
In Proc. IEE Colloquium on Field Programmable Gate Arrays – Technology and Applications,
Ref. 1993/037, pp. 9.1–9.4, IEE, February 1993.

HARDWARE COMPILATION FOR FPGAs: IMPERATIVE AND DECLARATIVE
APPROACHES FOR A ROBOTICS INTERFACE

Ian Page, Wayne Luk1 and Henry Lau2

Recent improvements in the performance of Field-Programmable Gate Arrays provide an opportunity
for rapid construction of special-purpose hardware accelerators. There is little support at present,
however, for implementation in such accelerators of algorithms expressed in high-level languages: in
most cases users must translate their algorithms into circuit diagrams or state machines before using
any computer-based tools. For complex designs these methods become tedious and error-prone; they
are incapable of exploiting the structure of a high-level program for parametrising and transforming
designs. Moreover, while graphical representations may offer useful visual feedback, they can be
tedious to create or to modify.

We advocate a language-based approach for developing hardware accelerators. Two languages are
briefly covered in this paper: occam [1] and Ruby [2]. Occam is a simple imperative language, with
commands like assignment, sequential composition, conditional and iteration which are found in most
imperative languages. In addition, it has commands for parallel composition of program fragments
and for synchronised communication between them. Ruby, on the other hand, is a declarative language
for expressing designs as functions and relations; a single Ruby program can often be used to produce
a variety of architectures with different trade-offs in size and performance [3].

In the following, we illustrate the use of occam and Ruby in developing a shaft encoder interface.
In the joint of a robot arm, a shaft encoder measures the angle of each shaft by reading two output
signals generated from photo-sensitive detectors. The light input to these detectors is interrupted by a
fine pattern of transparent and opaque regions on a glass disc. Rotating the encoder disc results in two
digital pulse streams, and the shaft encoder interface must deduce from these streams the direction of
rotation and position. While special-purpose devices such as the Texas Instrument THCT2000 can
be used in the interface, the resulting system has a low bandwidth and a high chip-count. Our task
is to develop a new interface, based on FPGAs, with a higher speed of operation, higher accuracy,
additional functionality, smaller physical size, lower development cost, reduced development time,
and with increased flexibility.

Occam solution. The following is a fragment of an occam module which converts the two-bit values
from the shaft encoder into a number which represents the angular position of the shaft. To make it
easier to read, we have slightly changed the syntax of occam.

1Programming Research Group, Oxford University Computing Laboratory, 11 Keble Road, Oxford
2Robotics Research Group, Department of Engineering Science, Oxford University, Parks Road, Oxford



SEQencoder ? current
IF current 6= previous

THEN
IF current [0] = previous [1]

THENangle := angle +1
ELSEangle := angle �1previous := current

This program fragment does three things in sequence. First, it takes the current two-bit output value
from the shaft encoder device and stores it in a variable called current . Second, it determines whether
the encoder has moved since it was last looked at by comparing the value in current with the value
in the variable previous . If it has moved, then the next comparison determines if the shaft has moved
one unit clockwise or anticlockwise, and this is recorded by incrementing or decrementing the value
in the variable angle . The third and final action is to record the current value in the variable previous
for the next iteration. Provided that these three statements are repeatedly executed much faster than
the shaft encoder could ever move, we can be certain that the angle variable is a true representation
of the physical position of the robot arm.

This module, together with the rest of the program, is compiled automatically into a network of gates
and registers, following the strategy expounded in [5]. Occam differs from most imperative languages
– such as C – in that it obeys a collection of algebraic laws, so that the compilation process can be
seen as applying these laws systematically to turn a user program into a Normal Form program. The
Normal Form program that corresponds to the occam description for encoder handling is given below;
note that “S1 < b > S2” means “if b then S1 else S2”.

WHILE : �nished
PARprevious := current < c2 _ c3 _ c4 > previouscurrent := encoder < (start _ c0) ^ encoder rdy > currentangle := (angle+1 < incr > angle–1) < decr _ incr > anglec0 := (start _ c0) ^ : encoder rdyc1 := (start _ c0) ^ encoder rdyc2 := decrc3 := incrc4 := c1 ^ : changed�nished := c2 _ c3 _ c4start := 0

WHEREbitdi� = current [1] 6= previous[0]changed = current 6= previousincr = (c1 ^ changed ) ^ bitdi�decr = (c1 ^ changed ) ^ : bitdi�
A Normal Form program consists of a single simultaneous assignment embedded in a loop. Everything
on the left-hand side of the assignment can be interpreted as registers, and everything on the right-hand



side can be interpreted as a set of logic gates. In other words, a Normal Form program contains the
same information as a circuit diagram; this enables the smooth transition from the world of computer
programs to the world of electronic circuits with a guarantee that no errors are introduced by crossing
this boundary.

The Normal Form program above has been slightly massaged to make it more readable. Normally
this program would not be seen by a human; its purpose is to provide a behavioural interpretation for
the netlist produced by the compiler. The netlist is then turned into FPGA programming information
using automatic place-and-route software. Thus the entire procedure from user program to FPGA
implementation can, in principle, be made fully automatic and provably correct.

A new shaft encoder interface board has been prototyped to test the result of the compilation. The
board consists of little more than a Xilinx 3090 FPGA, a chip to communicate directly with the control
computer, and a few non-digital components necessary for each shaft encoder. It took only a few
hours to design this board, whereas the previous one took over six weeks. One benefit of using FPGAs
is that the physical construction of the hardware can be started – and may even be completed – before
the full specification of the system is available. This allows us to defer many design decisions, and to
achieve a high-degree of product flexibility. In our case, the same encoder interface board has been
re-used a number of times with different interface circuits without resoldering a single wire!

Ruby solution. There are no assignment statements in a Ruby program; instead, one considers
functions and relations on the state and on the inputs and the outputs of a system. Computations are
described by relations in the form x R y , so for example an incrementer is given by x inc (x+1),
while a decrementer is given by dec = inc�1, since x R�1 y, y R x . Projection relations, such as�2, can be used to extract a component from a sequence: hx ; yi �2 y . There are also relations, likelsh (left shift), for rearranging the hierarchy in a sequence: hhx ; yi; z i lsh hx ; hy; z ii.
Ruby has a number of operators for structuring designs. An operator that we shall require later
is a conditional construct, given by hb; x i (cond Q R) y , (x Q y) < b > (x R y) (recall thatX < b > Y means if b then X else Y ). The construction of composite designs is facilitated by
the composition operator: x (Q ;R) y , 9s: (x Q s) & (s R y). An array of n copies of R formed
by repeated composition is given by Rn ; this operator can be defined by recursion, R1 = R andRi+1 = Ri ; R.

The first task of a Ruby user is to express a design in relations, using operators like composition
and conditional as required. As an illustration, given that b0 and b1 are respectively the conditions
“current 6= previous” and “current [0] = previous [1]”, and that a and a 0 correspond to the values of
the angle variable in the occam code before and after the assignment, then a state-transition relation
for the encoder interface would behhb0; b1i; ai count a 0 , (a 0 = a) < b0 > (a 0 = a + 1 < b1 > a 0 = a � 1):
Let condid = cond inc dec. The relation count can then be expressed using Ruby constructs as
follows: hhb0; b1i; ai count a 0 , (a 0 = a) < b0 > (a inc a 0 < b1 > a dec a 0), (a 0 = a) < b0 > (hb1; ai condid a 0), (hb1; ai �2 a 0) < b0 > (hb1; ai condid a 0), hb0; hb1; aii (cond �2 condid) a 0, hhb0; b1i; ai (lsh ; cond �2 condid) a 0;



hence count = lsh;cond �2 condid .

With practice, one can write down a Ruby expression reasonably quickly without going through a
detailed derivation like the one above. A Ruby interpreter, which can handle mixed numerical and
symbolic simulation, can be employed to check the behaviour of Ruby programs. A program with the
desired behaviour can be optimised by correctness-preserving transformations, using strategies such
as pipelining and serialisation, to achieve a higher speed or to reduce the circuit size [3].

As an example of a Ruby transformation, provided that Q ;R = R;Q , one can use induction on n to
prove that Q ;Rn = Rn;Q . This result can then be used to derive a distributive theorem for repeated
composition (Figure 1): (Q ; R)n = Qn ; Rn:Q R Q R Q R

(a)

Q Q Q R R R
(b)

Figure 1 (a) (Q ; R)n , (b) Qn ; Rn , with n = 3.

This theorem applies when, for instance, Q and R are operations that add or multiply the input by a
constant, since addition and multiplication are commutative. In a more complex circuit model, one
can regard Q as a combinational circuit and R as a register; then the left-hand side of the above
equation can be considered as a pipelined version of the expression on the right-hand side.

We have developed simple rewriting engines to carry out Ruby transformations automatically. There
are also prototype compilation tools [4] to generate, from a Ruby expression, configuration data for
Xilinx, Algotronix and Concurrent Logic devices.

While FPGAs are getting larger, sometimes it is still useful to be able to control the layout of a design
manually rather than leaving it to the automatic placement and routing software. There is a variant
of Ruby, called OAL, which allows users to specify the exact placement and routing of components
in a generic manner [4]. OAL has been used in implementing two 32-bit counters and the associated
decision logic in an Algotronix CAL1024 FPGA for the shaft encoder interface described earlier; in
contrast, a THCT2000 has two 8-bit cascadable counters. A Ruby to OAL compiler is currently under
development.

Summary. Let us review the common features and the differences of the two compilation approaches
reported in this paper. Both occam and Ruby are designed to enable the clear structuring of designs
and reasoning about them. Both of them are based on a sound theoretical framework, which can
be used in proving the correctness of the algebraic transformations carried out in the compilation
process. Most programs in occam and in Ruby can also be executed – sometimes with symbolic data
– to provide a useful feedback of their behaviour.

Occam is more widely used than Ruby, because of its association with the transputer and because
of its similarity with conventional sequential programming languages. Moreover, it is possible to
compile an occam program partly into hardware for the FPGA, and partly into object code running on
a transputer. Occam also has a more flexible synchronisation scheme for communication, although as
a result it has a more complicated semantics than Ruby. There are designs, such as those involving



data-dependent iterations, which can be cumbersome to describe in Ruby but pose no such problem in
occam. On the other hand, architectures with a uniform structure, like systolic systems, can often be
captured succinctly in Ruby and implemented efficiently using OAL. The ability to control the layout
of circuits without lengthy execution of placement and routing software with the Ruby/OAL approach
is also very attractive. We are currently studying various methods of combining the two languages in
a coherent manner to get the best of both worlds.

Acknowledgements.

Thanks to Mike Spivey for comments on an earlier draft. The support of Esprit OMI MAP and OMI
HORN projects, Scottish Enterprise, Algotronix Limited and Concurrent Logic, Inc. is gratefully
acknowledged.

References.

[1] G. Jones, Programming in occam, Prentice Hall International, 1987.
[2] G. Jones and M. Sheeran, “Circuit design in Ruby,” in Formal Methods for VLSI Design,

J. Staunstrup (ed.), North-Holland, 1990, pp. 13–70.
[3] W. Luk, “Transformation techniques for serial array design,” in Proc. International Conference

on Application-Specific Array Processors, J.A.B. Fortes et. al. (eds.), IEEE Computer Society
Press, 1992, pp. 574–588.

[4] W. Luk and I. Page, “Parameterising designs for FPGAs,” in FPGAs, W. Moore and W. Luk
(eds.), Abingdon EE&CS Books, 1991, pp. 284–295.

[5] I. Page and W. Luk, “Compiling occam into FPGAs,” in FPGAs, W. Moore and W. Luk (eds.),
Abingdon EE&CS Books, 1991, pp. 271–283.


