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Abstract

This paper describes a novel hardware accelera-
tor for Monte Carlo (MC) simulation, and illustrate
its implementation in field programmable gate array
(FPGA) technology for speeding up financial appli-
cations. Our accelerator is based on a generic ar-
chitecture, which combines speed and flexibility by
integrating a pipelined MC core with an on-chip in-
struction processor. We develop a generic number
system representation for determining the choice of
number representation that meets numerical preci-
sion requirements. Our approach is then used in a
complex financial engineering application, involving
the Brace, Ga̧tarek and Musiela (BGM) interest rate
model for pricing derivatives. We address, in our
BGM model, several challenges including the gener-
ation of Gaussian distributed random numbers and
pipelining of the MC simulation. Our BGM applica-
tion, based on an off-the-shelf system with a Xilinx
XC2VP30 device at 50 MHz, is over 25 times faster
than software running on a 1.5 GHz Intel Pentium
machine.

1 Introduction

Reconfigurable computing [1], which involves re-
configurable devices such as field programmable gate
arrays (FPGAs) in computational systems, has shown
to be remarkably successful in providing effective so-
lutions to many applications, including signal pro-
cessing, cryptography, molecular biology, and video
compression [2]. In the past, only a small number
of floating-point units could be placed on a single
FPGA, limiting the range of applications to which re-
configurable computing could be applied. With im-
proving FPGA density, the range of reconfigurable
computing applications continues to grow, since cus-
tomized datapaths can achieve higher levels of paral-
lelism than microprocessor-only systems.

Monte Carlo (MC) simulation makes a large num-
ber of randomized trial runs to infer the probability

distribution of the outcome. MC simulation is often
the only tool for treating otherwise intractable prob-
lems, such as pricing of financial derivatives and sci-
entific calculations on stochastic processes. However,
computation speed has been a major barrier for de-
ployment of MC solutions in many large and real-
time applications.

Previous work has applied reconfigurable comput-
ing to accelerating MC simulations. A hardware de-
sign has been proposed for generating random num-
bers from arbitrary distributions [3]; this design has
been applied to several MC problems, including com-
putation of π, MC integration, and stochastic simu-
lation for chemical species. FPGAs have been used
to speed up heat transfer simulation [4] and stochas-
tic simulation of biochemical reactions [5]. A generic
MC architecture targeting mainly physics simulations
has been developed [6], and an MC processor has
been used for the simulation of sintering [7]. For the
above cases, considerable speedups up to 105 times
over software based implementations are observed.

This paper presents a novel reconfigurable acceler-
ator for MC simulation, and describes its application
in financial modelling. The main contributions of our
work are:

• a generic architecture for accelerating MC sim-
ulation using an on-chip processor, and a hard-
ware path generator which combines flexibility
and speed;

• an illustration of using a generalized number
system optimization package [8] to provide an
appropriate number representation / accuracy;

• a specialisation of the proposed generic architec-
ture to support financial computations based on
the Brace, Ga̧tarek and Musiela (BGM) interest
rate model [9], with efficient methods for gener-
ating Gaussian distributed random numbers, for
supporting fast division, and for pipelining the
MC simulation;

• an evaluation of our MC processor in FPGA
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technology, showing that an implementation in-
volving a Xilinx XC2VP30 device at 50 MHz is
over 25 times faster than a Pentium processor at
1.5 GHz.

The challenges that we overcome in this research
for supporting the BGM financial model include the
need for a high-speed source of Gaussian distributed
random numbers, as well as resolving the dependen-
cies in the path generation hardware. To address these
issues, a hardware implementation of the Box-Muller
algorithm [10] which combines high speed with small
resource requirements, is used for Gaussian random
number generation, so that different paths are calcu-
lated simultaneously in order to avoid data dependen-
cies. Following the proposed approach, we present
results using the BGM examples to show that even
single-chip machines can be used to accelerate com-
plex MC simulations.

The paper is organized as follows. Section 2
presents a generic architecture for MC simulations.
Section 3 introduces the BGM financial model. Sec-
tion 4 describes the architecture, covering the main
components such as the fast divider, the Gaussian ran-
dom number generator, and the main simulation loop.
Section 5 reports results for our implementation of
the MC accelerators. Section 6 summarises our work
and discusses opportunities for further research.

2 Architecture for MC Simulation

This section describes facilities for developing a
reconfigurable MC accelerator. We introduce its ar-
chitecture and the arithmetic system, and explain how
the wordlength of its resources can be determined.

The hardware architecture of a generic MC engine
is shown as a block diagram in Figure 1. The archi-
tecture consists of the following components: (a) one
or more random number generators, (b) a simulation
core that provides computational resources for itera-
tion over the simulation space, (c) a post processing
stage, and (d) a microprocessor for computations not
suitable for reconfigurable logic. The purpose of this
architecture is to combine a fast simulation core and
post processing for data-oriented processing, with an
on-chip microprocessor for control-oriented opera-
tions. The adoption of this architecture for the BGM
financial model will be explained in Section 4. Next,
we introduce a generic number system representation
for determining the choice of number representation.

MC Arithmetic System and Wordlength De-
termination. In the MC system, the Computer
Arithmetic Synthesis Tool (CAST) [8] is used to pro-
vide an environment in which tradeoffs between dif-
ferent arithmetic systems of arbitrary wordlength can
be compared. CAST provides a generalized num-
ber representation in which fixed-point, floating-point
and logarithmic number system (LNS) simulations
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Figure 1. Generic architecture for MC
simulation.

and fully pipelined implementations can be derived
from a single generic description of the datapath in
VHDL.

In the CAST system, fixed point numbers are rep-
resented as two’s complement fixed point fractions.
Floating point numbers are similar in format to the
IEEE 754 standard except that the size of the expo-
nent and fraction are parameterized, there are no de-
normalized numbers, and a round-to-nearest scheme
is used. In this study, we consider only fixed and
floating point number systems.

Determining Fraction Size. To evaluate the min-
imum resources required to produce at least 4 decimal
place accuracy (as required in financial applications),
the CAST library is used to generate the C++ code
for a bit-exact simulation of the different fixed and
floating point operations provided by the arithmetic
library, parameterized by the number format.

A bit-exact simulation of the intended hardware
implementation is made with the aid of CAST and us-
ing the same pseudorandom number generator. In this
way, only quantization error and number system ac-
count for differences between double precision float-
ing point (used as a reference) and the simulation of
the quantized hardware implementation. We can find
implementation schemes which minimize area sub-
ject to accuracy requirements.

3 The BGM Model

Interest rates fluctuate over time and since nearly
all economic activity is dependent on this instrument,
there is considerable interest in modeling for valu-
ing and hedging purposes. The BGM model [11] is
commonly used because of its theoretical elegance
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and ease of calibration. Interest rate caps can be
understood by first considering a floating-rate loan
where interest rate is updated periodically (e.g. every
3 months) according to the market rates. A cap is an
option which gives the holder the right to stick with
a specified rate if the market rate goes higher than it.
This provides insurance to the borrower against rises
in interest rates.

Within the BGM framework, the price of a cap or
other interest rate derivative is usually computed us-
ing MC simulation since it is difficult to apply other
approaches under the BGM model. An advantage of
MC simulation is its applicability to pricing a large
range of derivatives, and straightforward implemen-
tation directly from the stochastic model rather than
requiring further derivation (as for tree or finite dif-
ference methods). However, it has the drawback of
being computationally expensive.

Let F (t, tn, tn+1) to be the forward interest rate
observed at time t for a period starting at tn and end-
ing at tn+1. Suppose the time line is segmented by
the reset dates (T1, T2, ..., TN ) (called the standard
reset dates) of actively trading caps on which the
BGM model is calibrated. In the BGM framework,
the forward rates {F (t, Tn, Tn+1)} are assumed to
evolve according to a log-normal distribution. Writ-
ing Fn(t) as the shorthand for F (t, Tn, Tn+1), the
evolution follows the stochastic differential equation
(SDE) with d stochastic factors:

dFn(t)

Fn(t)
= ~µn(t)dt+ ~σn(t) · d ~W (t) n=1 . . . N.

(1)
In this equation, dFn is the change in the forward rate,
Fn, in the time interval dt. The drift coefficient, ~µn,
is given by

~µn(t) = ~σn(t) ·
n∑

i=m(t)

τiFi(t)~σi(t)

1 + τiFi(t)
(2)

where m(t) is the index for the next reset date at time
t and t ≤ tm(t), τi = Ti+1 − Ti and σn is the d-
dimensional volatility vector. In the stochastic term
(the second term on the right hand side of Equation
1), d ~W is the differential of a d-dimensional uncorre-
lated Brownian motion ~W , and each component can
be written as

dWk(t) = εk
√
dt (3)

where εk is a Gaussian random number drawn from a
standardized normal distribution, i.e. ε ∼ φ(0, 1.0).
A Gaussian random number generator [13] is re-
quired to implement the Brownian motion. A num-
ber of financial derivatives can be priced under the
BGM model [12]. To simplify the example of pricing
a derivative with FPGA-based hardware, we consider
only caps in this paper. The cap consists of a series

of caplets in each of which the payoff between the
floating rate and the cap rate in the standard period
is settled. In pricing the cap via MC simulation, a
large number of interest rate paths are generated us-
ing pseudorandom numbers according to Equation 1
with a time-discretization step size being 0.01 to 0.05
years. In each path, the forward rate Fn(tn) is real-
ized in each standard period which enable the caplet
payoff at time tn+1 to be calculated.

payoffn = principal×τn×max(Fn(tn)−cap rate, 0.0)
(4)

The amount payoffn is to be received at tn+1, and
its value at time zero (t0) is the amount that would
grow to payoffn with the interest rates from t0 to
tn+1. Solving for the value of payoffn at t0, the dis-
count factor for discounting payoffn at tn+1 back to
t0 is given by:

discountFactor =

n∏

i=0

1

(1 + Fi(ti))
(5)

The payoff of each caplet is discounted back to
time zero and summed to form the value of the cap
under the MC trial. The average value of the cap in
all the MC trials is the price of the cap.

4 The BGM Architecture

Our design divides the entire MC simulation into
three stages: simulation initialization, BGM path
generation, and post processing. In the initializa-
tion stage, we initialize the volatility vector ~σ, reset
the Gaussian random number generators and initial-
ize the Brownian motion generator.

In the second stage, the BGM paths are gener-
ated according to Equation 1. The pseudocode for
the main BGM model can be described by:

Step 1: for n = CurrPeriod+ 1 to N
Step 2: factor = τnFn/(1.0 + τnFn)
Step 3: ~µn = factor × ~σn
Step 4: ~µn = ~µn + ~µn−1

Step 5: κ = (~µn · ~σn)dt+ (
−−→
dW · ~σn)

Step 6: dFn = κ× Fn
Step 7: Fn = Fn + dFn

where CurrPeriod is the index of the current stan-
dard period, i.e. m(t) = CurrPeriod+ 1, and N is
the number of standard forward rates.

The for-loop (step 1) is the main loop of the BGM
model. The computation consists of one division
(step 2), one vector addition (step 4) and three vector
product operations (step 3, step 5) in each iteration
of the for-loop. We use a Taylor series expansion to
implement step 2 and it is discussed in detail in Sec-
tion 4. In order to maximize parallelism, the vector
operations are implemented as parallel scalar opera-
tions. Finally, we do the post-processing which in-
volves pricing the cap according to Equations 4 and 5
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and calculate the mean and standard error of the gen-
erated BGM paths on the PowerPC processor.

Hardware Architecture. The MC architecture of
Figure 1 is used to implement the BGM model.There
are seven major blocks in the system architecture:
Brownian motion generator, Volatility vector unit,
Simulation core (BGM core), Address generation and
control unit, Block RAMs, Cap Price post processor
and the processor core. The Brownian motion genera-
tor generates the

−−→
dW vectors according to Equation 3

and is driven by three Gaussian random number gen-
erators. The Simulation core is responsible for the
generation of BGM paths and a detailed description
is given in Section 4. The Address generation and
control unit and Block RAMs are used for data stor-
age during the BGM simulation. To perform post-
processing, which involves computing the cap price
in our MC processor, we place a module between
the BGM core and the processor to accelerates this
computation. The final block is the processor core,
which is responsible for coordinating the processing
between the various cores as well as postprocessing
of the BGM paths for different financial derivatives.
We have used both the Xilinx Microblaze soft proces-
sor as well as the PowerPC processor in the XC2VP
device for the BGM example.

We implement the Volatility vector, which indi-
cates the rate of change in the price of an option or
a derivative with volatility, using block SelectRAM+
memory [14]. As the number of parameters is large
and does not change during simulation, the processor
stores the parameters in block RAMs for the BGM
core to use as part of the initialization.

BGM Number System and Wordlength. The
BGM software implementation is made using the
CAST simulation classes. Given the input data, we
can determine the quantization error against a double-
precision IEEE software implementation for different
fraction sizes. In the BGM simulation, each opera-
tor is allowed to have a different wordlength and a
multi-dimensional minimization performed to find a
balance between quantization error and circuit size.
A cost function is defined as:

fcost(c1, c2, ...cn) = a× error rate(c1, c2, ..cn)

+b× area(c1, c2, ...cn)

where ci represents the fraction size of operator i.
error rate is the quantization error of the result if
the answer is not correct to 4 decimal places. In the
equation, area is an estimate of the required logic re-
sources for the given configuration of operators, and a
and b are non-negative weighting factors for the error
and area terms respectively. As the BGM application
must maintain 4 decimal place accuracy, the value of
a is typically several orders of magnitude larger than
b.

Table 1. Wordlength optimization results
for arithmetic operators. The pairs
(a,b) refer to (integer wordlength, frac-
tional wordlength) for fixed-point de-
signs, and to (exponent wordlength,
fractional wordlength) for floating-point
designs.

Fraction Size Before Optimization
Arithmetic mul add div acc
Fixed-Point (2, 31) (2, 31) (2, 31) (2, 31)
Floating-Point (8, 28) (8, 28) (8, 28) (8, 28)

Fraction Size After Optimization
Fixed-Point (2, 31) (2, 30) (2, 15) (2, 20)
Floating-Point (3, 22) (3, 30) (3, 15) (3, 15)

The Nelder-Mead optimization method [15] is
used to minimize the fraction size of the numerical
representation. The range for each operator during
a BGM simulation is stored in the class and then
used to determine an appropriate choice of integer
and exponent size in the number system represen-
tation. Since many operators are used in the BGM
core, it is computationally intensive to optimize each
of their precisions individually. A faster but perhaps
less optimal approach in which some variables are
constrained to the same fraction size is adopted. Op-
erators are categorized into 4 groups, namely adders,
multipliers, accumulators and dividers. The opti-
mization routine varies the fraction size of adder,
multiplier and accumulator to find the configuration
which can obtain the desired four decimal place pre-
cision using minimal resources. Table 1 shows some
results.

Fast Division. In order to calculate F/(F + 1),
we use Hung’s fast division algorithm with a small
lookup table [16], [17]. As F is between 0 and 1, F
is given by

F = 2−1F1 + 2−2F2 + · · ·+ 2−(2m−1)F2m−1 (6)

where Fi ∈ {0, 1}.
F is decomposed into two groups: the higher order

bits (Fh) and the lower order bits (Fl).

Fh = 2−1F1 + 2−2F2 + · · ·+ 2−mFm (7)

Fl = 2−(m+1)Fm+1 + · · ·+ 2−(2m−1)F2m−1 (8)

F/(1 + F ) can be expanded at Fl/(1 + Fh) by a
Taylor series as follows,

F

1 + F
=

F

F ∗h + Fl
=

F

F ∗h
(1− Fl

F ∗h
+
F 2
l

F ∗2h
−· · · ) (9)

This can be approximated by:

F

1 + F
≈ F

F ∗h
(1− Fl

F ∗h
) =

F (F ∗h − F ∗l )

F ∗2h
(10)
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Figure 2. Fast division with pipelining.

where F ∗h = Fh + 1.
We use a lookup table to retrieve the value of

1/F ∗2h . There are 3 pipeline stages in our design (Fig-
ure 2). In the first stage, (F ∗h − F ∗l ) is calculated. In
the second stage, 1/F ∗2h is retrieved from the lookup
table, and F is multiplied with (F ∗h − F ∗l ). In the
third stage, F · (F ∗h − F ∗l ) and 1/F ∗2h are multiplied
to generate the result.

Gaussian Random Number Generator. Gaus-
sian noise generation can be divided into two types:
the generation of Gaussian noise using a combination
of analog components, and the generation of pseudo-
random noise using purely digital components. The
first method tends to be practical only in highly re-
stricted circumstances, and suffers from its own prob-
lems with noise accuracy. The second method is of-
ten more desirable, because of its flexibility. In ad-
dition, when simulating communication systems we
may wish to use pseudorandom noise so that we can
adopt the same noise for different systems. Also, if
the system fails we may wish to know which noise
samples cause the system to fail. Our choice for
hardware implementation is based on the Box-Muller
algorithm [10], which generates random Gaussian
variables by transforming two uniform random vari-
ables over [0,1). Properly implemented, it offers pre-
dictable output rate and, in combination with the cen-
tral limit theorem, extremely good Gaussian model-
ing.

The Box-Muller method is conceptually straight-
forward. Given two independent realizations u1 and
u2 of a uniform random variable over the interval
[0,1), and a set of intermediate functions f , g1 and
g2 such that

f(u1) =
√
− ln(u1) (11)

g1(u2) =
√

2 sin(2π u2) (12)

g2(u2) =
√

2 cos(2π u2) (13)
x1 = f(u1) g1(u2) (14)
x2 = f(u1) g2(u2) (15)

then provide two samples of a Gaussian distribution
N(0, 1). The above equations lead to an architecture
that has four stages (Figure 3).

u1

LFSRs

g1(u2)f(u1) g2(u2)

ACC(2)

u2 u2

50

32 18 18

x1 x2

32 32

x

ACC(2)

y

MUX

32

Stage 1

Stage 2

Stage 3

Stage 4

x

Figure 3. Gaussian noise generator de-
sign.

1. A linear feedback based shift register (LFSR)
based uniform random number generator,

2. implementation of the functions f , g1, g2 and
the subsequent multiplications,

3. a sample accumulation step that exploits the cen-
tral limit theorem to overcome quantization and
approximation errors, and

4. a simple multiplexor-based circuit to support
generation of one result (noise sample) per clock
cycle.

A piecewise linear approximation is used such
that: (a) the segment lengths used in a given re-
gion depends on the local linearity, with more seg-
ments deployed for regions of higher non-linearity;
and (b) the boundaries between segments are chosen
such that the task of identifying which segment to use
for a given input can be rapidly performed. Details of
our implementation can be found in [19] and [20].

To ensure the quality of the noise samples, we
use two well-known goodness-of-fit tests to check
the normality of the random variables: the chi-
square (χ2) test and the Kolmogorov-Smirnov (K-S)
test [13]. Our implementation passes these tests even
with extremely large numbers of samples. In addi-
tion, our noise generator has successfully been used
in Low-density parity-check code decoding experi-
ments [21]. Three instances of the noise generator are
used for the BGM implementation, in order to gener-
ate three noise samples every cycle.
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Figure 4. The primitive processing loop
architecture for BGM core.

BGM Core Architecture. The BGM core im-
plements the path generation loop of the BGM model
as shown in Figure 4. The figure describes the arith-
metic operations of the pipelined architecture in detail
and corresponds with the aforementioned pseudocode
architecture.

In the first initial step, Brownian motion parame-
ter
−−→
dW , the volatility vector ~σ and the forward rate

F are initialized. As
−−→
dW and ~σ are vectors, we use

a parallel architecture to implement the vector oper-
ations. There are two “Vector” blocks in the second
step to convert

−−→
dW and ~σ to scalars. The computa-

tion of F/(1.0 + F ) is also performed in this stage.
In step 3 and step 4, vector ~µ is computed according
to Equation 2. FIFOs (First-In First-Out) are used to
implement the accumulator (~µn = ~µn + ~µn−1). The
depth of the FIFO is decided by the number of BGM
paths being simulated, as described in the following
section.

According to Equation 1, the change in the for-
ward rate dFn is computed in step 5 and step 6. As
the BGM core architecture is pipelined, we use a de-
lay chain to adjust the timing of Fn. The result is
produced in the output stage.

Pipelined Path Generation. The MC simulation
generates a set of independent random forward rate
paths, and computes their average. As the number of
paths are large, this results in a long simulation time.

The architecture of BGM core is organized as a
deep pipeline. If only one path is simulated using the
BGM core, data dependencies mean that the pipeline
must stall until the output is generated since each it-
eration of the algorithm depends on the previous iter-
ation. This would result in the pipeline being mostly
idle. We propose a 2-D data flow arrangement in
which each stage computes a different path, and all
stages operate in parallel. The operation can be de-
scribed as follows:

for (i = StartStep; i < StopStep; i+ +) {
if (i == NextResetDateStep)

/* Record forward rates */
Output forward rate - F (i);

for (n = 1; n < N ; n+ +)
for (m = 0; m < NumPath; m+ +)

/* Evolve one time step */
bgm evolve step(i, n,m);

}

where bgm evolve step(·) evolves one step of the
simulation according to the pseudocode description
from step 2 to step 7 in Section 4. After one pro-
cessing loop, i.e. one BGM simulation step, all the
values Fn of the BGM paths will be updated. Fmn (i)
is the forward rate of the model, where i is the itera-
tive step, m is the index of the path n is the index of
the forward rate.

Cap Pricing and Post-Processing Stage. After
generating numbers of interest rate paths, we reach
the post-processing step of cap pricing for forward
interest rates. In this stage, there are, first the dis-
count factor implemented in the dashed block, and
second block calculates the payoff according to Equa-
tion 4. The function 1.0/(1.0 + x) is implemented
by the fast division described in Section 4. Since the
pipelined path generation architecture outputs the for-
ward interest rates of different paths one by one, the
FIFO is used to cooperate with the pipelined archi-
tecture. We use a multiplexer to implement the func-
tion max(x, 0.0). The most significant bit (MSB)
of the subtractor’s result selects output of the mul-
tiplexer between the result of the subtractor and the
constant zero. The results are passed to the PowerPC.

In the MC simulation, we use the means and stan-
dard errors of the randomized trial runs to compute
the simulation results. These operations are included
in a program for the PowerPC. The program is de-
scribed as follows:

/* Simulate batches */
for (k = 0; k < NumBatch; k + +) {

bgm GenPath(bgmData);
SumBatchMean+ = bgmData;
SumSqBatchMean+ = bgmData ∗ bgmData;

6



Table 2. Utilization summary of XC2VP30 FPGA for BGM simulation modules.
Processor BGM Core RNGs Post-processing Misc Logics and buffers

Number of SLICEs 2,168 (15%) 2,775 (20%) 5,820 (42%) 538 (3%) 1,965 (19%)
Number of Block RAMs 22 (16%) 16 (11%) 3 (2%) 2 (1%) 31 (24%)
Number of MULT18X18s - 40 (29%) - 6 (4%) 12 (9%)
Number of PPC405s 1 (50%) - - - -

}
/* Calculate the resulting mean and standard error */
Mean = SumBatchMean/NumBatch;
SqMean = sqrt((SumSqBatchMean−

SumBatchMean ∗ SumBatchMean/
NumBatch)/(NumBatch− 1.0)/NumBatch);

where bgm GenPath(·) is the function that reads
path data from the hardware responsible for generat-
ing the pricing cap data with BGM core and the post-
processing core, and NumBatch is the number of
simulation batches. In each simulation batch, we gen-
erate many paths in parallel with the hardware core.

5 Results

The design is FPGA-based, with an embedded mi-
croprocessor and user IP core architecture. It is di-
vided into hardware and software parts. In the soft-
ware part, the C program on the processor core can
initialize the parameters, configure the simulation,
and communicate with the hardware simulation.

We use the Xilinx ML310 FPGA board [24] fitted
with a XC2VP30 FPGA that has two embedded hard
core PowerPC 405 microprocessors. We implement
our designs in VHDL and synthesize with Synopsys
and Synplify.

According to the analysis of Section 4, we synthe-
size the design of the BGM simulation with the opti-
mized fixed-point configuration, as shown in Table 1.
The device utilization summary is given in Table 2.

The approach described in Section 4 is used for
both fixed-point and floating-point implementations
for the BGM core. Four BGM cores, correspond-
ing to the before and after optimization designs of
Table 1, are implemented and their resulting re-
source utilization and maximum clock frequencies
are shown in Table 3.

It can be seen that the most significant savings are
for the block RAMs used in the construction of the
divider, in which over 96% of the block RAMs can
be removed in both arithmetic schemes. After opti-
mization, 16.6% of the slices can be eliminated for
the floating-point implementation, since both the ex-
ponent size and the fraction size can be reduced.

One interesting result is that the optimized fixed-
point design requires more logic resources than the
unoptimized one. This is because rounding logic is
implicitly added to the implementation when conver-
sion between formats is required. It turns out that the

Table 3. Optimized BGM core designs.
Configuration Float-28 Float-Opt Savings
Frequency (MHz) 61.44 61.56 -
Slices 7,041 5,875 16.6%
Multiplier 48 48 0%
Block RAM 29 1 96.6%

Table 4. Speed-ups for BGM simulation.

Paths Number 50,000 500,000 5,000,000 50,000,000
FPGA (Sec.) 2.63 25.2 242 2400
PC (Sec.) 63 630 6300 63000
Speedup 24.9 25 26 26.2

rounding logic consumes more slices than the logic
that is eliminated. However, 99% of the Block RAM
is removed because of this optimization. In addition,
even though the fraction size of the multiplier can
be reduced in the floating-point design, the design
tool reports the same number of primitive multipli-
ers. This is because a primitive multiplier performs
a 17-bit unsigned multiplication and for any fraction
size between 20 and 34, the design tool requires 4
multipliers.

In the BGM simulation, the hardware BGM core
generates fifty paths in one simulation batch using the
hardware BGM core in a pipelined fashion. Repeated
batches cover the whole simulation. Therefore, the
number of total paths is given by:

TotalNumPath = NumPathperBatch×NumBatch
(16)

where NumPathperBatch is equal to 50.
The total simulation time is composed of two

parts. One is consumed by the BGM-core simula-
tion of batches and the other is post-processing to
calculate the mean and standard error of the gener-
ated BGM paths using the processor in software. The
total execution time can be calculated as follows:

TotalT ime ≈ th ×NumBatch+ ts (17)

where th and ts are the time consumed by hardware
in each batch and software respectively. According to
our simulations using a 50 MHz clock, th=2.42ms
and ts=2.12ms.

Table 4 shows the measured execution time on
ML310 board compared with a P4 1.5 GHz machine.
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The FPGA-based accelerator can generate one BGM
path in 63 µs, and a nearly twenty-fold reduction in
execution time is achieved. Parallel cores on larger
FPGAs can achieve an even larger speedup. As there
are two PowerPC cores in the FPGA used, it is also
possible to use one PowerPC core for the MC sim-
ulation and the other to run embedded linux. This
would enable us to utilize ethernet connected clusters
of FPGA boards, providing virtually unlimited scala-
bility since paths can be generated independently for
this type of MC simulation.

6 Conclusions

We present a novel hardware accelerator for
Monte Carlo (MC) simulation, and illutrate its use
for financial computations based on the BGM model.
Our design involves an embedded soft core processor
together with a coprocessor core in order to achieve
high speed with good flexibility. Using customized
low precision floating point formats, many floating
point operations can be executed in parallel, improv-
ing execution speed as compared with a microproces-
sor which is essentially serial. In order to explore
precision and area tradeoffs in the datapath of the co-
processor, we deploy an arbitrary precision numeri-
cal library so that different designs could be gener-
ated from the same description. Using this approach,
an order of magnitude improvement in performance
for the BGM problem is achieved over a purely soft-
ware based approach, thus demonstrating the feasibil-
ity of applying reconfigurable computing to the prob-
lem of accelerating large scale MC simulations in
floating point arithmetic. Current and future research
includes further optimisation of our design based on
techniques such as run-time reconfiguration [25], and
extensions of our approach to cover other financial
models.
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