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Non-uniform random number generation through
piecewise linear approximations
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Abstract: A hardware architecture for non-uniform random number generation, which allows the
generator’s distribution to be modified at run-time without reconfiguration is presented. The archi-
tecture is based on a piecewise linear approximation, using just one table lookup, one comparison
and one subtract operation to map from a uniform source to an arbitrary non-uniform distribution,
resulting in very low area utilisation and high speeds. Customisation of the distribution is fully
automatic, requiring less than a second of CPU time to approximate a new distribution, and typi-
cally around 1000 cycles to switch distributions at run-time. Comparison with Gaussian-specific
generators shows that the new architecture uses less than half the resources, provides a higher
sample rate and retains statistical quality for up to 50 billion samples, but can also generate
other distributions. When higher statistical quality is required and multiple samples are required
per cycle, a two-level piecewise generator can be used, reducing the RAM required per generated
sample while retaining the simplicity and speed of the basic technique.
1 Introduction

Many computationally intensive applications have no
closed form solution, and rely on Monte Carlo simulations
or stochastic algorithms to provide approximate solutions.
As the problems to be solved become larger and more soph-
isticated, it is becoming infeasible to execute the appli-
cations on a conventional CPU cluster because of the high
cost and power consumption. One direction that is now
being explored is to move such applications into reconfigur-
able hardware accelerators, which have many possible
advantages in terms of cost, power, physical space and
execution time [1, 2].

A key component of any hardware Monte Carlo simu-
lation is a high-performance non-uniform random number
generator (RNG), which provides a high sample rate
while using the minimum possible hardware resources.
Current approaches to non-uniform RNGs in hardware
have focused on analytically defined distributions, such as
the Gaussian distribution, where it is possible to directly
customise the hardware architecture to implement an ana-
lytically derived transform. These fixed generation architec-
tures provide high performance, but only produce a single
distribution, and require reconfiguration in order to switch
to a different distribution.

In some applications, such as bit error rate (BER) testing,
only one distribution is needed, but many other applications
require more than one distribution, including empirically
derived distributions. For example, in financial computing
historical data are used to provide an empirical distribution
for future events. Of particular interest is the behaviour of
asset log-returns: if the price of an asset at time t is pt,
then the log-return at time t is ln(pt=pt�1). The log-return
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takes into account the geometric scaling behaviour seen in
stocks, treating an increase in value of 10% in two different
stocks as equivalent, even if the stocks have very different
prices.

Table 1 gives statistics for the log-returns of four different
equities over the same time period, using daily closing
prices adjusted for dividend payments [3]. A common
approximation is to assume that the log-returns of equities
are normally distributed, with both skewness (asymmetry)
and kurtosis (pointiness) equal to zero, but this is clearly
not the case: the skewness and kurtosis of the Microsoft
log-returns show that a normal approximation is not
appropriate. To provide an accurate simulation of a portfo-
lio involving these four stocks it is necessary to be able to
generate approximations to all four distributions, as well
as to adjust those distributions as new data become
available.

This paper presents a new hardware architecture for non-
uniform RNG that supports rapid switching between prob-
ability distributions at run-time. The key benefits of this
approach are:

† a fast and area efficient hardware architecture using only
memory look-ups, comparisons and additions;
† the ability to quickly change the generated distribution at
run-time without using reconfiguration;
† a fully automatic method for approximating new distri-
butions in near real-time;
† a means of increasing statistical quality and reducing
RAM requirements when multiple identically distributed
cycles are needed per cycle.

2 Background

The probability distribution of a continuous random vari-
able X can be described using its cumulative distribution
function (CDF) F(x), which provides the probability that
X is less than some value x and monotonically increases
from F(�1) ¼ 0 to F(þ1) ¼ 1. The CDF is the integral
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of the distribution’s probability density function (PDF) f(x),
which measures the point-wise probability of each value

F(x) ¼ Pr [x , X ] ¼

ðx
�1

f (x) (1)

Non-uniform RNGs often use two steps: uniform RNG,
which provides the underlying randomness, followed by a
transformation which converts the uniform distribution to
the non-uniform target distribution. The most direct trans-
form is the inversion method, which assumes the existence
of an inverse cumulative distribution function (ICDF). This
uses uniformly distributed random numbers x1, x2, . . . in the
range [0, 1], and then applies the ICDF to give yi ¼ F�1(xi).
For example, the exponential distribution has
F(x) ¼ 1� e�x, allowing direct generation of exponential
variates using F�1(x) ¼ � ln (1� x). However, there are
many useful distributions for which there is no closed
form solution for the ICDF (e.g. the normal distribution),
so F�1 is usually a numerical approximation to the true
ICDF.

In software, the inverse method is used to create general
purpose (i.e. distribution independent) RNGs, for example
by using piecewise Hermite interpolation of the ICDF [4].
Another technique is to use the acceptance-rejection
method, which generates candidate samples using a
simple distribution, and then rejects those samples that do
not also lie under the more complex target PDF, for
example via the ratio-of-uniform-based generators [5].
These techniques can be used to approximate almost any
distribution, but may require significant pre-processing
before each new target distribution can be sampled. These
methods also rely on high-precision floating-point maths,
and so are not appropriate for hardware implementation.

Inversion methods in hardware have concentrated on
table-based approximations to the ICDF using low-order
piecewise polynomial approximation, with either a regular
domain partitioning scheme and large tables [6], or irregular
domain partitioning to allow smaller tables [7]. Although
these techniques can achieve a usable level of accuracy,
both methods have some drawbacks. The regular domain
partitioning scheme typically requires large off-chip
RAMs to achieve sufficient distribution accuracy, whereas
the introduction of an irregular domain partitioning limits
the generator to a single class of distributions.

Most work on hardware RNGs has focused on distri-
bution specific techniques, particularly for the Gaussian dis-
tribution. The most commonly used is the Box-Muller
method, which transforms two independent uniform
random variables into two independent Gaussian variables
using a pair of function transforms, requiring the evaluation
of ln x,

ffiffiffi
x
p

and sin x. The transform can be implemented in
hardware using two separate function approximation steps,
with the most sophisticated approach using irregular
domain partitioning and error analysis to guarantee PDF
accuracy for over 1010 samples [8]. The Ziggurat method
is another Gaussian specific transform, based on the

Table 1: Statistical properties of the daily log-returns
for four different equities over the same time period

Stock Mean Std-Dev Skewness Kurtosis

General Electric Co. 0.0008 0.028 20.16 0.6

Xilinx Inc. 0.0009 0.043 20.09 1.5

Altera Corp. 0.0013 0.045 20.19 2.5

Microsoft Corp. 0.0018 0.031 20.59 10.3
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rejection method. This means that a set of candidate
samples are generated, but then a fraction of these
samples must be discarded. It uses a set of table look-ups
to reduce the average work per-sample as much as possible,
and has also proven to be efficient in hardware as well as
software [9]. The Wallace generator uses a novel approach
to produce Gaussian samples directly, rather than trans-
forming uniform samples. It has an efficient hardware
implementation [10], but also has some statistical flaws.

To provide the source randomness for the transform step
a uniform RNG is also needed; this must have both a long
period and good statistical quality, so that the non-uniform
distribution will not be biased. The most common hardware
technique is the linear feedback shift register (LFSR) [11],
which uses a binary linear recurrence based on a primitive
polynomial to provide a period of 2n2 1 from an n-bit
state. However, LFSRs provide poor area utilisation, as
only one bit can be used from each LFSR, and the statistical
quality of the generated sequence is poor. Nonlinear recur-
rences based on cellular automata (CA) have also been used
in hardware [12], and provide better area utilisation than
LFSRs as more than one bit can be taken from each genera-
tor. However, the theoretical properties of CAs are not well
understood, and it is difficult to guarantee properties such as
generator period and quality.

Binary linear recurrences using more sophisticated feed-
back schemes than the LFSR provide better area utilisation
and statistical quality. The combined Tausworthe combines
the output of multiple LFSRs to provide multiple bits at
each iteration [13]. Although designed to be efficiently
implemented using word-based operations, such as the
bit-wise logical and shift operations on 32-bit integers
found in most CPU instruction sets, it is also usable in hard-
ware [8, 9]. A more efficient (although more complex to
implement) linear recurrence is also possible, which is
optimised for lookup table (LUT)-based architectures
[14]. These LUT-optimised linear recurrences provide n
output bits per cycle, using a total of n LUTs and n flip-
flops (FF), and have a period of 2n � 1, with good statistical
quality.

3 Approximation algorithm

The non-uniform generation technique presented does not
use the inversion or rejection techniques, but instead uses
a mixture of simple distributions to approximate a more
complex target distribution. In this section, the generation
algorithm is presented, along with the algorithm used to
initialise generators with a target distribution.

The proposed generation algorithm uses the fact that
complex distributions can be formed from mixtures of
multiple distributions: given a target PDF t(x) that needs
to be generated, we can calculate a set of n weights
w1, . . . , wn [ [0, 1] and a set of component PDFs
g1; . . . ; gn, such that the weighted combination m(x) of
the component PDFs equals the target PDF

t(x) ; m(x) ¼
Xn
i¼1

wigi(x), where
Xn
i¼1

wi ¼ 1 (2)

Similarly, the CDF M(x) of the combination is the
weighted sum of the component CDFs Ga, . . ., Gn

T (x) ; M(x) ¼
Xn
i¼1

wiGi(x) (3)

Assuming that some mechanism for generating samples
from g1, . . ., gn is available, then samples from t(x) can
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also generated, by randomly selecting one of the
components according to their weights, then sampling the
selected component distribution.

It is always possible to compute a weighted combination
m(x) that exactly matches t(x) in this way, but for most dis-
tributions of interest this requires that at least one of the
component distributions is as complex as the target PDF
to calculate. However, if the weight of the complex com-
ponent distribution can be reduced sufficiently, and the
rest of the component distributions are very simple, then
this can be a useful approach. For example, this is used in
the Ziggurat method [15], where a rejection step is used
to calculate the complex component distributions.

The approach used here is not to approximate the target
distribution exactly, but instead to use a large number of
very simple component distributions that provide an accep-
tably good approximation to the target distribution. In [16],
this approach was used with homogeneous weights and het-
erogeneous components: each component had an equal
probability of being selected, but components of different
distributions (triangle, rectangle and trapezoid) could be
used, with arbitrary per-component variances and means.
The drawback of this approach is that selecting a good set
of component distributions requires a complex optimisation
strategy, so it takes a significant amount of time (from
minutes to hours) to approximate each distribution.

Here the opposite approach is taken: a homogeneous set
of components is used, but the weights (selection prob-
ability) assigned to each component can be varied. This pro-
vides a much smaller design space to be explored for each
target distribution, allowing a simpler and faster algorithm
to be used to generate approximations for each target distri-
bution. The component distributions used are all triangle
distributions, as the triangular distribution can be easily
and exactly generated by adding two independent uniform
samples together. The PDF of the sum of two independent
variates can be obtained by convolving the PDFs of the
two variates (see Section I.4 of [17]). Uniform variates
have rectangular PDF functions, so the convolution of two
independent identically distributed (IID) uniform variates
results in a symmetric triangular PDF. This can be seen as
a consequence of the central-limit theorem: addition of
larger numbers of uniform variates would produce a PDF
that gradually loses its triangular shape, converging on the
Gaussian PDF as the number of uniform samples
approaches infinity.

All the component triangles have the same width 2d, and
are spaced at increments of d, that is the mean of component
i is idþ k (where k is an additive offset), so the PDF of the
mixture is simply the linear interpolation of the triangle
weights, and can be calculated exactly. Fig. 1 shows a
simple example where components with d ¼ 0.5 are used
to approximate the Gaussian distribution (for clarity only

Fig. 1 Simple approximation to the Gaussian distribution, using
triangles with d ¼ 0.5

Note that only the positive half is shown, and the Gaussian PDF is
offset vertically to distinguish between approximation and target PDF
314
a portion of the total PDF range is shown). The fine
dotted line shows the smooth target Gaussian, whereas the
dashed lines show the PDFs of the triangular components.
The solid line just under the Gaussian PDF shows the
PDF of the piecewise approximation (the Gaussian PDF
has been offset vertically in the diagram to allow the two
to be distinguished from each other).

Given a set of n triangles one should choose d and k so as
to provide good coverage of the ‘interesting’ part of the
PDF range. So if the range [a,b] needs to be covered
using n triangles, one could choose d ¼ (b� a)=(n� 1)
and k ¼ a� d to spread the triangles evenly across the
range. In the case of an analytically defined target distri-
bution with CDF T(x) this range can be chosen to include
a certain proportion of the probability mass, for example
a ¼ T�1(2�p), b ¼�1 (1� 2�p), with p� 1. The architec-
ture and results presented in the implementation section
take advantage of binary arithmetic for efficiency, and so
use d ¼ 2�r for integer r, and k ¼ 0. As with many practical
aspects of this type of generator, there is an application
specific trade-off between efficiency and accuracy: in
some applications it may be appropriate to use a non-
binary power for d, weighing the cost of a multiply per gen-
erated sample against an increase in overall accuracy.

A first approximation to the weights w1, . . . , wn can be
provided by evaluating the target PDF at each triangle’s
centre, wi ¼ t(idþ k), followed by a normalisation to
make sure that the weights add up to one. However, this
does not provide the best possible fit, as it ignores the
PDF error at points that do not lie on the triangle mid-points.
To achieve a better fit it is necessary to slightly increase the
approximation error at the mid-points, providing a much
better overall fit.

One method for calculating the best approximation is to
attempt to find the best linear combination of triangles in
the least-squares sense [18]. This method has been used in
a similar approach to approximate the Gaussian distribution
[19], but this approach was found to suffer from two
problems.

First, when applied to highly skewed distributions, such
as the exponential distribution, floating point calculation
errors in the matrix inversion led to a completely unusable
result. It is possible that a careful analysis of the problem
might allow more accuracy to be returned, for example by
using more robust algorithms such as singular value
decomposition, but this still leaves the second problem of
computational complexity. Solution of a dense system of
equations is typically an O(n3) problem, and while it is feas-
ible to solve the system for many thousands of triangles, it
may take a number of minutes or hours, and require many
megabytes of memory. Ideally it should be possible for a
relatively modest embedded processor to approximate a
new distribution, so a less computationally expensive
approach is needed.

Our approach is to optimise the approximation error by
iteratively smoothing the errors out, by finding points with
large errors, then spreading the error across the rest of the
distribution. We assume that the target distribution is rela-
tively smooth, at least on the scale of d, so it is sufficient
to only measure approximation error with a granularity of
d/2. The iterative algorithm used is

(1) Set w1, . . . , wn to the first approximation using t(x).
(2) Set c ¼ id=2þ k, for 1 � i � 2nþ 1.
(3) Calculate p ¼ t(c), the vector of target probabilities.
(4) Calculate d ¼ p� m(c), the difference between the
current approximation and the target.
(5) Find the largest magnitude error ei within d.
IET Comput. Digit. Tech., Vol. 1, No. 4, July 2007



(6) Subtract the error ei from the contributing triangle
weight(s): wi=2, if ei is on a triangle mid-point, or wbi=2c

and wbi=2cþ1 if ei is between two triangles. Note that the
weights must not turn negative: for example. use the steps
w0i ¼ max (0, wi � ei) and e0i ¼ wi � w0i for the mid-point
case.
(7) Update d to reflect the new triangle weightings, and cal-
culate d ¼ d=

P
d to normalise the differences.

(8) Use the normalised differences to mix the excess
error back in: wj ¼ ei(1=2d2j�1 þ d2j þ 1=2d2jþ1)þ wj, j ¼
1, . . . , n.
(9) If the solution does not meet the termination criteria
return to Step 4.

The algorithm termination criteria can be defined in a
number of ways, such as performing a fixed number of iter-
ations, or waiting till the maximum or average error reaches
a minimum point. The termination criterion used in this
paper is to examine Sd (the total approximation error) on
successive iterations, and to exit when the new value of
Sd is greater than 0.9 times the previous value of Sd.
Also, note that the approximation probability must drop to
zero at the left and right sides of the first and last triangle,
even if the target probability does not, so the algorithm
implementation must handle these boundary conditions
appropriately.

Fig. 2 shows the approximation error for six distributions
against the number of optimisation iterations that are per-
formed. The distribution range is quantised into 216 discrete
values, and the error is measured as the average absolute
probability error across all the values (Note that this
figure just demonstrates the rapid algorithm convergence:
more rigorous tests of the output distribution quality are
made in the evaluation section.) The Exchange [20],
Football [21] and Microsoft [22] are all empirically
defined, smoothed using the ksdensity command in
Matlab [23]. Even after smoothing the empirical PDFs
still exhibit local irregularities, and the optimiser cannot
achieve the lower overall error achieved with the smoother
analytically defined distributions.

It should be pointed out that there are no real theoreti-
cal underpinnings for this approximation algorithm: it is
just a simple algorithm that the authors have found to
work well in practise, and that has the advantage of
being very fast. It is possible that with certain PDFs the
algorithm may display instability and provide a very
poor solution (although so far this has never been
observed), and it is almost certain that it does not
provide the ‘optimal’ approximation, for any definition
of ‘optimal’. However, the main goal of this paper is to

Fig. 2 Average per-value approximation error (over 216 output
values), for approximations to analytic and empirically derived
distributions
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provide a practical and efficient method for approximating
arbitrary distributions, and with these goals in mind this
simple algorithm is highly appropriate.

When sampling from the mixture it is necessary to ran-
domly select one of the component distributions according
to the weights. This requires a discrete random variate I,
with probability mass function (PMF) Pr [i ¼ I] ¼ wi.
Efficient sampling from a discrete distribution with arbitrary
probabilities can be achieved in O(1) time and O(n) storage
using Walker’s alias method [24].

The alias method makes use of two tables, calculated in
O(n) time, one of which contains probability thresholds
between zero and one (t1, . . ., tn), whereas the other contains
alternate indices (a1, . . ., an) in the range 1–n. To sample
from the discrete distribution a uniform random integer
i [ [1, n] is first generated, which selects a threshold ti
and alternate index ai. A continuous uniform random vari-
able y in the range [0, 1] is then also generated. If y , ti,
then i is used as the selected sample from I, otherwise the
alternate index ai is used.

The calculation of target PDF, optimisation of triangle
weights and alias table calculation all scale linearly with
the number of triangles. The entire distribution approxi-
mation step takes less than a second in software for all
n � 214, and significantly less for n � 212, which is the
size of a typical RAM implemented using contemporary
block-RAM (such as the Xilinx RAMB16s used in the
next section). This fast approximation allows distributions
to be updated at run-time, for example financial simulations
can approximate the distribution of stocks before each
execution to take into account the most recent intra-daily
figures.

The overall approximation algorithm can now be
described in full. The weights w1, . . . , wn are only
needed during the setup stage, and are not used when gen-
erating samples. This leaves three scalar constants and
two vectors that are needed at run-time: n, the number of tri-
angles; d, the distance between adjacent triangles; k, a real
correction factor used to adjust the distribution mean;
t1, . . . , tn, probability thresholds between 0 and 1; and
a1, . . . , an integer alternate indices between 1 and n. The
generation algorithm is:

(1) Generate i, a uniform random integer between 1 and n,
and y, a uniform random real between 0 and 1.
(2) If y . ti then set i ai.
(3) Calculate c idþ k, centre of the selected triangle.
(4) Generate uniform random reals z1, z2 [ [0, d].
(5) Return cþ z1 � z2 (a random sample within the
selected triangle).

The next section examines the hardware implementation
of this type of generator, followed in Section 5 by an evalu-
ation of the statistical quality and a comparison with hard-
ware techniques used for Gaussian random number
generation. Section 6 then introduces a method that can
be used to overcome the implicit trade-off between
storage usage and statistical quality when multiple genera-
tors are used in a design.

4 Hardware implementation

The generation algorithm presented in the previous section
has three advantages that make it ideal for hardware
implementation. First, there are no feedbacks or data-flow
hazards, allowing the generator to be completely pipelined.
Second, only one memory access is needed per generated
sample (assuming ai and ti are packed together). Finally,
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the only operations required are comparison and subtrac-
tion. The last point is not true in general, because of the
multiplication by d in Step 3, but in the specific architecture
presented here the multiplication is replaced with shifts by
requiring that d ¼ 2�x for some integer x. The exact value
of x will be determined by the number of triangles available
and the range of the distribution to be approximated, and to
some extent depends on the fixed-point scale applied to the
output of the generator.

The first step in translating the algorithm to hardware is to
assign widths to the variables. The index variables
(a1, . . . , an and i) must have width iw ¼ dlog2 ne, as they
address triangles 1, . . . , n. The threshold variables
(t1, . . . , tn and y) are quantised to a fractional width tw;
the minimum triangle height is limited to 2�tw, so this
choice affects the ability of the generator to approximate
the tails of distributions.

In principle the value of tw should be incorporated into
the approximation of the target distribution, but in practice
it is easier to perform the approximation process in floating
point, then quantise the weights to a value of tw that is con-
venient for the width of the available RAMs. No rigorous
tests have been performed, but visual inspection of approxi-
mated PDFs and practical experience suggests that this
quantisation has no effect for ‘sensible’ values of tw (e.g.
the values of tw seen in Table 2).

The random numbers used to create the triangle distri-
bution, z1 and z2, need to be generated with sw ¼ log2 (d)
bits (using the fact that d is restricted to a binary power).
The overall output of the generator is then ow ¼ iwþ sw
bits wide, which can be interpreted as either signed or
unsigned according to the range of the target distribution.

In the architecture presented here, the offset k is not used,
as the n triangles completely cover the generator’s output
range. This has the advantage of simplicity and area effi-
ciency, but might not be appropriate when approximating
distributions that have significantly different means and
small variances, as many of the triangles (i.e. table
entries) would be wasted on zero probability parts of the
range, leaving only a small number of triangles over the
non-zero probability areas. In such cases it would make
sense to have ow . iwþ sw, and to use an ow width k to

Table 2: Area and resource utilisation of generators in
the Virtex-II architecture, and the number of samples
(log2) before failure of the x2 test against different
distributions

n 64 512 2048 1024

ow 12 16 24 16

tw 8 16 16 27 16 25 26

RAMs – – 05 (1) 3 4 1 (2)

LUTs 94 114 83 105 113 131 182

FFs 52 61 61 72 87 96 211

Slices 63 69 51 62 69 80 137

MHz 250 219 182 183 172 168 249

Norm 16 18 31 34 35 þ 36

LgNrm 12 14 27 31 32 þ 35

Weib 16 17 28 31 34 þ 36

Foot 12 13 23 24 30 33 31

Exchg 11 11 25 27 29 32 30

Msft 14 15 24 26 34 35 33
316
move the approximated range around within the total
output range.

Fig. 3 shows the architecture of the generator, including
the widths of the signals (the @ operator represents
bit-wise concatenation). Note that the separate additions
and subtractions from Step 5 of the algorithm have been
combined into a single subtraction. The required resources
of the generator are thus:

† a RAM containing n elements of width twþ iw;
† one tw bit comparator (tw LUTs);
† one iw multiplexer (iw LUTs);
† one ow bit subtracter (iwþ sw LUTs);
† a RNG capable of supplying rw ¼ twþ iwþ 2sw inde-
pendent random bits per cycle (tw LUTS using the
method in [14]).

So in total the LUT usage can be estimated as
3iwþ 2twþ 3sw LUTs.

The critical path will be from the random index i, through
the RAM, into comparator, through the MUX, and then
down through to the output. However, the generator can
be heavily pipelined, and suggested pipeline registers that
use already available FFs are shown in Fig. 3 as dashed
lines. Note that it is not necessary to synchronise the
random bits when pipelining, as long as the bits have not
already been used in some previous stage. For example, i
must be pipelined before entering the MUX as it is used
to generate the RAM address, but y, z1 and z2 do not need
to be delayed.

A rw ¼ twþ iwþ 2sw bit wide uniform bit generator
will have a generator period of 2rw � 1. However, if rw is
small (e.g less than 64), this will result in a low period gen-
erator with poor statistical quality. One solution is to use a
random bit generator with more bits than are needed, then to
ignore the excess bits. A better solution is to share a random
bit generator between two or more non-uniform generators.
For example, if two generators each need rw ¼ 40 bits, then
a single 80 bit random bit generator can be shared, keeping
the cost per non-uniform generator at rw bits, but providing
a higher quality random bit source to both.

An interesting feature of this generator is that increasing
the number of output bits does not significantly increase the
resource usage of the generator. For example, with iw ¼ 10,
tw ¼ 26 and ow ¼ 16 approximately 136 LUTs are needed,
but increasing the output width to ow ¼ 32 and 64 only
increases the estimated LUT count to 184 and 280, respect-
ively (without requiring any increase in RAM size).
Techniques that are based on polynomial evaluation
require significantly more area and RAM as the output
width increases, because of the need to support wider

Fig. 3 Hardware architecture of the generator algorithm
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multipliers and table constants. Although the increase in
fractional bits does not improve the overall goodness of fit
of the distribution, it is useful in applications which
assume that the distributions are continuous, as it reduces
the probability of duplicate values. More fractional bits
are also useful when converting samples to floating-point,
as it allows values closer to zero to be produced. This is par-
ticularly important when dealing with leptokurtic (pointy)
distributions centred around zero, such as the log-return dis-
tributions of assets.

5 Evaluation

Table 2 shows the performance of a selection of generators
in the Virtex-II architecture, generated through a single
parametrised Handel-C core. The code was written with
portability and area efficiency in mind, and so does not
achieve the best possible performance. The final generator
(on the right of the table) was manually optimised for per-
formance, and achieves a much higher clock rate, at the
expense of more than doubling the required area. Where
block-RAM ports can be shared with another generator
the proportion used by one generator is shown, with the
total amount needed shown in brackets.

Underneath the performance figures, an evaluation of the
goodness-of-fit of the different generators is presented, using
a x2 test. The test is performed for s ¼ 24, 25, 26, . . . , 236

samples, using
ffiffi
s
p

equal probability buckets for each set of
samples (adjusted for the discrete range), until the test fails
at the 5% level. The table shows log2(s), the point at which
the test was failed, or + if the test did not fail with 236

samples. All the generators perform better when approximat-
ing analytic distributions rather than empirical distributions,
because of their smoothness. The empirical distribution’s
CDFs were only lightly smoothed, and so contained many
lumps and bumps in the PDF that are difficult to approxi-
mate: in practice it is likely that much more smoothing
would be applied to empirical distributions, which would
allow better approximations to be made.

A second quality metric is the statistical randomness of the
output, relating to the lack of correlations in the output
stream, rather than the shape of the distribution over many
samples. Non-random behaviour is usually detected by gen-
erating a large stream of samples, then looking for patterns
that are unlikely to occur in a random stream, such as long
sequences of very small values that would be unlikely to
occur by chance. These tests are collected into test batteries
such as Diehard [25] and Crush [26], which give an indi-
cation of whether a test looks random. However, these tests
usually assume that the random stream is from the uniform
distribution, whereas the generators presented here are
designed to produce non-uniform distribution.
IET Comput. Digit. Tech., Vol. 1, No. 4, July 2007
A strong supporting argument for the quality of the non-
uniform generators is that the underlying uniform genera-
tors have good statistical quality. The last generator in
Table 2 uses a 96-bit linear recurrence (to take advantage
of RAM sharing the 48-bit sources for a pair of generators
are extracted from a single shared generator). According
to the tests performed in [14], a 96-bit generator passes all
the tests in Diehard, and only fails ten (out of 96) tests in
Crush. Of the ten failed tests nine are specifically related
to linear-complexity (a defect shared by all binary linear
recurrences such as LFSRs and combined Tausworthe gen-
erators), which is likely to be masked when the two uniform
components are added together to create a sample from the
triangular distribution.

Applying test batteries to the generators directly requires
conversion of the output stream to the uniform distribution
by using the distribution CDF. The Diehard and Crush tests
were applied to the high-performance Gaussian generator
from the last column of Table 2. All tests were passed
except for a class of test called Max-of-T, which looks at
the distribution of the maximum sample within successive
t-tuples. The Max-of-T test is applied four times with differ-
ent parameters in the Crush battery and all four were failed
because the approximation to the Gaussian PDF is poor in
the tails (i.e. for high and low values in the range). This is
one of the reasons that the generator fails the x2 test for
236 samples. When the test batteries are applied to the
high quality 2048 triangle generator (which passed the x2

test), all the tests in Crush and Diehard are passed,
suggesting that the only statistical defects are those
because of poor approximation of the target distribution,
rather than from correlations within the output stream.

Table 3 provides a comparison between the performance
of the speed-optimised piecewise generator from Table 2
and other types of Gaussian RNG, all implemented in the
Virtex-II architecture. Where resources can be shared, or
more than one sample is generated per cycle, the figures
are normalised for a single cycle per sample. x2 failure
points marked with a ‘þ ’ indicate the largest sample size
tested, so the actual failure point may be much higher.
Although the piecewise generator cannot produce the
same quality level as the dedicated Gaussian generators, it
still produces up to 236 samples before failing the x2 test,
as well as providing the highest sample rate and using
less than half the resources needed by the other generators.
The piecewise generator is also able to switch to other dis-
tributions in 1024 clock cycles (the number of cycles taken
to change distributions is simply the time taken to repro-
gram the generator’s RAM, in this case a 1024 element
RAM). All the other generators are limited to just the stan-
dard Gaussian distribution, and require extra logic even to
change the distribution variance.
Table 3: Comparison of different methods for generating Gaussian random numbers

Class Previous hardware methods Piecewise Software

Method Box-Muller Wallace Ziggurat Trapezoid n ¼ 210, tw ¼ 26 Ziggurat Wallace

Reference [8] [10] [9] [16] – [15] [27]

Output width 16 24 32 17 16 – –

Slices 757 770 891 451 137 – –

RAMs 1.5 6 4 3 1 – –

DSPs 6 4 2 – – – –

Rate (MS/s) 202 155 168 194 249 37 81

x2 Fail (Samples) 240þ 236þ 230þ 230 236 – –
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6 Two-level approximations

A drawback of the piecewise approximation methods is that
large RAMs are needed to achieve high-quality approxi-
mations. Providing a good local approximation to the PDF
requires a high density of piecewise segments to match
the underlying curve, whereas providing coverage into the
PDF tails requires a large area of the range to be covered
with triangles. These two factors mean that, as a rule of
thumb, to double the quality of the generator (in terms of
samples that can be produced before statistical failure),
the size of the RAM must be approximately doubled.

Although it is possible to create large RAMs by combin-
ing multiple block-RAMs, this is not an efficient use of
available resources, as only one entry from the RAM is
used per-cycle so much of the potential block-RAM band-
width is wasted. Where a range of block-RAM sizes are
available it may be possible to choose the largest size, for
example the Stratix-II M-RAM block can provide 214

36-bit entries, which is likely to be large enough for the
vast majority of quality requirements. However, such
large RAMs are scarce resources, and even the largest
Stratix-II only has nine available, severely limiting the
number of RNGs that can be placed in a design. Neither
are off-chip RAMs a solution, as these are also scarce and
valuable resources, and may also limit the maximum
clock speed that generators can reach because of the need
to do a RAM lookup in every cycle.

One solution to this problem is to split the generation
process into two generators: a primary generator that uses
a small number of triangles (and hence a small RAM) to
provide a coarse approximation to the target PDF, and a
residual generator that uses a much larger RAM to
provide a fine-grain ‘fix-up’. The advantage is that the
two generators can be arranged so that the output of the
primary is used in the vast majority of cycles, while only
in the small number of remaining cycles is the output of
the residual used. This allows the residual generator (and
most importantly, the residual generator’s valuable RAM),
to be shared among multiple generators (all of which must
be producing the same distribution).

A disadvantage is that sharing the residual generator
introduces a resource conflict, as the residual generator’s
fixed output rate of one residual sample per second cannot
be guaranteed to meet bursts in demand from the set of
primary generators. This means that there is a possibility
on each cycle that one or more of the generators may not
produce a valid output. Fortunately many pipelined simu-
lation architectures are able to deal with unavailable
resources on any given cycle, simply by not updating the
simulation state when it cannot be fully calculated. For
example, in the architecture presented in [28], this is used
to accommodate the situation where there is no space in
the output channel. However, it is necessary to make the
probability of a generator-induced pipeline stall as low as
possible if performance is not to be affected.

For a two-level generator to work, it is necessary for the
distributions of the primary and residual generators to be
carefully designed, such that the combination of the two
produces the target distribution. Fig. 4 shows the stages in
this process for a highly simplified example. Part (a)
shows the curved target PDF, and a very coarse two-triangle
piecewise approximation to the curve. Note that the coarse
approximation stays entirely underneath the target PDF,
unlike previous approximations where the approximation’s
PDF was sometimes above, and sometimes below. The gap
between the target and coarse approximation forms a
residual distribution, shown in (b). This residual distribution
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can then be approximated using a fine-grained piecewise
approximation, shown in (c). If the coarse-grained and fine-
grained distributions are combined as in (d), then the result
is a good approximation to the target distribution. The rela-
tive areas of the primary and residual distribution (the
interior white and surrounding grey area, respectively)
determine the probability of sampling from each generator.

If mp and mr are the PDFs of the piecewise generators
chosen for the primary and residual distributions, then the
overall generated PDF is given by

m(x) ¼ apmp(x)þ (1� ap)mr(x) (4)

The constant ap represents the proportion of cycles where
the primary generator is used, and should be as high as poss-
ible to reduce load on the secondary generator. Any two pie-
cewise distributions can be chosen for mp and mr, as long as
the overall m(x) is a good approximation to the target PDF.
In practise, the number of triangles in mp and mr will be
largely determined by the size and number of the different
types of RAM available. For example, in a Stratix-II
device with TriMatrix memory [29], the primary generator
RAMs might be placed in the small but numerous M4K
blocks, whereas the residual generator’s RAM might be
placed in one of the larger but more scarce M-RAM
blocks, suggesting 128 triangles for the primary generators
and 214 triangles for the residual generator. In an architec-
ture with a single RAM type, such as Virtex-II [30], it
will be necessary to either build a larger RAM for the
residual generator out of any block RAMs that can be
spared, or use an external RAM.

There are many possible ways of choosing the distri-
butions of mp and mr, with one of the simplest being the
approach used in Fig. 4, where first a combination of ap
and mp is chosen such that the primary lies completely
under t(x), the target PDF. This is easily achieved by
using the standard method for fitting the piecewise PDF,
then by scaling the height of the two triangles on either
side of piecewise segments that extend above the target

Fig. 4 Two-level approximation strategy

a Very coarse-grain approximation to the target PDF is made
b Leaving a residual distribution
c Fine-grain approximation to the residual distribution is made
d Combined with the coarse-grain approximation
IET Comput. Digit. Tech., Vol. 1, No. 4, July 2007



PDF. The area of the piecewise function after scaling deter-
mines ap, and then scaling all the triangle heights by 1/ap
provides the piecewise PDF mp. The residual piecewise
PDF can then be chosen using the standard approximation
method, fitting to the residual target PDF

tr(x) ¼
t(x)� apmp(x)

(1� ap)
(5)

The value of ap that can be achieved is dependent on both
the number of triangles used and the characteristics of the
target distribution. The reason ap is so important is that it
determines the number of primary generators that can be
paired with a single residual generator. If the residual gen-
erator runs at the same speed as the primary generators, then
it can supply residual samples for at most b1=(1� ap)c
primaries.

Fig. 5 shows ar (where ar ¼ 1 2 ap, the probability of
using the residual generator on each cycle, i.e. a miss) for
a number of such combinations. Both the normal and
Weibull distributions use the primary PDF over 99% of
the time when 512 triangles are used (equivalent to using
a single Virtex-II block-RAM for the primary generator),
whereas the log-normal can be used in more than 97% of
cycles. This suggests that a could be shared among up to
40 RNG primary generators, at least for these distributions.
However, the means by which residual samples are distrib-
uted to primary generators could reduce this maximum
figure significantly.

Fig. 6 shows a concrete architecture for managing the dis-
tribution of residual samples, using a chain of registers. This
chain ensures that each residual sample is only used once,
by maintaining a tag bit along with each sample indicating
whether the sample is valid. There is also a tagged register
associated with each primary generator, which can be fed by
a paired register in the chain. In each cycle, any registers
with invalid tags will take the sample from the previous reg-
ister in the chain. If a register has a valid sample, and the
next register in the chain also has a sample, then the register
will check the tag of the paired primary generators’ sample,
giving the sample to the primary generator if it needs it.
When a primary generator needs a residual sample it takes
it from the local register, marking the sample as invalid.
This invalid token then forms a bubble in the chain of
valid samples, which will move backwards up the chain
as new valid samples move downwards.

The operation of each register is determined purely by its
own tag bits and those of its immediate neighbours, allow-
ing each register stage to be implemented in owþ 1 register
bits (where ow is the output width of the generator) and two
4-LUTs. Using a register chain has the advantage that in

Fig. 5 Area of the residual PDF when using different numbers of
triangles in the primary generator, shown for three different
distributions
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large designs the arbitration and communication happen at
a local level, requiring no large-fanout control or data
nets. This is critical when samples are being distributed
from a single residual generator out to a large number of
primary generators, particularly at high clock-rates.

The distribution chain cannot guarantee that a residual
sample will be available to a primary generator in each
cycle, as the nature of the proposed architecture only
allows a primary generator to receive a new sample every
other cycle (and even then only if there is a valid sample
in the associated shift register). However, the probability
of a primary generator requiring two residual samples in a
row is a2

r , which even for very low values of ar will
happen relatively often at typical FPGA clock frequencies.
If no residual sample is available then the primary generator
must stall the process it is supplying, and wait for a residual
sample to arrive. The probability of these stalls needs to be
as low as possible if overall performance is to be main-
tained, and can be derived for different parameters
through simulation.

Fig. 7 shows the probability of each primary generator
stalling per cycle as the number of primary generators
(n) being supplied increases, using values of
ar ¼ {2�3, 2�4, 2�5}. In all cases, the stall probability
gradually increases from 0 when n ¼ 1, as there is one
residual generator per primary, up to an asymptotic limit
of ar as n 1, when there are so many primary generators
that the residual generator makes no difference. The overall
performance can be measured as the stall probability times

Fig. 7 Probability of a generator stalling per cycle for different
residual areas (ar) as the number of primaries is increased, and the
resulting overall throughput across all primary generators

Fig. 6 Distribution of residual samples to primary generators
through a register chain
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Table 4: Area and performance for a two-level generator in the Virtex-II architecture, using a residual generator with
eight RAMs feeding different numbers of primary generators

Absolute performance Relative performance

Pr (stall) RAMs LUTs FFs Slices MHz RAMs Slices Throughput

Residual 0 8 212 301 168 247 1.00 1.00 1.00

Distributor – 0 38 82 47 270 – – –

Primary 0 0.5 190 205 120 259 – – –

n ¼ 1 4.89 � 1027 9 441 589 337 245 1.13 2.01 0.99

n ¼ 2 1.21 � 1026 9 669 879 505 245 1.13 3.01 1.98

n ¼ 4 2.83 � 1026 10 1125 1454 840 241 1.25 5.00 3.90

n ¼ 8 6.28 � 1026 12 2051 2600 1511 237 1.50 8.99 7.68

n ¼ 16 1.51 � 1025 16 3873 4921 2865 230 2.00 17.05 14.90

n ¼ 32 4.62 � 1025 24 7509 9542 5514 233 3.00 32.82 30.18

Wallace, n ¼ 1 – 7 – – 895 155 1.00 1.00 1.00

Wallace, n ¼ 16 – 112 – – 14 359 115 16.00 16.04 11.80
the number of generators, giving the average number of
cycles generated per second. The graph shows that perform-
ance increases approximately linearly with the number of
generators, with different slopes for the different values of
ar. With the lowest value shown of ar ¼ 2�5, the perform-
ance with 32 generators is 31.5, providing 98.5% efficiency.

The top sections of Table 4 shows the results of imple-
menting a two-level piecewise approximation in the
Virtex-II architecture, generating 24 bit samples, and
using 4096 and 512 triangles in the residual and primary
generators, respectively (corresponding to 8 and 1/2 block
RAMs). A residual generator with 4096 triangles was
found sufficient to generate more than 238 samples from
the normal distribution without failing the x2 test, and pro-
vides PDF coverage in the range of [28,þ8], so can be
considered to be of high enough quality for all but the
most demanding and long-running simulations. The first
three rows show the performance for the three components,
where the distributor represents the extra logic that must be
added per-primary generator to integrate it into the
two-level architecture (including resources used in the
distribution chain). Below these rows the performance for
two-level generators with different numbers of primaries
are shown, including the probability of stalling (assuming
ar is that of the normal distribution). The changes in
resource usage and throughput are highlighted in the
columns on the right, showing performance relative to the
residual generator (which is capable of generating
the target distribution by itself). Although the number of
slices doubles each time the number of primaries double,
the number of RAMs grows at a much slower rate, so 32 pri-
maries only use three times the number of RAMs of a single
residual generator.

For comparison, the bottom section of the table shows
results from an experiment performed in [10], where the
resource usage and performance were monitored as parallel
generators are added to a design. Here the number of RAMs
is simply a multiple of the number used by one generator, so
112 RAMs are required for n ¼ 16, compared to 16 for the
two-level generator. The clock rate also degrades much
faster, which can be attributed to the much higher
per-node complexity of the Wallace generator, as each gen-
erator needs to route to and from seven block-RAMs and
four block-multipliers, and each generator is relatively
large. By comparison, the per-node complexity of the two-
level generator is low, with each generator only requiring
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read access to one block-RAM, and the shift-chain is
designed to use only local communications. This allows
the clock frequency to stay relatively high, achieving a per-
generator relative performance of 93% when comparing
n ¼ 1 against n ¼ 16, while the Wallace degrades to 74%.

The two-level approach provides a valuable means of
increasing quality and reducing RAM usage while retaining
the simplicity and efficiency of the piecewise approximation
method, but as presented can only be used under certain
conditions. The main constraint is that the process consum-
ing the random numbers must be able to stall in cycles
where the generator does not produce an output, which is
possible in many simulation applications, but may add too
much overhead in some architectures, or in certain real-time
tasks may be impossible. The second constraint is that all
the primary generators sharing a residual generator must
be generating the same distribution. This is often the case
where a large number of identical simulation pipelines
operate in parallel, as each pipeline will require independent
random samples from the same distributions.

7 Conclusion

This paper has presented a non-uniform random number
generator architecture which approximates probability dis-
tributions using discrete mixtures of triangular distributions.
The key advantages of this technique are:

† Low resource usage: only table lookups, comparison and
subtraction are needed, so only standard logic resources
plus a small amount of RAM is needed.
† High speed: the architecture contains no feedback and
can be heavily pipelined.
† Distribution modification at run-time: the generator dis-
tribution can be modified at run-time by modifying RAM
contents, so switching distributions occur without
reconfiguration.
† Fast approximation of arbitrary distributions: both ana-
lytically and empirically defined distributions can be
approximated in software in less than a second using the
described optimisation process.
† Ability to scale to large numbers of generators: using a
two-level approximation, multiple high-quality independent
identically distributed samples can be produced per cycle,
without requiring large numbers of RAM resources.
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When compared with existing Gaussian generator archi-
tectures, the piecewise technique uses less than half the
logic resources, achieves a 25% faster generation rate and
is able to switch to other distributions at run-time.
Although the accuracy of the produced distribution is not
as high as the dedicated techniques, the quality is sufficient
for tens of billions of samples. As a result the basic tech-
nique is ideal for applications where many different distri-
butions must be generated within a single application, but
the total number of samples consumed from each distri-
bution is not large, as for example in certain types of finan-
cial simulation. In situations where a large number of
high-quality IID samples are required, for example when
multiple identical simulation pipelines are placed in a
large device, the two-level technique allows the number
of samples per cycle to be scaled up, without requiring a
large number of RAMs.

8 References

1 Zhang, G.L., Leong, P.H.W., Ho, C.H., Tsoi, K.H., Lee, D.-U.,
Cheung, R.C.C., and Luk, W.: ‘Reconfigurable acceleration for
Monte Carlo based financial simulation’. Proc. Int. Conf. Field-
Programmable Technology, 2005, IEEE Computer Society Press,
pp. 215–224

2 Negoi, A., and Zimmermann, J.: ‘Monte Carlo hardware simulator for
electron dynamics in semiconductors’. Int. Annual Semiconductor
Conf., Sinaia, Romania, 1996, pp. 557–560

3 Yahoo! finance, http://finance.yahoo.com, daily closing data as of 24th
of March 2007
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