cycle
reconfigurable design, or into virtual ones which model the control mechanisms
for replacing one configuration by another. If the reconfiguration sequence is
known at compile time, then control blocks which model the run-time selection
of components in a particular sequence can be used [6]. At present Pebble de-
scriptions are translated into the EDIF format, for which a set of tools has been
developed to produce reconfigurable designs [8]. We are exploring language sup-
port for reconfiguration by having, for instance, a RECONFIGURE-IF statement
(Fig. 11).

RC_DMux

y

A

RC_Mux

B

p r

sq

x

cond

cond

Fig. 10. A design that can behave either as A or as B, depending on the value of the
input wire cond connected to the control blocks RC DMux and RC Mux.

6 Experience

Pebble has been in development since early 1997. In the following we report
our experience with Pebble in three applications: hardware library development,
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(a) BLOCK AB [x,cond:WIRE] [y:WIRE]
BEGIN

RECONFIGURE IF cond THEN
A [x] [y] END

ELSE
B [x] [y] END

END;

(b) BLOCK AB [x,cond:WIRE] [y:WIRE]
VAR p, q, r, s: WIRE
BEGIN

RC_DMux [cond,x] [p,r];
A [p] [q];
B [r] [s];
RC_Mux [cond,q,s] [y]

END;

Fig. 11. (a) A Pebble block showing how the RECONFIGURE IF statement captures the
circuit in Fig. 10. (b) An alternative Pebble block describing the same design, with
variables p, q, r and s representing the internal wires.

implementation of video-processing hardware, and student design projects.
Our previous work on parametrised hardware libraries involved VHDL87

from Synopsys [7]. Since then Xilinx introduced Velab, a fast VHDL93 elabora-
tor which is issued free of charge. Because of the differences in the two VHDL
dialects, many of our libraries have to be rewritten. Following the design flow
in Fig. 4, over 30 libraries have now been recast in Pebble and most can target
both Synopsys and Velab.

Pebble libraries have been used in various applications, particularly for video
processing. To enable video experiments, a real-time video interface has been
built for a PCI-based board with a Xilinx 6200 FPGA and two megabytes of
memory [9]. Case studies include linear and non-linear filtering, edge detection,
image rotation, colour identification and motion detection.

Pebble has also been used in many student projects. Because of the simplicity
of the language and the tools, students usually master the basic techniques
rapidly and complete complex designs much faster than using VHDL. As an
example in a group project for first-year undergraduates, a convolver which took
more than four weeks to design in VHDL was finished in Pebble within the first
week of the project.

7 Concluding Remarks

Pebble has served as a focus for our research on languages and tools for develo-
ping hardware in general and reconfigurable circuits in particular. Its simplicity
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facilitates design construction, parametrisation and validation. It supports cir-
cuit descriptions at various levels of abstraction, allowing designers to selectively
control a design step such as placement when desired. Designs can be captured
and analysed at different levels of detail, since they can be expressed using non-
implementable components such as RC Mux (Section 5) and converters between
word-level and bit-level data. Current and future work includes support for pas-
sing blocks as parameters and for polynomial constraints, optimisations such as
retiming and partial evaluation, interface to high-level tools and run-time envi-
ronments, and backends for various FPGAs and custom VLSI implementations.
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