
Dynamic Voltage Scaling for Commercial FPGAs

C.T. Chow1, L.S.M. Tsui1, P.H.W. Leong1,2, W. Luk2, S.J.E. Wilton3

1Dept. of Computer Science and Engineering, The Chinese University of Hong Kong
2Dept. of Computing, Imperial College London

3Dept. of Electrical and Computer Engineering, University of British Columbia
{ctchow, lstsui2}@cse.cuhk.edu.hk, {phwl, wl}@doc.ic.ac.uk, stevew@ece.ubc.ca

Abstract

A methodology for supporting dynamic voltage scaling
(DVS) on commercial FPGAs is described. A logic delay
measurement circuit (LDMC) is used to determine the speed
of an inverter chain for various operating conditions at run
time. A desired LDMC value, intended to match the criti-
cal path of the operating circuit plus a safety margin, is then
chosen; a closed loop control scheme is used to maintain the
desired LDMC value as chip temperature changes, by auto-
matically adjusting the voltage applied to the FPGA. We de-
scribe experiments using this technique on various circuits
at different clock frequencies and temperatures to demon-
strate its utility and robustness. Power savings between 4%
and 54% for the VINT supply are observed.

1. Introduction

Field Programmable Gate Array (FPGA) technology is
gaining importance for embedded appliances since it is
able to combine high performance with low cost and short
design time. However, reconfigurable architectures have
much higher parasitic capacitance compared with an ASIC
(Application-Specific Integrated Circuit). As a result, FP-
GAs can consume considerably more power than ASICs, in
some cases, up to two orders of magnitude in the same tech-
nology [12]. This makes FPGAs less suitable for power sen-
sitive applications such as handheld devices. Power reduc-
tion in FPGAs is hence important.

Previous work has been conducted to find ways to re-
duce power consumption in FPGAs. Some method-
ologies involve modifying the FPGA itself; these in-
clude dual Vdd/VINT , gated clock routing tree and power
aware FPGA architectures [4, 7]. Other methods work
with standard FPGAs; these methods include pipelin-
ing, power aware CAD (Computer-Aided Design) algo-
rithms and power aware coding of finite state machines [4].

While the first set of methodologies can really only be ex-
ploited by FPGA vendors, the second set can be exploited
by FPGA users.

Voltage scaling involves reducing the supply voltage of
a circuit [1]. It can reduce both dynamic and leakage cur-
rent, but at the expense of increasing circuit delay. For best
results, the circuit should operate at the voltage that reduces
power consumption as much as possible, while maintain-
ing reliable operation. Finding this threshold is difficult,
however, since the optimum operating voltage changes with
time and between devices, and varies with die temperature.

This paper introduces a new methodology to support
dynamic voltage scaling (DVS) on commercial FPGAs.
Rather than powering the FPGA with a fixed voltage, we dy-
namically adjust the voltage supply of the FPGA; the volt-
age reduction leads to power savings. To avoid over reduc-
ing the voltage, we embed a novel logic delay measurement
circuit (LDMC) to measure the on-chip delay of a dummy
circuit. The LDMC readings are affected by the temperature
and voltage of the FPGA’s logic cells, allowing us to dy-
namically adjust the supply voltage of the FPGA in a closed
loop fashion according to the sensor value. Fig. 1 shows the
system architecture of our DVS implementation.

In this paper, we investigate the effectiveness of DVS on
an FPGA. Our contributions include:

• dynamic voltage scaling for reducing FPGA power
consumption: we believe this is the first reported
methodology for applying DVS techniques to com-
mercial FPGAs;

• a novel Logic Delay Measurement Circuit using FPGA
resources: to the first order, the reading produced by
the LDMC tracks the critical path delay of a circuit
that we wish to operate under DVS; we also show ex-
perimentally that by using a closed loop DVS system
which keeps the LDMC reading above a threshold, no
errors occur;

• demonstration of the effectiveness of our approach: we
achieve power reductions from 4% to 54% (typically



Figure 1. System architecture of our DVS im-
plementation.

20–30%) in the VINT supply while maintaining cor-
rect operation over a wide range of temperatures.

Experimental results using a Xilinx Virtex XCV300E
FPGA are presented, which show that this approach
achieves considerable power reduction and is robust to
changes in die temperature. The technique can be com-
bined with other approaches, and requires no modification
to the FPGA itself.

The remainer of this paper is organised as follows. Sec-
tion 2 provides a brief introduction to power reduction
strategies. Our approach is described in Section 3 along
with details of the LDMC circuit which is needed for our
approach. Results regarding the calibration of the LDMC
and the overall power reduction abilities of our technique
are provided respectively in Sections 4 and 5. Finally, con-
clusions are given in Section 6.

2. Background

Power consumption of a CMOS technology FPGA has
two major components, static power consumption and dy-
namic power consumption. Static power consumption is due
to gate oxide tunneling current, subthreshold conduction of
MOS transistors and leakage in the reverse biased junctions.
As the fabrication process becomes more advanced and the
feature size of transistors are decreased, the leakage cur-
rent increases significantly and becomes a major compo-
nent of the power consumption. We do not directly address
the problem of reducing static power consumption in this
work although we note that reducing the operating voltage
reduces the static power.

The main source of dynamic power consumption is due
to the charging and discharging of capacitances in the in-
tegrated circuit. The dynamic power consumption can be
modeled by the following formula:

P =
∑

(C · V dd2 · f) (1)

where C is the parasitic capacitance of each part of the cir-
cuit, Vdd is the supply voltage and f is the switching fre-
quency of the circuit. Since there is a quadratic relationship

between Vdd and the dynamic power, reducing the voltage
will reduce the dynamic power significantly.

Techniques for power reduction in FPGAs can be clas-
sified into two groups, those that require changes to the
FPGA architecture or circuitry, and those that do not re-
quire such changes. The latter methods, which are the fo-
cus of this work, are applicable to existing devices and can
be applied at the design or system level. Some of these pro-
posed techniques include:

• Pipelining long combinational circuits. The difference
in the arrival time of inputs is reduced. As a result,
glitches are reduced and the dynamic power consump-
tion is significantly reduced. It has been reported that
this methodology can reduce the power used for every
operation by 40-90% [8]. As register resources are
abundant in FPGAs and pipelined circuits usually have
better performance, pipelining is one of the best solu-
tions for reducing power in FPGAs.

• Power-aware CAD algorithms have been studied and
shown to be effective for reducing power consumption
[4, 5]. These algorithms include retiming for power op-
timisation, reduction of gate-tunneling leakage, zipper-
ing etc.

Unlike the methods above, DVS is applied at a system
level and can reduce both static and dynamic power con-
sumption without changes to the design. Another advan-
tage of DVS is that voltage has a square relation with the
dynamic power consumption so a small decrease in volt-
age leads to significant power reduction. There is however
a small overhead for our DVS scheme in the form of the
Logic Delay Measurement Circuit; we introduce this circuit
in the next section.

3. Dynamic Voltage Scaling Architecture

This section describes our dynamic voltage scal-
ing scheme, which includes a Logic Delay Measurement
Circuit (LDMC).

Fig. 1 shows the system architecture. The power supply
of the FPGA is controlled by a voltage controller, which dy-
namically adjusts the supply voltage of the FPGA. By low-
ering the voltage, the power dissipated by the FPGA can
be reduced, at the expense of reduced performance of the
FPGA circuit. In our implementation, the voltage controller
is implemented in a personal computer (PC), however, it
would also be possible to implement the controller using
simple electronics.

Note that it is necessary to keep the IO voltage levels un-
changed to maintain compatibility with other chips at the
board level. Fortunately, modern FPGAs have a separate
supply networks for the input output blocks (VIO) and in-
ternal circuit (VINT ). Our strategy is to apply DVS to the



Figure 2. Example of IO error in DVS.

internal circuits (logic cells, routing elements and storage
cells) while keeping the input output block (IOB) voltage
unchanged. Analogue components in the FPGA, such as de-
lay locked loops (DLL) or phase lock loops (PLL) are oper-
ated from a third, independent supply in current Xilinx and
Altera devices.

The voltage controller is responsible for ensuring the
voltage supply to the FPGA is not lowered so much that the
FPGA ceases to operate properly, or it does not meet the fre-
quency requirements of the application. Clearly, FPGAs are
designed to operate within a specified voltage range. When
we operate the FPGA’s VINT at a voltage lower than this
range, errors may occur. We find that two types of error can
occur: IO errors and delay errors.

Fig. 2 illustrates an IO error. In this scenario, the core
is operating at such a low voltage that a high output signal
from the core is less than the threshold voltage of the IOB.
In this case, the IOB may mistakenly interpret the high sig-
nal as a low value, leading to an incorrect FPGA output.
Our experiments in Section 4 show that the pass/fail volt-
age for an IO error is a strong function of the chip tempera-
ture. Note that this is not a concern for FPGA inputs, since
a high signal from an IOB to the core will still be inter-
preted as a high value, since VINT < VIO.

The second type of error that can occur is a delay er-
ror. When the voltage is lowered, the switching speed of the
transistors is reduced. As the voltage is lowered, the critical
path delay will increase, eventually becoming longer than
the clock period of the system clock. When this occurs, the
FPGA can no longer meet its timing requirement, and the
system will fail. This is shown in Fig. 3.

To ensure that the FPGA does not experience IO or de-
lay errors, the voltage controller uses a feedback signal from
the FPGA to indicate the status of the circuit implemented
on the FPGA. This signal is used as a “warning signal” to
indicate when the FPGA is about to experience IO or de-
lay errors. By adjusting the voltage based on this signal, the
voltage controller can ensure that IO and delay errors do not
occur.

The feedback signal is obtained from a Logic Delay
Measurement Circuit (LDMC) which, along with the user
circuit, is implemented using normal FPGA logic resources.
The LDMC consists of three major components: a delay

Figure 3. Delay as a function of supply volt-
age. Figure shows regions where the circuit
will operate correctly and where it will fail.

Figure 4. Schematic of the LDMC.

line, registers, and a leading zero detector. The schematic
for the delay line and registers is shown in Fig. 4. The de-
lay line consists of 128 inverters connected in series. The
same CLK signal is connected to the input of the delay line
and used to clock all of the D flip flops (DFFs). As the skew
of the FPGA’s clock distribution network is very small, we
assume that these signals arrive almost simultaneously.

On each falling clock edge, a wavefront begins passing
through the inverter chain. Half a cycle later on the rising
clock edge, the propagated signal is latched into the regis-
ters. At this rising clock edge, some of the register inputs
will have switched, and some will not yet have switched.
The number of inputs that have switched will depend on the
delay of the inverters; the delay of the inverters depends on
the temperature and supply voltage. A leading-zero detec-
tor is then used to estimate the circuit’s propagation delay.
In this way, the LDMC measures how many delay stages
the falling edge propagates in half a clock period.

In our implementation, the placement of the inverter
chain is constrained so that each delay line inverter and the
associated D flip-flop are in the same logic cell. Adjacent
cells are placed in adjacent sites on the FPGA as shown
in Fig. 5. Such a placement ensures that each delay stage
have an approximately equal propagation delay. In our im-
plementation on an XCV300E, the LDMC uses 177 slices,
a small fraction of the total FPGA resources.



Figure 5. Constrained placement of LDMC.

Given the feedback signal, the voltage controller uses the
following algorithm to control the voltage supplied to the
FPGA. In this algorithm, LDMC denotes the reading from
the LDMC register, Voltage denotes the voltage provided
to the FPGA, and Threshold denotes the LDMC thresh-
old indicating the onset of failure modes.

Voltage = InitialVoltage;
while true
do

if ((LDMC - Threshold) > 8)
Voltage = Voltage - 0.05;

elseif ((LDMC - Threshold) > 3)
Voltage = Voltage - 0.01;

elseif ((LDMC - Threshold) > 0)
Voltage = Voltage - 0.005;

elseif ((LDMC - Threshold) = 0)
Voltage remain unchanged;

elseif ((LDMC - Threshold) < 0)
Voltage = Voltage + 0.01;

wait for 200 ms;
done

As the voltage is reduced, the value read from the LDMC
register goes down because the propagation delay of the
inverter chain within the LDMC increases. As long as
the LDMC is above a predefined threshold, the FPGA is
deemed to be working properly, and the voltage is lowered
further. As the LDMC approaches the threshold value, the
voltage is no longer lowered, and if it goes below the thresh-
old value, the voltage is increased. In this way, the volt-
age can be adjusted as the propagation delay of the inverter
chain varies with the chip temperature. The rate of change
of voltage should be large so that the applied voltage can ap-
proach the lowest possible voltage quickly. However, addi-
tional noise will be introduced if the voltage is changed too
quickly. We found that the voltage step size and 200 ms in-
terval used in the algorithm was suitable for our particular
experimental setup.

Of critical importance is the selection of a proper thresh-

old value. As described in Section 3, lowering the voltage
too far can cause the chip to fail in two ways: the core volt-
age may become too low to drive the output blocks properly,
or the chip may run slower than is required by the appli-
cation. Experimentally, we can determine LDMC threshold
values that indicate the onset of each of these failure modes;
clearly, these values would be FPGA-dependent. We have
found that the threshold value corresponding to the onset of
both types of errors is different, depending on whether the
voltage is changing quickly (we refer to this threshold as
the dynamic threshold) or slowly (static threshold). Given
these thresholds, we then calculate the Threshold vari-
able in the above pseudo-code as follows: Threshold =
max(THds, THdd, THis, THid)+THsm where THds is the
static delay threshold, THdd is the dynamic delay thresh-
old, THis is the static IO threshold value, THid is the dy-
namic IO threshold value, and THsm is a safety margin –
we found THsm = 2 works from experiments.

4. Experiments

In this section, we experimentally evaluate our technique
and show how the threshold values described in the previ-
ous section can be obtained.

We use the Pilchard card [6] in an 800 MHz Pentium
III host personal computer (PC) as the hardware platform
for the experiments. Pilchard is a reconfigurable computing
platform that uses the SDRAM bus instead of the conven-
tional PCI bus for the host interface. The board contains a
Xilinx Virtex 300E-8 device, which contains a 32×48 CLB
array implemented in 0.18µm with 6-layer metal CMOS
technology.

To conduct dynamic voltage scaling experiments, we re-
place the 1.8 V regulator that supplies VINT on the Pilchard
board with the output of a Keithley sourcemeter 2400 [3].
The VIO for the IOBs is kept at 3.3 V. The sourceme-
ter is used as a voltage source, its output being program-
mable with 0.02% accuracy via a RS-232 interface of the
sourcemeter. The sourcemeter can also give current mea-
surements with a basic accuracy of 0.22%. This feature is
used to measure the current consumption of the FPGA. In a
practical system, the sourcemeter can be replaced by a digi-
tal to analogue converter with sufficient current drive for the
FPGA.

As the IO bandwidth of the Pilchard board is lower than
that of circuit under test and since IO operations between
the FPGA and other circuit components significantly affect
the power consumption, test vector generation and error de-
tection is done on-chip.

Next, we describe experiments to demonstrate correla-
tion between LDMC readings and (i) IO errors, and (ii) de-
lay errors.



Figure 6. Block diagram of IO error experi-
ment.

Circuit activity* THIO STATIC LDMC value

Minimum 1.26 V 69
1/6 1.31 V 69
2/6 1.36 V 69
3/6 1.42 V 69
4/6 1.45 V 69
5/6 1.53 V 70

Maximum 1.57 V 68
* Circuit activity is reported as % of the logic re-

sources on the chip.

Table 1. IO static threshold value and voltage
as a function of circuit activity.

First, we conduct experiments to demonstrate the rela-
tion between IO errors and the LDMC reading. A 64-bit
register is implemented on the FPGA and preset to output
0xFFFFFFFFFFFFFFFF to the bus interface. The FPGA is
also populated with dummy linear feedback shift register
(LFSR) circuits which are used to simulate different chip
activity, as shown in Fig.6. We reduce the VINT supply volt-
age, and find that the LDMC output decreases accordingly.
Eventually, an IO error occurs: the value read back from the
Pilchard card is not 0xFFFFFFFFFFFFFFFF and the thresh-
old voltage is recorded. Table 1 summarises the results of
this experiment.

The table shows that IO errors occur at different volt-
age levels depending on the circuit activity. This is proba-
bly due to the LFSRs causing the temperature of the die to
rise. IO errors occur only if the LDMC output decreases be-
low a certain value (70 in our implementation). We use this
value as our static IO threshold, THis.

We also investigate whether a fast changing VINT volt-
age level changes the value of LDMC output at which IO
errors occur. The same testing approach described earlier

Figure 7. Architecture of test circuit.

is used, but with the VINT level being switched between
the standard level (1.8 V) and another voltage at the maxi-
mum speed achievable by the sourcemeter (5 Hz with each
transition taking several microseconds). The lowest LDMC
value for which correct operation is observed (the dynamic
IO threshold, or THid) is found to be 71. One would ex-
pect that this value is higher than the static threshold for the
same circuit, since a fast changing supply voltage will in-
troduce additional noise to the FPGA.

Second, we use the LDMC as a reference for the DVS
only if LDMC output readings track the delay errors. Since,
to a first order, the delay of both are dominated by the delay
of the logic cells and routing resources in the FPGA, we ex-
pect this to be true. We implement the test circuit shown in
Fig. 7 to detect occurrence of delay error in our circuit un-
der test.

Upon initialisation, the LFSR and the register is reset to a
known value and the counter is reset to zero. The LFSR and
circuit under test will then start to run, generating an out-
put which is “XOR-ed” with the value of the register and
stored back to the register. This process is repeated until
the counter reaches a certain value (228 in our implemen-
tation), after which the register checksum value is latched
in another register to be read by the PC host. The test cir-
cuit is constrained so that its critical path is dominated by
that of the circuit under test. We thus ensure delay errors in
the circuit under test will occur before the rest of the test cir-
cuit fails. The entire circuit is replicated so as to fill up most
of the area in the FPGA. Before we start the experiment, the
circuit is operated at the standard voltage to obtain the cor-
rect checksum. After that, we decrease the voltage level of
VINT until it fails. The checksum will be correct only if 228

computations are correct.
We test several different circuits including integer mul-

tipliers, dividers, and CORDIC cores generated by the Xil-
inx CORE Generator [9, 10, 11]. Floating-point multipli-
ers from opencores.org [2] are also tested. For each circuit,
we use different bit-widths, and two different clock frequen-
cies (66 MHz and 100 MHz). Table 2 shows the results. For
each benchmark, at each of the two clock speeds, we cal-
culate the tolerance which is defined as the amount we can
slow down the circuit, by reducing the supply voltage be-
fore the circuit fails to meet timing requirements. More pre-



Name Speed Tolerance (%) THSTATIC THDY N

sqrt8 66MHz 26.36 83 89
sqrt8 100MHz 88.51 * *

sqrt12 100MHz 17.43 94 97
sqrt12 66MHz 76.51 * *

sqrt16 100MHz 10.19 95 94
sqrt16 66MHz 66.19 * *

sqrt24 100MHz -0.45 105 101
sqrt24 66MHz 51.19 * *

mul5 100MHz 42.94 85 90
mul5 66MHz 114.93 * *

mul7 100MHz 28.62 89 94
mul7 66MHz 92.68 * *

mul11 100MHz 1.48 115 115
mul11 66MHz 51.04 81 85

fp8 4 100MHz 17.86 88 92
fp8 8 66MHz 16.80 92 92

div32 100MHz 25.72 71 76
div32 66MHz 88.56 * *
* An asterisk indicates that no delay errors are detected be-

fore IO errors occur.

Table 2. Static and dynamic delay thresholds.

cisely, the tolerance is defined as:

Tolerance = (P1 − P2)/P2 (2)

where P2 is the minimum operating period reported by the
vendor tool, and P1 is period of the clock used to test the
circuit; in general, P2 is less than P1 for a circuit operating
correctly. For each benchmark and each clock speed, we in-
dicate the tolerance and the measured the static dynamic de-
lay threshold (Tds and Tdd).

From Table 2, we have the following findings:

• Circuits having larger tolerances tend to have a lower
threshold value, but there is no direct relation between
tolerance and threshold value. For example, circuits
sqrt8a and div32a have a similar tolerance but they
have different threshold values. A possible reason is
that they may have a different ratio of logic delay and
routing delay, one being less sensitive to voltage scal-
ing than the other.

• For circuits having large tolerance (more than 60%),
IO errors occur before delay errors. In this case, the
THis and THid will determine the threshold value
used by the voltage control circuit.

In this experiment, it is important that the input vectors
exercise the critical path of the circuit. As an example, a

Circuit LDMC threshold Supplied Voltage (VINT )
35 ◦C 50 ◦C 65 ◦C

sqrt8a 89 1.41 1.42 1.45
sqrt16a 101 1.52 1.54 1.56
sqrt16b 75 1.28 1.29 1.30
sqrt24a 111 1.78 1.81 1.87
fp8 8a 98 1.57 1.60 1.63
mul12b 87 1.42 1.42 1.45
mul7a 95 1.46 1.48 1.50
reg64 a 72 b 1.65 1.68 1.71
a Circuit for IO error testing.
b IO error threshold.

Table 3. Impact of Chip Temperature on VINT .

128-bit adder circuit has 2256 input combinations and ran-
dom inputs are not likely to result in the critical path be-
ing tested. This is a limitation of our experimental method,
and may result in a threshold value that is smaller than what
it should be. Increasing THsm will compensate somewhat
for these sorts of errors.

Finally, we show that our technique can maintain correct
operation even as the temperature of the FPGA changes.

The FPGA chip surface temperature is increased using
a hair dryer. During the experiment, we record the correct-
ness of the circuit and the VINT voltage at different temper-
atures. Results are summarised in Table 3. We find that the
circuits under test do not have any error if the LDMC is kept
at the LDMC threshold. When the chip surface tempera-
ture increases, the supply voltage is automatically increased
to keep the LDMC reading at the threshold. If the supply
voltage is not increased when temperature is increased, the
LDMC reading will decrease and the circuit under test fails.

5. Power Savings and Trade-offs

In this section, we illustrate the effectiveness of the pro-
posed DVS methodology for power reduction, and provide
guidelines for applying this methodology.

We first apply the DVS methodology to some test cir-
cuits at room temperature and record the power consump-
tion using DVS. A summary of the results is given in Ta-
ble 4.

As shown in the table, the power reduction achieved
varies from 4% to 54%. Typically we can achieve 20-30%
power savings. Circuits having a LDMC threshold near the
IO error LDMC threshold have the best power reduction.
Circuits having larger tolerance usually have large power
savings so a maximally pipelined version of a circuit results
in the largest power savings. It should also be noted that



Name * Area ** Tolerance (%) LDMC threshold Power at Power at Power save (%)
(Slices) 1.8 V (mW) LDMC threshold (mW)

sqrt8a 787 26.36 89 361.52 225.85 37.53
sqrt12a 907 17.43 100 481.89 348.57 27.67
sqrt16a 1043 10.19 101 576.30 418.99 27.30
sqrt20a 1203 4.18 105 759.24 617.54 18.66
sqrt24a 1379 -0.45 111 915.10 845.04 7.66
sqrt8b 787 88.51 73 322.52 148.46 53.97
sqrt12b 907 76.51 73 405.12 190.72 52.92
sqrt16b 1043 66.19 75 464.10 219.89 52.62
sqrt20b 1203 56.81 74 597.34 295.13 50.59
sqrt24b 1379 51.19 74 697.03 378.04 45.76
mul5a 743 42.94 91 307.43 203.09 33.94
mul7a 795 28.62 95 350.99 241.35 31.24
mul9a 879 3.38 117 453.61 397.79 12.31

mul11a 975 1.48 121 539.12 513.85 4.69
mul5b 743 114.93 75 273.54 125.20 54.23
mul7b 795 92.68 75 308.75 142.94 53.70
mul9b 879 54.64 88 371.14 223.91 39.67

mul11b 975 51.04 87 435.16 258.38 40.62
div16a 1166 69.03 76 190.66 88.72 53.47
div32a 2196 25.72 77 662.73 357.99 45.98
div16b 1166 151.55 75 215.76 98.84 54.19
div32b 2196 88.56 75 644.02 314.90 51.10
fp8 4a 1071 17.86 94 500.59 333.37 33.40
fp8 8a 1932 16.80 98 768.42 554.23 27.87
* Circuits with suffix ‘a’ have a clock frequency of 100 MHz;

circuits with suffix ‘b’ have a clock frequency of 66 MHz.

** Circuits are synthesized using Xilinx ISE6.2, optimized for speed
All experiments are conducted at room temperature.

Table 4. Power reduction achieved using DVS.

a pipelined version of a circuit can reduce the power con-
sumption even if voltage scaling technique is not applied
because pipelining can reduce glitches.

Using this technique, an FPGA runs correctly even if the
operating frequency is higher than the maximum frequency
reported by the vendor tools (such as for circuit sqrt24a).
Applying DVS allows the voltage to be reduced even in
such circuits, and a 7.66% power saving is achieved. This is
because FPGA vendors use a fixed supply voltage with mar-
gins for chip and temperature variation. Our DVS methodol-
ogy can reduce this margin because we monitor the FPGA’s
delay and adjust the supply voltage accordingly.

Next, we explore design tradeoffs between throughput,
power consumption and area using the DVS technique.
Each benchmark circuit can operate at two frequencies,

100 MHz and 66 MHz, and with the appropriate thresh-
old settings. The throughput per joule (million operations /
joule) and throughput per area (thousands operations / slice)
of each implementation are recorded in Table 5.

It can be seen that running a circuit at a lower clock
speed results in a lower LDMC threshold. The savings re-
sulting from DVS can then be increased. From the table we
find that if the original circuit, such as sqrt24, has a large
LDMC threshold, reducing the operating frequency can in-
crease the throughput per joule significantly. At the same
time, the throughput per area will decrease, so there is a
tradeoff. If the original circuit, such as sqrt8, has a LDMC
threshold near the IO error threshold, reducing the operating
frequency would decrease the throughput per area, while the
throughput per joule does not increase.



Name Speed Tolerance (%) LDMC threshold Power at threshold (mW) Throughput / Energy Throughput / Area
(MOp / J) (KOp / Slice)

sqrt8a 100MHz 26.36 89 221.98 450.49 127.06
sqrt8b 66MHz 88.51 73 151.33 436.12 83.86

sqrt16a 100MHz 10.19 101 439.05 227.77 95.88
sqrt16b 66MHz 66.19 76 231.90 284.61 63.28

sqrt24a 100MHz -0.45 111 904.83 110.52 72.52
sqrt24b 66MHz 51.19 74 365.86 180.40 47.86

mul5a 100MHz 42.94 91 193.17 517.68 134.59
mul5b 66MHz 114.93 75 132.71 497.32 88.83
* The area of each circuit can be obtained from Table 4.

Table 5. Table showing tradeoff between throughput, energy and area.

The results of these experiments are important, because
they suggest that we can decrease the operating frequency
of some circuits to increase the savings due to DVS. To
compensate for the loss in processing power due to the re-
duction in frequency, we can increase the number of paral-
lel functional units. Clearly, one needs to be careful to en-
sure that the decrease in power consumption due to DVS
outweighs the increase in power consumption due to the in-
creased number of functional units.

6. Conclusion

This paper shows that an LDMC implementation for
FPGA technology can be used as a reference for dynamic
voltage scaling. We have also shown that the DVS method-
ology can provide up to 54% power reduction. One impor-
tant advantage of our methodology is that it does not require
additional design effort or changes to the FPGA itself. The
methodology can be applied to the application after its de-
velopment, and no changes to the circuit are required. An-
other important advantage of this methodology is that DVS
reduces power consumption at physical level. It can be used
with system-level power reduction techniques like pipelin-
ing to provide additional power reduction.

The main limitation of this approach is that it requires ex-
perimentation to find appropriate threshold values for each
FPGA. For some applications, however, the reduction in
power consumption may be sufficient to motivate this addi-
tional system-level effort. Our current and future work is fo-
cused on applying the proposed techniques to a wide range
of applications, such that the experience gained will enable
us to refine and generalise our approach.

References

[1] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making
typical silicon matter with Razor. IEEE Computer, pages

41–49, March 2004.
[2] T. Hawkins. CF Floating Point Multiplier. http:

//www.opencores.org/projects.cgi/web/
cf fp mul/overview.

[3] Keithley Instruments Inc. Keithley sourcemeter model
2400. http://www.opencores.org/projects.
cgi/web/cf fp mul/overview.

[4] S. Thatte and J. Blaine. How to manage power consumption
in advanced FPGAs. Xcell Journal, Fall 2002. http://
www.xilinx.com/publications/xcellonline/
partners/xc pdf/xc synplicity44.pdf.

[5] J. Lamoureux and S. Wilton. On the interaction between
power-aware FPGA CAD algorithms. In ICCAD, pages 701–
708, 2003.

[6] P. Leong, M. Leong, O. Cheung, T. Tung, C. Kwok,
M. Wong, and K. Lee. Pilchard - a reconfigurable comput-
ing platform with memory slot interface. In Proceedings of
the IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pages 170–179, 2001.

[7] F. Li, Y. Lin, L. He, and J. Cong. Low-power FPGA us-
ing pre-defined dual-vdd/dual-vt fabrics. In FPGA ’04: Pro-
ceedings of the 2004 ACM/SIGDA 12th international sympo-
sium on Field programmable gate arrays, pages 42–50, New
York, NY, USA, 2004. ACM Press.

[8] S. J. E. Wilton, S.-S. Ang, and W. Luk. The impact of
pipelining on energy per operation in field-programmable
gate arrays. In Field-Programmable Logic and Applica-
tions. Proceedings of the 14th International Conference, FPL
2004, Lecture Notes in Computer Science, LNCS 3203, pages
719–728. Springer-Verlag, 2004.

[9] Xilinx. Intellectual Property: CORDIC. http://www.
xilinx.com.

[10] Xilinx. Intellectual Property: Multiply Generator. http:
//www.xilinx.com.

[11] Xilinx. Intellectual Property: Pipelined Divider. http://
www.xilinx.com.

[12] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis,
B. Cremen, and B. Troxel. A hybrid ASIC and FPGA archi-
tecture. In ICCAD, pages 187–194, 2002.


