
SONIC - A Plug-In Architecture for Video Processing
Simon D. Haynes∗ , Peter Y. K. Cheung∗, Wayne Luk∗, John Stone∗∗

s.d.haynes@ic.ac.uk, p.cheung@ic.ac.uk, wl@doc.ic.ac.uk, john.stone@adv.sonybpe.com

                                                       
∗ Imperial College of Science, Technology and Medicine, London, England.
∗∗ Sony Broadcast & Professional Europe, Basingstoke, England.

Abstract
This paper presents the SONIC reconfigurable computing architecture and the first implementation,
SONIC-1.  SONIC is designed to support the software plug-in methodology to accelerate video image
processing applications.  SONIC differs from other architectures through the use of Plug-In Processing
Elements (PIPEs) and the Application Programmer’s Interface (API).  Each PIPE contains a reconfigur-
able processor, a scaleable router that also formats video data, and a frame-buffer memory.  The SONIC
architecture integrates multiple PIPEs together using a specialised bus structure which enables flexible
and optimal pipelined processing. SONIC-1communicates with the host PC through the PCI bus and has
8 PIPEs. We have developed an easy to use API which allows SONIC-1 to be used by multiple applica-
tions simultaneously. Preliminary results show that a 19 tap separable 2-D FIR filter implemented on a
single PIPE achieves processing rates of more than 15 frames per second operating on 512 x 512 video
transferred over the PCI bus. We estimate that using all 8 PIPEs, we could obtain real-time processing
rates for complex operations such as image warping.

1 Introduction
Reconfigurable platforms are often designed with little consideration for how the board will be used and for what
purpose. The resulting platforms can be very general [1,2], but performance in specific domains can often be com-
promised in favour of overall modest acceleration. General platforms are also inherently more difficult to integrate
into the software environment efficiently, requiring very general APIs. We recognise that perhaps the biggest issue in
custom computing machines is one of software integration: developers will not use a platform, no matter how good it
is, if the software interface is poor.

The other stumbling block for reconfigurable platforms is the process of mapping algorithms into hardware. Al-
though there have been numerous attempts to compile the hardware automatically from a software description [3],
the reality is that many people have found this to be difficult in practice [4]. We therefore believe that reconfigurable
platforms should be designed to simplify the accelerating hardware design process as much as possible.

Our architecture, SONIC, is specifically targeted for video image processing tasks. Focusing the application domain
in this way also means that greater acceleration can be achieved than would be the case for a more general architec-
ture. This also simplifies the Application Programmer’s Interface (API).

SONIC is more than just another reconfigurable platform. The SONIC architecture encompasses the complete soft-
ware reconfigurable hardware environment. When designing SONIC our starting point was the software model. The
SONIC architecture has also been developed to simplify the interface between the software and hardware. Firstly we
give the software designer a simple, easy to understand software model. Secondly, the designer of the accelerating
hardware is given as much abstraction from the detail of the implementation as possible.

The SONIC architecture uses the software plug-in architecture. The use of plug-in architectures for reconfigurable
processing is not new[5], but the novelty of SONIC lies with the fact that the SONIC architecture was designed spe-
cifically for  this programming methodology.



2 Requirements of Video Image Processing
In order to develop a reconfigurable architecture suited to video image processing, it is first necessary to have an un-
derstanding of the requirements of typical video image processing tasks. Video image processing in this context
means tasks such as image warping, chroma-keying of images, and effects such as image shattering, in addition to
more typical examples of image processing, such as filtering, and edge detection.

It is well known that image processing, particularly video image processing, are suitable candidates for hardware ac-
celeration. This is largely due to two reasons; i) large amounts of parallelism, and ii) relatively simple nature of the
operations required.

Video image processing is typified by high data rates (187.5 Mbytes/sec for real time HDTV), making an efficient method
of data transferral between host and platform important. The memory system must also be able to cope with the high data
rates. Projects, such as the P3I [6], have emphasised the need for clean efficient memory system when handling video im-
ages.

The structure of many video image processing tasks can often be decomposed into pipelined sub-operations. An ex-
ample is shown in Figure 1, where a separable 2-D FIR Filter has been implemented using two 1-D FIR Filters plus a
‘Corner Turner’, which transposes the image through 90°. [7] has also shown that pipelined processing and special-
ised datapaths are an important architecture feature for image processing. To give good performance, the SONIC ar-
chitecture should be able to exploit this kind of pipelined, stream-based processing. Existing reconfigurable plat-
forms such as Splash-2 [1] use this.

1-D FIR
Filter

'Corner
Turner'

1-D FIR
FilterImage IN Image OUT

Image Rotation Image OUTImage IN

ParametersParameter
Generation

User
Input

Figure 1 - A 2-D FIR Filter decomposed into sub-units Figure 2 - Image data and parameter data flow

Video image processing tasks can also often be separated into two distinct information paths as shown in Figure 2: One is a
high bandwidth datapath, the other a low bandwidth path. The high bandwidth path usually performs simple operations on
the stream of image data, such as interpolation, the low bandwidth path providing the parameters for the operations. These
usually originate from user input. For operations such as rotation or filtering the parameters can simply be one or two num-
bers. For more complex operations, such as image warping, they can be a number of vectors. The parameters may change
from frame to frame, or over a single image. The generation of the parameters often requires floating point and other com-
plex operations best suited to general purpose microprocessors.

3 The SONIC Software Model
Software plug-ins are becoming widely used in applications such as Adobe  Photoshop  and Adobe  Premiere . This
style of software architecture uses the main application code to implement the GUI interface, file handling, and other
‘house keeping’ tasks, whilst much of the application’s functionality is accomplished by the use of plug-ins. The
plug-ins perform such tasks as image rotation, or filtering. Each plug-in is invoked by the application as it is re-
quired.

A software plug-in architecture is particularly well suited to image handling software, since the interface is simple:
The application gives the plug-in an image (usually in a well defined format), and then retrieves the resultant image
after the processing has taken place. Software plug-ins are good for software design, since they allow for future ex-
tension of applications, encourage a more structured style of code development, and also allow third-party vendors to
provide value added extensions. Plug-ins can also reduce the size of the main executable.

In order to make software acceleration a practical proposition for application developers, who are often only skilled
in software engineering, it is necessary to disguise the fact a reconfigurable platform is being used. Hardware accel-
eration can be embedded within software plug-ins, without the application designer ever knowing. Indeed, hardware
acceleration can be used in an application after the application has been written.



Figure 3 gives an overview of the structure of a SONIC plug-in.
The plug-in consists of two parts; a) A software implementa-
tion of the task, and b) A hardware implementation of the task.
Since both software and hardware implementations of the task
are available, this would allow for a decision to be made at run-
time as to which to use. The software implementation can also
be used to validate the hardware design. The plug-in may con-
tain multiple hardware descriptions for use in different imple-
mentations.

Figure 4 shows the SONIC architecture’s software model. The
Plug-In contains an hardware description file. This file encap-
sulates the hardware description of the plug-in. It typically
contains the configuration data for an FPGA, although in a
more complicated plug-in it could also contain (or point to)
configuration data for multiple FPGAs, programs for DSPs etc.
In addition it also contains to information about how the de-
vices are to be connect together to process an image.

The API includes functions which handle PIPE resource allo-
cation and scheduling in a transparent way. For example PIPE caching implements the concept of virtual hardware,
whilst minimising the overhead required for reconfiguration. The API also allows the plug-in to automatically use
the software implementation should there be no free PIPE resources available.
We believe that the actual hardware design for the plug-in will usually have to be done by a hardware designer. This
is because the hardware generated from a software description tends to be inefficient at present, and in order to gain

the best from hardware, it is sometimes necessary to recast the problem into a different form - making it difficult to
accomplish automatically. In addition we envisage different types of FPGA devices being used on SONIC, and most
of the methods for hardware generation from a software description are targeted to a specific devices.

We certainly do not preclude automatic hardware generation from a software description, it is simply that we recog-
nise the need for making SONIC simple to understand for anyone designing plug-in hardware.

Application

Plug-In
Hardware

Implementation
(Configuration Data)

Software
Implementation

SONIC

API / Device
Driver

Figure 3 - A SONIC application plug-in

Plug-In Hardware Configuration

Image Transfer

Begin Message to API

Processing

Image Retrieval

End Message from API

Hardware Reconfiguration

Application Plug-In

Plug-In Hardware Configuration

Image Transfer to SONIC

Begin Message to SONIC

SONIC API

End Message from SONIC

Processing

Image Transfer from SONIC

Software Implementation

Finished

Figure 4 - Software Model for SONIC



4 Architecture of the SONIC Platform
SONIC was designed with the following characteristics, which follow the plug-in methodology, and allow for effi-
cient processing of images:

• Support for the SONIC architecture software model.
• Give the plug-in hardware designer abstraction from the detail of the platform.
• Support for pipelined processing.
• Allowing  multiple plug-ins to be implemented simult aneously.
• Scaleable processing, memory, and intercon-

nect.
• Efficient and simple memory model.

The overall SONIC architecture consists of a num-
ber of Plug-In Processing Elements (PIPEs), con-
nected by the PIPE bus, and PIPEFlow buses. Figure
5 gives an overview of the SONIC architecture.

4.1 The SONIC Bus Architecture
SONIC’s bus architecture consists of a shared
global bus combined with a flexible pipeline bus.
This allows the SONIC architecture to implement
a number of different computational schemes.

The PIPE Bus
The PIPE bus is a synchronous, global bus which
should be matched to the bandwidth of the host bus.
The purpose of the PIPE Bus is:

Fast Image Transfer - The PIPE Bus can be used for fast image transfer to or from the memory on the PIPEs, using the Host
bus.

PIPE Parameter Access - Any run-time information required by the PIPEs can be transferred using the PIPE bus. Used in
this way, the PIPE bus implements the  parameter path in shown Figure 2.

Control of the Routing - The PIPE Bus is used to instruct each PIPE where to route the PIPEFlow buses (SONICs flexible
pipelined routing).

Configuration of the PIPEs - In some implementations, where a high bandwidth is required for configuration, the PIPE Bus
can be used to carry configuration data for the PIPEs.

PIPE Control Signals
Each PIPE has a number of unique control signals, these are used for configuration control, interrupt signals, as well as part
of the protocol for the PIPE bus.

PIPEFlow Buses
Since pipelined operation has been found to be important in video image processing, the SONIC architecture uses PIPEFlow
buses. They are designed to allow pipelined operation. Data passes along the pipeline using the PIPEFlow buses connecting
adjacent PIPEs. The PIPEFlow Start bus can be used to get data to the start of the pipeline, and the PIPEFlow End bus to
retrieve the data from the end. Data is sent over these buses using a pre-defined ‘raster-scan’ protocol. Depending on the
implementation, the PIPEFlow buses may use one or more pre-defined protocols.

Local Bus
Controller

(LBC)

PIPE
1

Host Bus

PIPE Bus

Configuration Control, PIPE Select, and Interrupt Signals

PIPEFlow Start PIPEFlow End

PIPEFlow Buses are shaded

Video Bus(es)

PIPE
2

PIPE
3

PIPE
4

PIPE
N

Figure 5 - The SONIC architecture



4.2 The PIPE (Plug-in Processing Element)
The PIPEs are the most important part of the SONIC platform architecture. They are the elements which perform the
processing. Each PIPEs consists of the three conceptual parts shown in Figure 6: the PIPE Router (PR), PIPE Engine
(PE), and PIPE Memory (PM).

The architecture of the PIPEs means that computation,
handled by the PE, is separated from the movement and
formatting of the image data, which is handled by the PR.
The PE is controlled by the plug-in, and the PR by the API.
It is the PR, and the way that it is used, which makes
SONIC unique.

The PIPE Router  (PR)
The PR provides a flexible, scaleable solution to routing
and data formatting by the SONIC architecture. The PR is
responsible for three tasks:

• Accessing the PM by PIPE Bus.
• Generating the PIPEFlow In data for the PE.
• Handling the PIPEFlow Out data from the PE.

The PR is much more than a simple router and memory handler. The SONIC architecture uses the PR to present the image
data to the PE in the format in which the plug-in hardware expects it. There are three el ements to this:

Data Locations - The PR must route the data from the correct place. Not only can the PR route the data from one of the
PIPEFlow buses, but PIPEFlow data could also be routed to or  from the PM. This means that precisely the same plug-in
can be used either as a single entity, with it’s data coming from the PM, or as part of a larger chain of processing with the
data coming from the previous PIPE.

Data Format - The PR is responsible for ensuring that the data are in the correct format for the plug-in in the PE. For e x-
ample, if the plug-in in the PE is designed to operate with Hue, Saturation and Volume (HSV) components and is pipelined
to the previous PIPE which outputs RGB components, the PR must perform the HSV to RGB conversion. The PR could also
support conversions from formats such as 4:2:2 or 4:1:1 sampled YCrCb, or even de-interlaced interlaced frames.

Data Access  - The PR is capable of supplying the data
to the PE in a variety of ways, as shown in Figure 7.
Simple operations, such as gamma correction, can be
carried out using the normal horizontal raster scan
mode. The normal vertical raster scan mode, allows for
designers to easily implement two-pass algorithms. The
more complicated ‘stripped’ accessing greatly eases the
design of 2-D Filters, and block processing algorithms.

The PIPE Engine (PE)
The PE processes the image. This is the only part of the
PIPE directly configured by the plug-in. The plug-in
hardware description contains the configuration data for
the PE. Although the PE typically gets the data via the
PIPEFlow bus, the PE has direct access to the PM. This
allows the plug-in hardware designer to have complete
control over how the PM is accessed, if required. This is
useful for situations where the image must be accessed
randomly (explosion effects, for example).

PIPE Router
(PR)

(Under SONIC
API Control)

PIPE Engine
(PE)

(Under Plug-In
Control)

PIPE
Memory

(PM)

PIPEFlow
Left

PIPEFlow
Right

PIPEFlow
Start

PIPEFlow
End

PIPE Bus

PIPEFlow
In

PIPEFlow
Out

PE Select

PR Select
PM Select

Figure 6 - Architecture of the PIPE

.............
.....

........

Horizontal Raster Scan Mode

Normal

Vertical Raster Scan Mode

Normal

'Stripped' 'Stripped'

Figure 7 - Different Raster-Scan Modes of the PR



The PIPE Memory (PM)
Each PIPE contains memory (PM), which can be used for image storage and manipulation. If the plug-in hardware designer
does not use the PM, the SONIC architecture allows the PR to use the PM for image storage, through the API.

4.3 Different implementations of the PIPE
The actual implementation of the PIPE could take many forms. Firstly, despite conceptually consisting of three parts (the
PR, PE & PM), the implementation of the PIPE could consist of just one device or even many devices. Secondly, although
the original intention is clearly to use reconfigurable logic, the PE and/or PR could be implemented with a DSP processor,
or customised ASIC, with programming code replacing  hardware config uration data.

5 Integration  of the SONIC Platform Architecture with the software model
Figure 8 shows how the SONIC platform ar-
chitecture complements our software model.
In this example the SONIC platform has two
PIPEs configured, and locked by their plug-
ins. In this instance plug-In 1 uses the PR to
generate the data from the PM, whilst Plug-In
2 is accessing the PM directly. The remaining
unused PIPEs are free to be used to implement
more plug-ins as required.

Figure 9 shows what happens after several
events:

1. Plug-In 1 has finished, and unlocked the PIPE.
2. Plug-In 3 has started, locking 3 PIPEs

Although Plug-In 1 has unlocked it’s PIPE the
PIPE still remains configured. This means that if
Plug-In 1 should restart then there is no need for
the API to reconfigure the PIPE. Because of this,
the API attempts to use the least recently used
PIPE, when a plug-in tries to start. Plug-In 3
shows how a larger plug-in can be implemented
using multiple PIPEs., in this instance passing
data via the PIPEFlow buses. More complex plug-
ins can easily be designed by cascading smaller
plug-ins which use the PIPEFlow buses.

6 Implementation of the SONIC architecture
A photograph of our implementation of the SONIC architecture, SONIC-1, can be seen in Figure 10. We implement
the PIPEs using daughter board modules, which can be inserted into the 200 pin DIMM sockets on the main board.
The modularity of the design is beneficial for several reasons:

• Easier development.
• Improved device density of the board.
• Easier testing (a board with headers for a logic analyser was made could be inserted in place of a PIPE).
• Allowed for future expansion, by allowing for different devices to be used in the PIPEs

LB
C

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

Host BUS

Plug-In
1

Plug-In
2

Figure 8 - SONIC Platform with 2 Plug-Ins

PE

PR

PM

LB
C

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

Host BUS

Plug-In
1

Plug-In
3

Plug-In
2

Figure 9 - Plug-In 1 Unlocks and Plug-In 3 Starts



An LCD display has been included on the board to improve the testability of the board.

6.1 Implementation of the PIPE
A block diagram of our implementation of the PIPE is shown in  Figure 11. Since we use Altera parts, which cannot
be partially reconfigured, it was necessary to place the PR and PE in separate devices (A FLEX10K70 for the PE, and
FLEX10K20 for the PR). The 10K70 can be clocked at 33 or 66Mhz.  Figure 12 shows a photograph of our imple-
mentation.

PIPE Router (PR)

Altera FLEX10K20

PIPE
Memory (PM)

4MB SRAM

PIPEFlow
Left

PIPEFlow
Right

PIPEFlow
Start

PIPEFlow
End

PIPE Bus

PIPEFlow
In

PIPEFlow
Out

PE Select

PR Select
PM Select

PIPE Engine (PE)

Altera FLEX10K70

Clock
Configuration

Configuration

 Figure 11 - Our implementation of the PIPE

a)

b)

PE PR

4Mbytes SRAM

Figure 12 - detail of a) front, and b) reverse of PIPE

The PM consists of 4Mbytes of SRAM arranged as 1M x 32 bits. The bandwidth of the PM is 132MB/s which matches that
of the PIPE Bus, and is twice that of the PIPEFlow bus.

There are also 22 bit bi-directional connections between the PEs of adjacent PIPEs (utilising the remaining device pins),
which can be used when multiple PIPEs are combined as MEGA PIPEs.

6.2 Implementation of the buses
The PIPE Bus

The PIPE Bus is implemented as a 32 bit multiplexed address/data bus (plus 4 control signals). It is capable of matching the
maximum bandwidth of the PCI bus (132MB/s).

Local Bus Controllers (LBC) on reverse side

Test LCD

PCI interface
chip

SDI
interface

Fans

PIPEs

Figure 10 - SONIC-1 platform, with 4 PIPEs



The PIPEFlow bus
The PIPEFlow bus are 19 bits in width (16 bit data + 3 control bits) and operate at (66MB/s). This bandwidth is half that of
the PM, so it is possible to read and store PIPEFlow data to the same PM. Pin availability on the PIPE and the PR placed the
limitation on the size of this bus. Because 8 bit RGBα data is typically used, this bus is time multiplexed between RG & Bα
components.

6.3 Support Architecture
SONIC-1 contains hardware dedicated to smoothly interfacing the PIPEs to the SONIC API through the host PCI bus. It
also contains an SDI interface which can be used as an image data stream interface independently from the PCI bus. The
elements of the main SONIC board are:

Local Bus Controller (LBC)
The LBC was implemented using 2 Altera 10K50s, and a PLX 9080 to interface with the PCI bus. The PCI bus transfers
data between the host PC and SONIC-1. The PLX 9080 PCI interface chip can support burst mode transfers, giving a
maximum theatrical transfer speed of 132MB/s from the Host PC to the PIPE PM.

SDI Port
SONIC-1 also has a Serial Digital Interface (SDI) plus supporting logic, which can be used simultaneously as an i n-
put and output for video independently of the PCI bus. This interface is widely used throughout the professional
broadcasting industry. This allows for pipelined processing of video, with the video using the SDI interface, and the
PCI bus being used for control data. Transferral of images to and from the host PC is also possible, with the SDI
port.

7 Example - A Separable 2-D FIR Filter for Adobe  Premiere

In order to demonstrate how easy the SONIC architecture is to use, we give an example of implementing a separable
19 Tap 2-D FIR Filter for Adobe  Premiere . A 2-D separable filter can be implemented using 2 1-D FIR Filters,
processing once in the horizontal direction, and once in the vertical direction. Rather than use 2 filters we use a si n-
gle 1-D FIR Filter twice. The basic design can be seen in Figure 13.

1-D 19 Tap FIR FilterPIPEFlow Data IN PIPEFlow Data OUT

Figure 13 - Hardware Design for the Separable 2-D FIR Filter

The important point here is how little the hardware designer needs to know about the SONIC platform. All the i n-
formation they require is that they will receive a stream of data through the PIPEFlow IN port, and must send the
processed data out using the PIPEFlow OUT port.

The fragment of the ‘C’ code which handles the SONIC platform can be seen in Figure 14. This code configures a
PIPE with the hardware shown in Figure 13. Runs the data through it horizontally once, and then vertically. Pre-
cisely the same hardware design for the PE can be used for both, since the PR accesses the data.



Figure 15 shows the plug-in within Premiere . The usefulness of having the API only configure the PE when strictly neces-
sary is highlighted by this plug-in. Adobe  Premiere  loads the plug-in in for each frame. However, because the API leaves
the PIPE configured when the plug-in finishes, the PIPE is only configured once.

We ran Adobe  Premiere  on a 300MHz Pentium II
machine using a sequence of 50 576x461 frames.
The results can be seen in Table 1.

The time taken to process the sequence can be split
into two times: Processing Time - the time actually
spent in the plug-in, and Framework Time - the
time which Adobe requires to prepare each frame
(since the frames are stored in a compressed for-
mat). The processing speed up is 30 times, although
the adobe framework overhead has reduced the total
speedup to 5.5 times. When using the SONIC plat-
form in other applications where no such compres-
sion takes place, we would expect to see ≈30 times
speedup overall. To improve the speedup for
Adobe  Premiere , we intend to explore the possi-
bility of using SONIC to accelerate the frame com-
pression/decompression.

Processing Time (PT) Adobe Framework Time (AT) Total Time = PT+AT
SONIC-1 3.8s 21.6s 35.4s
Software 117.4s 21.6s 139.0s
Processing Speed-Up 30.9x
Total Speed-Up 5.5x

Table 1 - Perfomance of the Seperable 2-D Filter

Another important fact is that this plug-in only used a single PIPE. Assuming a linear speed up as more PIPE are
used (which would be the case if the PIPEFlow buses were used for image movement), a more complicated Plug-In
using all 8 available PIPEs would expect to achieve speedups of around 250 times.

UINT hPIPE; //Handle to the PIPE
DWORD Done; //Bit 1 is high when finished processing

Sonic_Conf(&hPIPE, “SEP_2D_FIR_FILTER.RBF”); //Allocates a PIPE, configures it if necessary, and locks it.
Sonic_PR_ImageSize_Write(hPIPE, Width,Height); //Set the width and height of the image.
Sonic_PR_Route_Write(hPIPE, PR_TO_AND_FROM_PM); //Get the PIEPFlow data from the PM and put it back there when done.
Sonic_PM_Write(hPIPE, pSrcImage); //pSrcImage Points to the source image, write it to the PM.

Sonic_PR_ImageMode_Write(hPIPE,PR_HORIZONTAL_RASTER); //Make the PR read the image using horizontal raster scan.
Sonic_PR_Pipeflow_Write(hPIPE,PR_PROCESS); //Start the PR generating the rasterscan.
do {
  Sonic_PR_Pipeflow_Read(hPIPE,Done); //Wait for the PE to finish processing.
} until (Done & 1);

Sonic_PR_ImageMode_Write(hPIPE,PR_VERTICAL_RASTER); //Make the PR read the image using vertical raster scan.
Sonic_PR_Pipeflow_Write(hPIPE,PR_PROCESS); //Start the PR generating the rasterscan.
do {
  Sonic_PR_Pipeflow_Read(hPIPE,Done); //Wait for the PE to finish processing.
} until (Done & 1);
Sonic_PM_Read(hPIPE,pDstImage); //Read the resultant image back to pDstImage.
Sonic_Unlock_PIPE(hPIPE); //Unlock the PIPE, so other plug-ins can use it.

Figure 14 - Software Code Fragment required to handle SONIC

Figure 15  - The Separable 2-D FIR Filter  in Adobe  Premiere



8 Conclusions
The uniqueness of the SONIC architecture is due to the PIPE Router (PR) and the API. The API enables resource al-
location and scheduling which is invisible to the API user, whilst conforming to a simple software model. The PR
simplifies the reconfigurable hardware design process, by carrying out all the image transferral and conversion ne c-
essary to give the PIPE Engine (PE) the correct data in the correct format. The SONIC architecture also demo n-
strates:

• the advantages of designing a reconfigurable platform with a well defined software model;
• that a Plug-In software methodology is particularly suited to reconfigurable platforms;
• simple simultaneous use of reconfigurable hardware by multiple applications;
• that PIPEs can be pipelined together to create complex plug-ins;
• good flexibility and expandability.

We have demonstrated that our implementation (SONIC-1) gives impressive performance, and have used the sof t-
ware plug-in methodology to write SONIC-1 plug-ins for Adobe  Premiere . The development of plug-ins for other
software packages is underway.

Other current and future work which we would like to carry out includes; building a library of hardware components which
can be used by the designers for the basis of new designs; developing more benchmark plug-ins for various applications; re-
fining of the design flow, and improving the API to give enable more sophisticated scheduling of the reconfiguration of the
PIPEs.

Acknowledgements
We gratefully acknowledge the support provided by the UK Engineering and Physical Sciences Research Council,
and Sony Broadcast & Professional Europe.

References
                                                       
1 P.M. Athanas and A.L. Abbott, “Real-Time Image Processing on a Custom Computing Platform”, IEEE Computer, Vol.

28, Issue 2, pp 16-24, Feb1995.
2 P.I. Mackinlay, P.Y.K. Cheung, W. Luk and R.D. Sandiford,  “Riley-2: A flexible platform for codesign and dynamic re-

configurable computing research”, Field-Programmable Logic and Applications, W. Luk, P.Y.K. Cheung and M. Glesner
(editors), LNCS 1304, Springer 1997, pp. 91-100.

3 D. Galloway, “The Transmogrifier C Hardware Description Language and Compiler for FPGAs”, IEEE Symposium on
FPGAs for Custom Computing Machines, 1995, pp. 136 - 144.

4 R.D. Hudson, D.I. Lehn, & P.M. Athanas, “A Run-Time Reconfigurable Engine for Image Interpolation”, IEEE Sympo-
sium on FPGAs for Custom Computing Machines, April 15 th - 17th, 1998, pp. 88 - 95,

5 S. Singh and R. Slous, “Accelerating Adobe Photoshop with Reconfigurable Logic”, IEEE Symposium on FPGAs for
Custom Computing Machines, April 15 th - 17th, 1998, pp. 236 - 244.

6 M.J. Colaïtis, J.L. Jumpertz, B. Guérin, B. Chéron, F. Battini, B. Lescure,E. Gautier, & J-P. Geffroy: “The Implementa-
tion of P3I, a Parallel Architecture for Video Real-Time Processing: A Case Study”, Proceedings of the IEEE, Vol. 84,
No. 7, pp 1019-1037, July 1996.

7 H.T. Kung, “Computational Models For Parallel Computers”, Scientific applications of Microprocessors, R.J. Elliot &
C.A.R. Hoare, Prentice Hall, pp 1-15, 1989.


